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Abstract

The CD99 gene encodes a transmembrane protein that is involved in cell differentiation, 

adhesion, migration, and protein trafficking. CD99 is differentially expressed on the surface of 

hematopoietic cells both in the myeloid and lymphoid lineages. CD99 has two isoforms, the long 

and short isoforms that play different roles depending on the cellular context. There has been 

extensive evidence supporting the role of CD99 in myeloid and lymphoblastic leukemias. Here we 

review research findings related to the CD99 in malignant hematopoiesis. We also summarize the 

significance of CD99 as a therapeutic target in hematological malignancies.
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Introduction

CD99 was first discovered in 1979 as human thymus-leukemia antigen.1 CD99 is a highly 

O-glycosylated transmembrane protein encoded by the CD99 or previously known as MIC2 
gene.2 CD99 is located in the pseudoautosomal region (PAR) of the Y (Yp11-Ypter) and X 

(Xp22.33-Xpter) chromosomes in humans.3,4 The CD99 gene encodes two distinct proteins: 

a wild-type full-length CD99 long isoform (CD99 L) with 185 amino acids (molecular 

weight of 32 kDa) and a truncated short isoform (CD99 S) with 161 amino acids as 
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consequence of alternative splicing (28 kDa).5 The CD99 S transcript contains an 18-bp 

insertion between exons 8 and 9 which leads to an in-frame stop codon resulting in 

a truncated polypeptide. The resulting short isoform shares a similar extracellular and 

transmembrane domain as the long isoform but varies in the cytoplasmic domain (Figure 

1).5

In normal tissues, human CD99 is mostly known for its expression in T cells. It is involved 

in several processes that affect T cell adhesion by regulating T cell rosette formation and 

increasing the binding of T cells and activated peripheral blood lymphocytes to the vascular 

endothelial cells.6,7 It also contributes to the diapedesis of leukocytes through homotypic 

interaction of CD99 expressed on leukocytes and endothelial cells.8 CD99 is also known to 

regulate intracellular protein trafficking of MHC class 1 molecules, and plays a role in cell 

apoptosis and differentiation of immature thymocytes.9,10

In cancer tissues, human CD99 is mostly known for its upregulation in Ewing Sarcoma 

where it is considered a diagnostic marker.11,12 However, it has gained traction in recent 

years due to the discovery of its deregulation in various cancers including hematological 

malignancies. Several studies also reported different roles for CD99 in osteosarcoma13, 

breast cancer14,15, pancreatic adenocarcinoma16, malignant gliomas17, and epithelial 

cancers.18 More recently, studies have highlighted the role of CD99 and presented this 

protein as a potential therapeutic target in hematological malignancies such as in acute 

myeloid leukemia (AML) and T-lineage acute lymphoblastic leukemia (T-ALL).19–23

The function of CD99 in normal physiology and its deregulation in cancer have been 

covered in recent reviews. However, with new reports emerging regarding the role of CD99 

in hematological malignancies and considering its expression in various hematopoietic 

lineages, we intend to focus on highlighting major findings related to the expression and 

role of CD99 in acute and chronic leukemias both in the myeloid and lymphoid lineages.

CD99 in Acute Myeloid Leukemia

Acute Myeloid Leukemia (AML) is the most common acute leukemias in adults. AML 

is characterized by the abnormal hematopoietic proliferation and differentiation leading 

to the accumulation of poorly differentiated myeloid cells called blasts.24 Studies have 

found that human CD99 is upregulated in AML.19,23 CD99 is particularly upregulated in 

leukemic stem cells (LSCs).19 CD99 expression is higher in CD34+CD38− subpopulations 

from AML blasts compared with normal CD34+CD38− bone marrow cells and high CD99 

expression on AML blasts enriches for functional LSCs19,23. Chung et al has demonstrated 

that the expression of CD99 allows for separating leukemic stem cells (LSCs) from 

functionally normal hematopoietic stem cells (HSCs) in AML.19 In methylcellulose plating, 

on the contrary of CD99 positive cells, the CD99 negative cells within the CD34+CD38− 

population of AML cells resulted in colonies that resembled normal HSC.19 Interestingly, 

this subpopulation also lacked the presence of leukemia mutations that were found within 

the bulk AML cells. Xenograft models from these cells resulted in lympho-myeloid human 

engraftment that lacked the mutations as well. However, engraftment of CD99 positive 

CD34+CD38− AML cells led to deadly myeloid leukemia in mice.19 Association of human 

CD99 with the LSC may also be speculated from the high expression of CD99 in relapse 
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AML blasts.19 Thus, CD99 expression may serve as a potential marker to identify leukemic 

blasts from residual normal or pre-leukemic hematopoietic cells and serve as a marker to 

enrich for LSCs. It is also worth noting that residual HSCs from patients with AML often 

carry some of the leukemia mutations.25

Patients with AML are known to have several mutations which contribute to disease 

progression, treatment response, and clinical outcome. Vaikari et al reported an association 

between elevated CD99 expression and the presence of FLT3-ITD mutations which occur in 

almost 30% of patients with AML.23 In addition, CD123/CD99/CD25(+) cells in CD34+ cell 

fraction were shown to predict FLT3-ITD mutation with high specificity and sensitivity.26 

The expression of CD99 was also inversely associated with the presence of TP53 mutations 

in AML. CD99 expression is lower in patients with a mutated TP53 when compared with 

patients carrying the wild type TP53.23 Patients with an overexpression of CD99 were less 

frequently mutated with TP53.23

CD99 isoforms are expressed at varying levels throughout different tissue types. In AML, 

both isoforms are expressed, yet the CD99-S was the predominant isofrom.23 Although 

CD99 long and short isoforms are expressed on AML cells they have been found to 

contribute differently to leukemia growth. AML cells transduced with human CD99-L 

exhibited enhanced initial proliferation, accumulation of reactive oxygen species, enhanced 

DNA damage, and increased cell apoptosis. On the other hand, cells ectopically expressing 

human CD99-S showed very little change in their phenotype compared with control 

transduced cells. Whether the increased apoptosis is a result of the enhanced homotypic 

interaction driven by the overexpression remains to be investigated. However, it is clear that 

cells overexpressing CD99-L showed increased tendency to aggregate compared with cells 

expressing the CD99-S.23 Mechanistically, ectopic expression of the CD99 long isoform 

in AML cells caused a transient induction followed by a dramatic decrease in both ERK 

and SRC phosphorylation.23 Chung et al found that knockdown of CD99 in MOLM-13 

cell induced Src family kinase (SFK) activation, while overexpressing CD99 repressed SFK 

activation.19

The CD99-L and CD99-S isoforms have the ability to naturally dimerize on the cells 

surface.27 This dimerization process is believed to begin in the Golgi apparatus and upon 

dimerization the transmembrane protein is sent to the cell surface where it acts as a receptor 

that can be stimulated and results in protein kinase c phosphorylation.28 The dimerization 

effect was also observed in Jurkat T cells, where co-expression of both isoforms induced 

cell death.27 However, overexpressing the CD99-L isoform induced cell aggregation which 

could drive various signaling cascades to support oncogenic stress.1 The opposite effects 

of CD99’s isoforms on cell migration have also been demonstrated in other tumors.5,14 In 

AML xenograft mouse models, the ectopic expression of the CD99-L isoform resulted in 

lower leukemia engraftment in the bone marrow and peripheral blood. Altogether, these 

studies demonstrate the link between CD99’s deregulation and AML. However, they also 

suggest a more complex mechanism by which CD99 contributes to leukemogenesis.
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CD99 in Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by 

the presence of the BCR-ABL fusion oncogene resulting from the genetic translocation of 

chromosome 22 and 9.29,30 BCR-ABL encodes for a constitutively active tyrosine kinase 

that leads to increased cell growth and proliferation.29 Limited data are available related to 

the expression and the role of CD99 in CML. One study has reported that CD99 levels were 

lower in chronic phase CML HSC’s when compared with healthy donor bone marrow cells 

(Figure 2). Our analysis of Bloodspot dataset GSE1315931 has shown that CD99 expression 

is significantly lower (~50% less, P< 0.0001) in 76 patients with CML compared with 74 

healthy samples (Figure 2). Treatment with the anti-CD99 mAb in chronic myeloid leukemia 

blast cell line K562 that carry the BCR-ABL translocation showed no anti-leukemia activity 

in vitro.19

CD99 in Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) is the most common acute leukemia in children 

and results from chromosomal abnormalities and genetic alterations involved in the 

differentiation and proliferation of lymphoid precursor cells.32,33 Cortical thymocytes and T-

lineage acute lymphoblastic leukemia (T-ALL) cells strongly expressed CD99 in comparison 

with normal peripheral blood lymphocytes.1 Diagnostic bone marrow samples have revealed 

an almost eight-fold increase in the expression of CD99 than normal T lymphocytes within 

the same sample. It is however important to note that at least 15% of the T-ALL cases did 

not strongly express CD99 and this was independent of leukemic subtypes.21 This could be 

owing to patterns of expression changes occurring during maturation of thymocytes where 

CD99’s expression is downregulated with a concurrent increase in CD3 expression.34

CD99 was found to be particularly useful for the detection of T-ALL in the bone marrow 

and peripheral blood.21 Since CD99 is a surface marker, it is advantageous for cell surface 

staining methods unlike Terminal Deoxynucleotidyl Transferase (TdT), traditionally used to 

monitor minimal residual disease (MRD) which requires cell permeabilization.35 However, 

CD99’s expression should be used cautiously as a marker since there could also be a decline 

of expression of CD99 and TdT during induction chemotherapy leading to inconsistent 

results for MRD.36 Though CD99 could serve as a promising diagnostic marker for T-ALL, 

its role in disease initiation for T-ALL if any is not clear. Studies showed no difference in 

cell proliferation or leukemia propagation in vivo in CD99− or CD99+ cells and both the 

subpopulations were capable of self-renewal.37

CD99 is also highly expressed in immature B cell-precursors (BCP) and its expression is 

remarkably reduced in differentiated B cells.34 However, normal BCP cells and BCP-ALL 

cells have similar levels of human CD99 expression.38 Notably, only CD99 long isoform 

was expressed in normal BCP. In normal BCP cells the mRNA and protein expression of 

CD99 short isoform was highest in immature cells and expression decreased with maturation 

leading to a speculation that CD99 long isoform and not the short isoform in fact exclusively 

plays a role in BCP differentiation.38,39 There is substantial association between CD99 
mRNA expression and CD99 surface expression, suggesting that CD99 can possibly be used 

as a biomarker using antibody based measurements.39 In addition, high CD99 is associated 
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with high risk BCP-ALL like BCR-ABL1, CRLF2-rearranged (CRLF2Re) and a third of 

B-other BCP-ALL cases whereas TCF3-PBX1 BCP-ALL was associated with a decrease 

in CD99 expression. CD99 was also highly expressed in almost half ALL cases with 

ETV6-RUNX1 (TEL-AML1) or hyper-diploid. Unlike in AML, high CD99 expression is 

associated with poor clinical outcome in high-risk pediatric BCP-ALL patients and with an 

increased risk (55%) of relapse.39

CD99 in Chronic Lymphocytic Leukemia

Chronic Lymphocytic Leukemia (CLL) is the most common leukemia in developed 

countries. CLL is characterized by the clonal proliferation and accumulation of mature 

B-cells within the blood, bone marrow, lymph nodes, and spleen.40 In CLL the CD99 long 

isoform was found to be the most dominantly expressed CD99, while CD99 short isoform 

was barely present.41 We used the GSE13159 dataset to examine the differential expression 

of CD99 between healthy bone marrow and CLL samples; these data were downloaded from 

Bloodspot.31,42 In 448 patients we found that CD99 was 1.5-fold (P< 0.0001) higher in 

CLL samples compared with that in 74 healthy bone marrow samples (Figure 2).31 Previous 

studies have also shown that the CD99 long isoform supports migration of CLL cells.41 

Furthermore, CD99’s long isoform also regulates integrin function in CLL by regulating 

CLL cell adhesion to α4β1 integrin ligands. Interestingly, it was also shown that CD99 is 

regulated by MMP9 and silencing of MMP9 resulted in increased CD99 surface expression 

in CLL.41

CD99 as a Therapeutic Target

CD99 is upregulated and plays an important role in several hematological malignancies, 

therefore, it presents a viable therapeutic target in leukemia. Research efforts have focused 

on developing therapeutic strategies that leverage this feature and some have demonstrated 

promising potential. One such strategy is with the use of an anti-CD99 mAb. Anti-CD99 

mAbs such as HO36-1.1 have been shown to induce cytotoxicity in AML stem cells in 

vitro.19,23,43 Table 1 lists HO36-1.1’s effect as well as other CD99 targeting mAbs and 

their respective effects in different cell populations. Anti-CD99 mAbs also proved effective 

at inducing cytotoxicity among myeloid leukemia cell lines such as MOLM-13.19,23,43 

Treatment of AML cells with anti-CD99 mAbs induces the activation of SFKs.19 Anti-CD99 

mAbs at concentrations that were found toxic to AML cells, had minimal effect on HSC 

cells and did not show significant toxicity to endothelial cells or normal peripheral blood 

mononuclear cells.19,23

In vivo, HO36-1.1 proved effective at neutralizing LSC’s. IgM antibodies were also 

used in vivo and showed no ability to induce antibody dependent cellular cytotoxicity.19 

Furthermore, studies showed a significant reduction in leukemia in both the peripheral blood 

and bone marrow in mice engrafted with leukemic cells.19 Interestingly when anti-CD99 

mAbs were administered to mice that were engrafted with normal HSC’s, there was a 

minimal effect on engraftment.19 An elastin like polypeptides (ELP’s) conjugated with 

anti-CD99 singe chain antibody fragments (scFvs) were developed as a therapeutic strategy 

to target CD99.43 This approach overcomes some of the challenges associated with the 
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generation of monoclonal antibodies and provides a clustering advantage of the antibody 

on the target antigen. This formulation provides a superior pharmacokinetic profile over 

free scFvs which are filtered out by the glomerular filtration system in the kidneys due to 

their small 30 kDa size.43 ELPs are peptides that are derived from human tropoelastin, a 

peptide found naturally in the body.43 α-CD99-A192 synthesized by fusing ELP, specifically 

A192 to an anti-CD99 scFv,43 demonstrated both in vitro and in vivo antileukemia activity.43 

α-CD99-A192 also prolonged survival of mice in an AML xenograft model.43

Treatment with anti-CD99 antibodies resulted in upregulation of surface HSP70 expression 

in both T and B-ALL cells and enhanced NK-cell cytotoxicity.44 Also, binding to different 

epitopes of human CD99 seems to have different effects on the apoptosis pathway. For 

instance, in Jurkat cells, treatment with CD99 monoclonal antibody targeting DN16 epitope 

resulted in increased cell apoptosis whereas antibody targeting YG32 epitope did not 

influence cell apoptosis (Table 1). However, antibodies binding both epitopes resulted in 

increased cell aggregation, and activation of the MAP kinase pathway.45 Similar results were 

observed in induction of T cell death by antibody binding to the AD20 epitope of CD99 

whereas antibody binding 0662 epitope has no effect on cell apoptosis (Table 1).

In B-ALL, cells expressing high CD99 expression were sensitive to treatment with a CD99 

monoclonal antibody. TEL/AML1-positive ALL cells were the most sensitive to treatment 

with a CD99 monoclonal antibody (DN16 clone) and more prone to increased cell apoptosis 

and homotypic cell aggregation. However, these effects were delayed in the presence of 

stroma for support TEL/AML1 indicating that CD99 may play a role in the dependency of 

TEL/AML1 on the microenvironment bone marrow.46 On the other hand, though CD99 is 

highly expressed in hyper-diploid B-ALL, these cells were not sensitive to treatment with 

CD99 monoclonal antibody in stroma free condition. Noteworthy, BCP cells, which express 

high CD99 expression, exhibited sensitivity when treated with CD99 monoclonal antibody 

(DN16 clone).44 It’s also worth noting that MT99/3, an anti-CD99 mAb, exhibited antibody 

dependent cell cytotoxicity in malignant B-cells.47 However, this same anti-CD99 antibody 

did not show any cytotoxic effect on peripheral blood mononuclear cells (PBMC’s).48 

Besides antibody based targeting strategies against CD99, the FDA approved purine 

nucleoside analogs, Clofarabine and Cladribine, were found to inhibit CD99 dimerization 

and its interaction with downstream signaling components in Ewing sarcoma.49,50

A fusion protein consisting of the murine Cd99 sequence and a bioengineered truncated 

version of bacterial thioredoxin was manufactured into a vaccine.51 This vaccine resulted 

in an activation of specific CD99 auto reactive B-cells.51 In mouse studies this vaccine 

was found to reduce tumor micro-vessel density and functionality with no side effects 

observed.51 The researchers in this study concluded that targeting Cd99 via vaccination can 

inhibit tumor growth. However, it is not clear whether these findings may extend to human 

Cd99, since murine Cd99 has only 46% homology with human CD99.51

Concluding Remarks and Future Directions

Although there is a vast amount of literature regarding CD99 and its role in T cells and 

an increase in evidence suggesting its role in hematological malignancies, several gaps 
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remain in the understanding of its different isoforms and the potential each one has in 

hematological malignancies. Dissecting the different mechanistic pathways by which each 

isoform act may facilitated the development of better modalities to target this oncoprotein. 

The association between CD99 upregulation and the presence of specific molecular or 

cytogenetic aberrations is another area of much needed research. Whether CD99 is a suitable 

therapeutic target for specific subsets of patients such as patients with FLT3-ITD positive 

AML or TP53 wt. type patients remains to be established. While certain antibodies against 

CD99 have demonstrated effectiveness in AML preclinical models, whether they are also 

effective in ALL or CLL remains to be investigated. Different CD99 antibodies enact 

different responses on hematopoietic and leukemic cells, with some acting more as agonists 

while others as antagonists. The difference in their ability to engage different CD99 domains 

likely contribute to the conflicting functional and mechanistic phenotypes in both malignant 

and normal cells. Current strategies used to target CD99 have yielded promising results in 

preclinical models. How CD99 targeting approaches perform in conjunction with existing 

therapies and whether a synergistic effect that drives an even greater therapeutic response 

could be obtained with combinational approaches remains to be determined.
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Highlights

• In normal tissues, human CD99 is mostly known for its expression in T cells

• In cancer tissues, human CD99 is mostly known for its upregulation in Ewing 

Sarcoma

• CD99 is particularly upregulated in leukemic stem cells (LSCs)

• Anti-CD99 mAbs such as HO36-1.1 induce cytotoxicity in AML stem cells in 

vitro
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Figure 1. 
A schematic representation of both CD99 Short and CD99 Long isoforms illustrates 

the similarities and differences of both isoforms, with the main difference observed in 

the cytoplasmic domain. Epitope mapping also shows the recognition sites of different 

antibodies along with the sequences they recognize.28
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Figure 2. 
CD99 expression in Healthy Bone Marrow, CLL, CML, AML, and T-ALL. Obtained from 

Leukemia MILE Study 201029_s_at.
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