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Abstract 

Mitochondria-induced cell death is a vital mechanism of heart failure (HF). Thus, identification of mitochondria-
related genes (Mito-RGs) based on transcriptome sequencing data of HF might provide novel diagnostic markers and 
therapeutic targets for HF. First, bioinformatics analysis was conducted on the GSE57338, GSE76701, GSE136547, and 
GSE77399 datasets in the Gene Expression Omnibus. Next, we analyzed HF-Mito differentially expressed genes (DEGs) 
using the protein–protein interaction (PPI) network for obtaining critical genes and exploring their functions. Subse-
quently, immune cell scores of the HF and normal groups were compared. The potential alteration mechanisms of the 
key genes were investigated by constructing a competing endogenous RNA network. Finally, we predicted potential 
therapeutic agents and validated the expression levels of the key genes. Twenty-three HF-Mito DEGs were acquired in 
the GSE57338 dataset, and the PPI network obtained four key genes, including IFIT3, XAF1, RSAD2, and MX1. According 
to gene set enrichment analysis, the key genes showed high enrichment in myogenesis and hypoxia. Immune cell 
analysis demonstrated that aDCs, B cells, and 20 other immune cell types varied between the HF and normal groups. 
Moreover, we observed that H19 might affect the expression of IFIT3, AXF1, and RSAD2. PCGEM1 might regulate RSAD2 
expression. A total of 515 potential therapeutic drugs targeting the key genes, such as tretinoin, silicon dioxide, and 
bisphenol A, were acquired. Finally, IFIT3, RSAD2, and MX1 expression increased in HF samples compared with normal 
samples in the GSE76701 dataset, conforming to the GSE57338 dataset analysis. This work screened four key genes, 
namely, IFIT3, XAF1, RSAD2, and MX1, which can be further explored in subsequent studies for their specific molecular 
mechanisms in HF.
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Background
Heart failure (HF) is a clinical disorder characterized by 
insufficient tissue perfusion and congestion of systemic 
or pulmonary circulation, caused by impaired systolic 
or diastolic cardiac function and decreased ejection 
and filling ability. Myocardial ischemia and infarction 

developing into HF are still the leading causes of its high 
incidence rate and mortality despite tremendous progress 
in cardiovascular medicine and medical procedures. The 
prevalence of HF is 1–2% worldwide, and patients over 
70  years account for more than 10% [1] of the total HF 
patients. The prognosis of HF is poor, and the mortality 
rate within 4–5 years is approximately 50% [2], causing a 
heavy social and economic burden. The estimated cost of 
HF as a share of total health care expenditure is expected 
to increase every year in developed economies. Many 
interrelated conditions eventually lead to HF, and these 
include diabetes, obesity, and hypertension. HF involves 
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alterations in energy metabolism and electroconduct-
ibility; as a result, the heart cannot meet circulatory 
requirements [3, 4]. The widely recognized variant of HF 
is “systolic function–preserved” or “diastolic” HF, which 
has the feature of ventricular filling resistance but not 
systolic defects. Obesity, ischemia, aging, hypertension, 
and diabetes are the most common causes of HF with 
preserved ejection fraction [5]. The incidence of HF may 
increase as time goes by in terms of the future. However, 
the underlying mechanism remains unclear.

Mitochondria are double membrane–enclosed orga-
nelles present in almost all eukaryotes. Mitochondria 
primarily produce adenosine triphosphate (ATP) through 
the process of oxidative phosphorylation. Mitochondrial 
membrane potential (MMP) and intimal impermeability 
are the key characteristics of functional mitochondria. 
For maintaining oxidative phosphorylation, the metabo-
lism of various carbon substrates is needed through cer-
tain pathways, finally converging with the tricarboxylic 
acid (TCA) cycle for producing reduction equivalent. 
Mitochondria contain an active calcium transport sys-
tem, and many enzymes related to the oxidative meta-
bolic pathway can be activated by calcium. Mitochondria 
support life and are related to cell death initiation. Mito-
chondria-induced cell death is an essential mechanism of 
HF [6]. The relationship of mitochondrial calcium level 
with cardiac insufficiency in the process of chronic HF 
has become a research hotspot. Mitochondrial function 
has a critical effect on HF pathophysiology.

In the present study, mitochondria-related genes were 
identified in HF patients using transcriptome sequenc-
ing–based bioinformatics analysis to provide novel ideas 
for diagnosing and treating the disease.

Methods
Data source
The HF-related expression data were acquired from the 
GSE57338, GSE76701, GSE136547, and GSE77399 data-
sets, of which the GSE57338 dataset had 177 HF cases 
and 136 normal samples; GSE76701 dataset had eight 
samples (HF: Normal = 4:4); GSE136547 dataset had 80 
samples (HF: Normal = 48:32); and HF: Normal ratio was 
13:12 in the GSE77399 dataset. A total of 1576 mitochon-
dria-related genes (Mito-RGs) were obtained from the 
molecular signatures database (MSigDB) (http://​softw​
are.​broad​insti​tute.​org/​gsea/​msigdb) [6].

DEGs detection in normal versus HF samples
We performed differential analysis to screen DEGs 
between HF samples (n = 177) and normal samples 
(n = 136) from the GSE57338 dataset with “limma” 
R package [7], with P < 0.05 and |log2(fold change, 
FC)| > 0.5 as thresholds [8]. We used R package “ggplot2” 

(version 3.3.5) [9] and “pheatmap” (version 1.0.12) to 
draw volcano plots and heat maps, respectively, to show 
DEGs expression.

Identification of HF‑related genes (HFGs) by weighted 
gene co‑expression network analysis (WGCNA)
WGCNA has been extensively utilized in trait and 
gene association analysis [10]. In this work, we utilized 
“WGCNA” R package [10] for constructing a co-expres-
sion network by considering the gene expression levels of 
the 313 samples in GSE57338 as input data and HF and 
normal as trait data. First, samples clustering was per-
formed by using hclust function to recognize outliers, 
and the parameter was set to “method = average” to cal-
culate the distance. Moreover, the optimal soft threshold 
was approximate scale-free network. Modules were seg-
mented using a dynamic shear tree algorithm, and the 
modules associated with HF were identified using cor-
relation analysis. HFGs were obtained through Module 
Membership (MM) and Gene Significance (GS) within 
the modules [10].

Identification of HF‑mitochondria‑related DEGs (HF‑Mito 
DEGs)
The HF-Mito DEGs were obtained by intersecting 
the Mito-RGs, HFGs, and DEGs detected from the 
GSE57338 dataset, and the expression of HF-Mito DEGs 
in HF as well as normal group was analyzed by the Wil-
cox test method. Then, the R package “clusterProfiler” 
[11] was utilized for GO and KEGG analyses of HF-Mito 
DEGs, and the top five GO and top 10 KEGG signaling 
pathways were displayed.

Identification of key genes and gene set enrichment 
analysis (GSEA)
We used STRING (https://​string-​db.​org) website to con-
struct a protein–protein interaction (PPI) network of 
HF-Mito DEGs with a confidence level of 0.4 (medium 
confidence = 0.4), and the relationship pairs were 
obtained after removing discrete proteins, imported into 
Cytoscape software for visualization. Then, molecular 
complex detection (MCODE) was used for analysis, and 
the degree cutoff was set to 2, node score to 2, k-score 
to 2, and Max. Depth to 100 to classify the gene network 
clusters and obtain key genes. Afterward, 177 HF patients 
were classified into low- or high-expression group based 
on the median key gene levels, and GSEA analysis was 
performed for all genes with set thresholds of SIZE > 20 
and NOM. P < 0.05.

Immune cells scores analysis in HF and normal groups
Using the 29 immune-related gene sets, the immune 
activity of each sample can be obtained accurately. First, 
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this work utilized “GSVA” R package [12] for calculating 
immune gene set contents in 177 HF samples and 136 
normal samples and analyzed the differences in immune 
gene sets between the HF and normal samples. In addi-
tion, correlations between the key genes and the differen-
tial immunity genes were analyzed.

Drug prediction analysis
The comparative toxicogenomics database (CTD) helps 
understand the complex network of interactions between 
genes and proteins. The current study used the CTD 
database to predict potential therapeutic agents for the 
key genes.

Competing endogenous RNA network establishment 
based on the key genes
Differentially expressed miRNAs and lncRNAs were ana-
lyzed in normal and HF samples from the GSE136547 
dataset and the GSE77399 dataset by R package 
“limma” [7], upon screening criteria of P < 0.05 and 
|log2(FC)| > 0.5. Then, miRWalk (http://​mirwa​lk.​umm.​
uni-​heide​lberg.​de/) was utilized for predicting the key 
genes to obtain the miRNAs that bind to their targets, 
setting the parameters as follows: Score = 0.95; Posi-
tion = 3UTR; and miRDB = 1. These miRNAs were 
intersected with the differential miRNAs to obtain the 
common miRNAs. Next, the starBase database was used 
to predict lncRNAs interacting with the common miR-
NAs, and the predicted lncRNAs were intersected with 
the differential lncRNAs to obtain the common lncRNAs. 
Finally, the miRNAs and the key genes with regulatory 
relationships were extracted based on the final lncRNAs, 
and the network of the key genes, miRNAs, and lncR-
NAs with regulatory relationships was obtained using 
Cytoscape software.

Validation of critical gene levels
The present study confirmed critical gene expression 
from the GSE76701 dataset using Wilcoxon test method. 
The expression box line plots of the key genes in HF and 
normal groups were plotted using the “ggplot” R package.

Animals
All animal experiments using 6–8-week-old wild-type 
(WT) male C57BL/6 MICE gained approval from the 
Animal Ethical Laboratory Committee of the Fourth Mil-
itary Medical University. The mice were placed in a tem-
perature-controlled chamber (22 ± 2 °C) for 12 h of light/
dark cycle and were free to obtain food and water.

Heart failure model
A murine heart failure model was established as pre-
viously described. We used 6–8-week-old WT male 

C57BL/6 mice. After adequate anesthesia attained by 
intraperitoneal injection of 1% sodium pentobarbital 
(50 mg/kg), the mice were placed in the supine position 
on a fixed plate. The upper thorax region was shaved 
and the tongue was retracted. Then, a 24-gauge i.v. cath-
eter was inserted into the trachea. The catheter was 
subsequently connected to a small animal ventilator 
(HX-101E, Techman Soft Co., Ltd., Chengdu, China) via 
the Y-shaped connector. The mice were ventilated with 
a tidal volume of 2.4 mL, and their respiratory rate was 
120 breaths per minute. To properly expose the heart, a 
left thoracotomy was performed by separating the third 
and the fourth intercostal spaces. After connecting the 
electrocardiogram, left thoracotomy was performed 
to expose the heart for the ligation of the left anterior 
descending coronary artery 2 to 3 mm after the origin of 
the coronary artery. Standard II lead electrocardiogram 
(ECG) was observed; ST segment and/or T wave eleva-
tion or decrease, local color darkening of the heart, and 
other myocardial ischemia changes were observed as 
signs of successful ligation, and the chest was closed. The 
mice used in the experiment were self-adaptive raised for 
four weeks under normal diet since the purchase. Echo-
cardiography was performed before model establish-
ment and at 4  weeks. Four chamber sections of the left 
ventricular long axis, short axis, and apex were routinely 
obtained, and the anterior wall, left indoor diameter, and 
posterior wall of the left ventricle were observed, and 
ejection fraction was calculated. Ejection fraction below 
50% was considered HF. Specific echocardiographic 
results are presented in supplementary materials.

Validation of the expression levels of critical genes 
by RT‑qPCR
cDNA from the 4-week time point (sham, HF n = 12 
C57BL/6 mice left ventricle) generated as described 
above was used for qPCR. Primers spanning exon–exon 
junctions were designed using Primer-BLAST (https://​
www.​ncbi.​nlm.​nih.​gov/​tools/​primer-​blast/). GAPDH was 
used as the reference (housekeeping) gene. The qPCR 
assays were performed using FastStart Universal SYBR 
Green Master mix (Takara Biomedical Technology (Bei-
jing) Co.) in line with the manufacturer’s protocol with 
minor modifications. A 25-µL reaction (10 ng cDNA) in 
the 96-well plate (Axygen Scientific Inc, Silicon Valley) 
was performed on a CFX96TMReal-Time System (BIO-
RAD). Primer sequences are shown in Table 1.

Statistical analysis
Bioinformatics statistical analysis was performed in 
R language (version 3.6.3). Quantitative results were 
examined through Prism 9.0, and represented by 
mean ± SEM. Student’s two-tailed, unpaired t test was 
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adopted to analyze differences between the groups, 
with P < 0.05 indicating statistical significance.

Results
Identification of differentially expressed genes (DEGs) 
between HF and normal samples
A total of 450 DEGs between HF and normal samples 
were identified in the GSE57338 dataset with the cut-
off value of P < 0.05 and |log2(fold change, FC)| > 0.5, 
including 244 genes showing upregulation and 206 
genes showing downregulation (Additional file  1: 
Table S1 and Additional file 2: Table S2). Volcano plots 
and heat map results of the DEGs are shown in Fig. 1A, 
B.

Identification of HF‑related genes (HFGs) by weighted 
gene co‑expression network analysis (WGCNA)
First, the height cutoff value was set at 120, and all sam-
ples were clustered based on their Euclidean distance 
to detect good samples and genes. The PCA results are 
shown in Fig. 2A. Two outlier samples, GSM1380018 and 
GSM1379815, were eliminated, and the remaining 311 
samples were used for subsequent analysis (Fig. 2B). The 
optimal soft threshold value of five was determined from 
Fig.  2C, and the dynamic shear tree algorithm was uti-
lized to segment the modules at the min module size of 
300 to obtain eight modules (Fig. 2D). The genes in each 
module are shown in Additional file  3: Table  S3. Given 
that the correlation analysis demonstrated that three 
modules—yellow, green, and turquoise—strongly cor-
related with HF, the genes in these three modules were 
regarded as HF-related genes (Fig. 2E).

Identification of HF‑Mito DEGs
A total of 23 HF-Mito DEGs were obtained by crossover, 
and the Venn diagram is shown in Fig.  3A (Additional 
file  4: Table  S4). A comparison analysis revealed that 
MYOC, IFIT3, OGDHL, LRRC10, GATM, CRYM, XAF1, 
RSAD2, SPHKAP, MX1, MAPK10, ABCG2, PPM1K, 
SNCA, and TMEM71 were highly expressed in HF, 
whereas HMGCS2, TXNRD1, ARG2, MAP2K1, STAT3, 
MTHFD2, CHDH, and POR were poorly expressed 
(Fig.  3B). The GO and KEGG functional enrichment of 

Table 1  Primer sequences

Primer name Sequence (5′–3′)

Ifit3(Mus)-F TGA​ACT​GCT​CAG​CCC​ACA​C

Ifit3(Mus)-R AAT​GGC​ACT​TCA​GCT​GTG​GA

Xaf1(Mus)-F TCC​ACT​TCA​TGC​TCC​ACG​AG

Xaf1(Mus)-R GTT​GGC​TTT​CCT​TGG​TCT​GC

Rsad2(Mus)-F CCT​GTG​CGC​TGG​AAG​GTT​T

Rsad2(Mus)-R TTC​AGG​CAC​CAA​ACA​GGA​CA

Mx1(Mus)-F CCT​CCC​ACA​TCT​GTA​AAT​CACTG​

Mx1(Mus)-R CGG​TTT​CCT​GTG​CTT​GTA​TCA​
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the 23 HF-Mito DEGs yielded 46 BP (biological pro-
cess), 8 cellular components (CCs), 6 molecular functions 
(MFs), and 10 KEGG signaling pathways. Figure  3C, D 
present the enrichment results of the top five GO and top 
10 KEGG signaling pathways, respectively. The results 
demonstrated that these genes were enriched in cellu-
lar modified amino acid metabolism, ROS biosynthesis 
regulation, aging process, biosynthetic process, and other 
biological processes, and KEGG signaling pathways such 
as hepatitis C and prolactin signaling pathway.

Identification of key genes and GSEA
A PPI network was performed on the 23 HF-Mito DEGs 
using the STRING website. After removing discrete 
proteins (such as HMGCS2, MYOC, LRRC10, CRYM, 
SPHKAP, CHDH, PPM1K, SNCA, PORh, and TMEM71, 
because they did not interact with other proteins), 14 
pairs were obtained. A gene network cluster was obtained 
using MCODE analysis as shown in Fig.  4A, including 
IFIT3, XAF1, RSAD2, and MX1 key genes. The key genes 
were all upregulated genes (Fig.  4B). The median val-
ues of IFIT3, XAF1, RSAD2, and MX1 genes were used 
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to classify 177 HF patients into low- or high-expression 
group, and then GSEA analysis was performed for all 
genes. The top 10 hallmark and top three immune-
related pathways for the four key genes are shown in 
Fig. 4C–J. IFIT3 and MX1 high-expression samples were 
enriched in myogenesis, KRAS signaling DN, oxidative 
phosphorylation, hypoxia, and estrogen response. More-
over, inflammatory response and IL-6, JAK expression 
were significantly enriched in RSAD2 high-expression 
samples. IL-6/JAK/STAT3 signaling, oxidative phospho-
rylation, fatty acid metabolism, and other pathways were 
significantly enriched in XAF1 high-expression samples.

Immune cells scores analysis in HF and normal groups
Figure 5A, B show the heat map and box line plot of the 
29 immune gene sets of all samples. aDCs, cytolytic activ-
ity, CD8+ T cells, HLA, iDCs, inflammation-promoting, 
NK cells, type I IFN response, mast cells, Th1 cells, and 
T cell co-stimulation showed high expression in the HF 
group, whereas B cells, APC co-inhibition, checkpoint, 
CCR, macrophages, pDCs, T cell co-inhibition, Tfh, and 
Treg were less expressed in the HF group. Moreover, 
the correlation plot of the key genes and the differential 
immune gene sets are shown in Fig.  6. XAF1 positively 
correlated with inflammation-promoting, HLA, cytolytic 
activity, type I IFN response, NK cells, aDCs, iDCs, mast 
cells, CD8 T cells, Th1 cells, and T cell co-stimulation, 
whereas it negatively correlated with APC co-inhibition, 
T cell co-inhibition, macrophages, Tfh, B cells, and Treg. 
MX1 positively correlated with ADCs and inflammation-
promoting, iDCs, HLA, Type I IFN response, cytolytic 
activity, and NK cells, but showed negative relation to 
APC co-inhibition, pDCs, Tfh, T cell co-inhibition, B 
cells, and Tregs. RSAD2 positively correlated with aDCs, 
HLA, inflammation-promoting, type I IFN response, 

NK cells, iDCs, and cytolytic activity, and negatively 
correlated with T cell co-inhibition, Treg, APC co-inhi-
bition, CCR, Tfh, pDCs, checkpoint, and macrophages. 
IFIT3 positively correlated with HLA, ADCs, type I IFN 
response, inflammation-promoting, cytolytic activity, NK 
cells, mast cells, CD8+ T cells, iDCs, T cell co-stimula-
tion, and Th1 cells, and negatively correlated with T cell 
co-inhibition, B cells, Tfh, Treg, and APC co-inhibition 
(Additional file 5: Table S5).

Drug prediction analysis of the key genes
The current study used the CTD database to predict 
potential therapeutic agents for the key genes, and the 
results are shown in Additional file 6: Table S6. A total of 
146 drugs were predicted by IFIT3, 142 by MX1, 144 by 
RSAD2, and 83 by XAF1.

Critical genes‑based competing endogenous RNA (ceRNA) 
network establishment
We observed 88 differential miRNAs in the GSE136547 
dataset, including 39 upregulated miRNAs and 49 down-
regulated miRNAs (Additional file 7: Table S7 and Addi-
tional file 8: Table S8). Three lncRNAs were upregulated 
and 12 lncRNAs were downregulated in the GSE77399 
dataset (Additional file 9: Table S9 and Additional file 10: 
Table S10). To understand the overall distribution of the 
differentially expressed lncRNAs and miRNAs, volcano 
plots are shown in Fig. 7A, B. miRWalk (http://​mirwa​lk.​
umm.​uni-​heide​lberg.​de/) was utilized to predict the four 
key genes, resulting in 1051 miRNAs predicted to bind 
to their targets. A total of 33 common miRNAs were 
obtained by taking the intersection of these miRNAs 
with 88 differential miRNAs (Fig. 7C), followed by using 
starBase database to predict 12 miRNAs interacting 
with these 33 common miRNAs. The starBase database 
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was used to predict 861 lncRNAs interacting with these 
33 common miRNAs, and the predicted lncRNAs were 
intersected with 15 differential lncRNAs to obtain two 
common lncRNAs (Fig. 7D). Then, the final two lncRNAs 
(PCGEM1, H19) were used to extract six miRNAs with 
regulatory relationships (has-miR-148a-3p, has-miR-326, 
has-miR-17-5p, has-miR-18b-5p, has-miR-20b-5p, has-
miR-93-5p) together with three key genes (RSAD2, 
XAF1, IFIT3). Finally, the network of three key genes, six 
miRNAs, and two lncRNAs was constructed (Fig. 7E).

Validation of the key gene levels
The four key genes, IFIT3, XAF1, RSAD2, and MX1, in 
the normal and HF groups, are shown in Fig.  8A. Wil-
coxon test results indicated that IFIT3, MX1, and RSAD2 

were highly expressed in the HF group of the GSE76701 
dataset, and the gene expression trends were completely 
consistent with those in the GSE57338 dataset. qRT-PCR 
verification was performed in the left ventricular tissue 
samples of the normal and HF groups to verify critical 
gene levels. Similar gene expression trend of XAF1 was 
observed (Fig. 8B).

Discussion

(1)	 The severity of HF is related to energy metabolism 
disorder. Mitochondrial function is particularly 
important in myocardial cells, which continually 
consume energy (HF is related to mitochondrial 
dysfunction). The treatment of HF requires expen-
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sive medical procedures. The development of 
accurate biomarkers and therapeutic targets can 
improve the level of diagnosis and treatment. The 
treatment scheme targeting the energy metabolism 
pathway can improve the degree of HF and heart 
function.

(2)	 There are four discoveries in the current study. In 
brief, we obtained four key genes (IFIT3, XAF1, 
RSAD2, and MX1) through the bioinformatics 
analysis of 1576 Mito-RGs obtained from four data-
sets of GSE57338 (mRNA), GSE76701 (mRNA), 
GSE136547 (miRNA), and GSE77399 (mRNA), and 
literature in GEO database [6]. IFIT3 (interference-
induced protein with tetratricopeptide repeats 3) 
is a protein-coding gene. Typically, interferon gene 
serves as a possible biomarker to diagnose and 
treat ischemic cardiomyopathy [6]. Its effects on 
mitochondria-related factor VDAC2 and apoptosis 
were determined [13]. XAF1 (XIAP-associated fac-
tor 1) activates the mitochondrial apoptosis path-
way and is used as a proapoptotic factor in treating 

cerebral ischemia–reperfusion injury, cancer prog-
nosis, and atherosclerosis of the aorta [14]. RSAD1 
(radical S-adenosylmethionine domain-containing 
1), also known as viperin, belongs to the S-aden-
osine-L-methionine (SAM) enzyme superfamily. 
RSAD1 can widely activate E3 ligase and increase 
proteasome-mediated protein degradation upon 
virus infection [15]. The genomic interval plays a 
vital role in heart health [16]. These gene deletions 
cause congenital heart diseases. The mechanism of 
RSAD1 on HF has not been studied deeply; how-
ever, its effect on the heart and its wide distribution 
in mitochondria can provide new ideas for study-
ing HF. MX1 (MX dynamin-like GTPase) is a gene 
that encodes a guanosine triphosphate (GTP) meta-
bolic protein involved in cell antiviral response. In 
this study, we used Wilcoxon paired test method 
to verify the absence of distinct differences in its 
level within the GSE76701 dataset. Interestingly, the 
change in MX1 gene expression was also screened 
[17]; yet, MX1 expression was not defined as related 
to cardiac function.
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(3)	 Furthermore, our enrichment analysis (GO and 
KEGG) revealed the significant enrichment of 
such genes into biological processes such as cellu-
lar modified amino acid metabolism, ROS biosyn-
thesis regulation, and aging, and signal pathways, 
such as hepatitis C and prolactin signaling pathway. 
In terms of the mechanism, the characteristics of 
HF include aberrant energy metabolism, enhanced 
ROS generation, and a defect in excitation–con-
traction coupling. As the pathological condition 
with high dynamics, HF shows changes in cardiac 
function and metabolism during the disease pro-
gression. Research on HF in mitochondria includes 
MPTP opening, mitochondrial autophagy, and 
mitochondrial unfolded protein response (caused 
by an oxidative metabolic disorder, calcium over-
load, mitochondrial fusion, and fission). The meta-
bolic redistribution of cardiomyocytes is also a 
research direction for HF treatment, such as the 
decrease of mitochondrial pyruvate oxidation, the 
increase of lactate output, and the protective effect 
of plasma amino acid metabolic spectrum on the 
failing heart. The prevalence of HF in older adults is 
increasing significantly. The relationship of HF and 
aging is related to oxidative stress. Mitochondria 
are the primary ROS source in cells and are consid-
ered the central controller of the aging process. The 

cardiovascular aging process is mainly regulated by 
risk factors, preexisting diseases, and age-related 
factors. Therefore, targeted treatment may delay the 
aging process or improve its complications.

(4)	 We analyzed 20 immune gene sets with significant 
differences through single-sample GSEA (ssGSEA). 
Proinflammatory cytokines (IL-6, TNFα, NF-κB, 
etc.) have been associated with the course of HF. 
They can also further aggravate the disease process 
of HF through apoptosis. Macrophages and T lym-
phocytes also play an important role in HF, which 
further explains HF and the role of immune genes.

(5)	 We used miRWalk and StarBase databases to pre-
dict six miRNAs and two lncRNAs for the network 
construction. Yet, no HF-relevant report was avail-
able for these molecules, which is expected to be 
further explored in subsequent experiments.

(6)	 In this study, we screened four key genes, including 
IFIT3, XAF1, RSAD2, and MX1. Through examin-
ing the relation of the key genes with differential 
immune cells, we predicted therapeutic drugs of the 
four genes and constructed the key genes–based 
ceRNA network. In subsequent research, we can 
further analyze the four key genes’ specific molecu-
lar mechanisms within HF.
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