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• Temperature and absolute humidity
showed a negative association with
COVID-19.

• No significant trend for relative humidity
was detected.

• High between country heterogeneity for
all investigated associations.
A B S T R A C T
A R T I C L E I N F O
Editor: Scott Sheridan
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Background and aim: The associations between COVID-19 transmission andmeteorological factors are scientifically de-

bated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had
methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal res-
olution. Our aim was to quantify associations between temporal variations in COVID-19 incidence andmeteorological
variables globally.
Methods: We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time-
series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linearmodel-
ling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and
day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Govern-
mental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation
were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country,
and climatic zone.
Results: We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of
15 days. Pooling the estimates globally showed that overall low temperatures (7.5 °C compared to 17.0 °C) and low
absolute humidity (6.0 g/m3 compared to 11.0 g/m3) were associated with higher COVID-19 incidence (RR temp =
1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for
UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the
study results also emphasise the heterogeneity of these associations in different countries.
Conclusion: Globally, our results suggest that comparatively low temperatures and low absolute humidity were associ-
ated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-
related effects on COVID-19 transmission.
1. Introduction

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
pandemic arose in late December 2019 in Wuhan, China. According to
the WHO, by 12 July 2021 190 million cases and 4 million deaths had
been reported globally due to coronavirus disease 2019 (COVID-19)
(WHO, n.d.). Evidence points towards transmission mainly taking
place via airborne transmission (respiration of SARS-CoV-2 containing
droplets) (Tang et al., 2020). Other modes of transmission, including di-
rect contact through contaminated surfaces, faecal-oral transmission
and other body fluids are still under investigation regarding the extent
to which they influence the infection dynamics (Gupta et al., 2020;
Zhang et al., 2020).
2

The relationship between COVID-19 incidence and meteorological fac-
tors is greatly discussed in the literature and of high public interest. A con-
nection between meteorology and COVID-19 is considered likely as other
coronaviruses and respiratory viruses show strong seasonal patterns of dis-
ease incidence that can to some extent be explained by meteorological fac-
tors in temperate regions (Lowen and Steel, 2014; Anastasiou et al., 2021).
There are several ways in which meteorological factors (e.g. air tempera-
ture and humidity) could influence COVID-19 incidence. Extreme climatic
conditions (e.g., extreme cold and heat) can result in people spending
more time indoors, in closed, poorly ventilated spaces, which can increase
the transmission of SARS-CoV-2 (Willem et al., 2012; Qian et al., 2020).
Moreover, lower temperatures enhance the stability of viral lipid envelopes
and lower humidity favours droplet nuclei formation which prolong
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viability and transmissibility of SARS-CoV-2 (Chan et al., 2011a; Aboubakr
et al., 2020; Casanova et al., 2010; Rosti et al., 2020; Shadloo-Jahromi
et al., 2020) Also, cold and dry conditions affect the human innate and
adaptive immune response in various ways (e.g., in cold nostrils through
inhibited mucociliary clearance and a decrease of phago- and leukocyte ac-
tivity, which changes the likeliness of infection or symptom severity)
(Lowen et al., 2007; Kudo et al., 2019; Eccles, 2002; Foxman et al.,
2015). Altogether, these mechanisms support the hypothesis that colder
and drier conditions would favour SARS-CoV-2 transmission and increase
COVID-19 incidence.

Several spatial ecological and time-series studies have investigated the
association between meteorological conditions and COVID-19 cases
(Carlson et al., 2020; McClymont and Hu, 2021). However, so far the liter-
ature remains mainly inconclusive showing positive, negative, and no asso-
ciations for temperature, humidity (relative and absolute) and UV radiation
in different analyses (Mecenas et al., 2020; Briz-Redón and Serrano-Aroca,
2020; Majumder and Ray, 2021; Zheng et al., 2021; Tan and Schultz, 2022;
Li et al., 2022; Yao et al., 2020; Carleton et al., 2020a; Sera et al., 2021;
Rubin et al., 2020; Xu et al., 2021; Smith et al., 2021; Ma et al., 2021;
Fontal et al., 2021). The variation in study results could partially be ex-
plained by varying spatial scales of analysis, application of different statis-
tical methods with varying degrees of sophistication, and varying levels
of consideration of potential confounding factors. Moreover, according to
previous systematic reviews, epidemiologic studies assessing the relation-
ship between weather and COVID-19 incidence could have methodologic
limitations that may introduce bias and limit causal inference (Dong
et al., 2021; Weaver et al., 2022; Villeneuve and Goldberg, 2020). For ex-
ample, many studies did not consider the possibility of a non-linear relation
and lagged effects of weather and incidence, they did not account for time-
varying confounders, and they did not consider location-specific con-
founders. To address these limitations time-series regression methods
could be used. These methods have been used to quantify short-term asso-
ciations of environmental exposures with health outcomes, notablywith in-
fectious diseases (Imai et al., 2015). Time-series regression methods allow
seasonality, long-term trends, other time-varying confounding factors,
and autocorrelation to be controlled for. It also allows us to explore the as-
sociation with delayed and non-linear exposure effects (Bhaskaran et al.,
2013). With the availability of longer time-series several studies have
used time-series methods to evaluate the association between meteorolog-
ical factors and COVID-19 incidence (Lin et al., 2022; Liu et al., 2022; Qi
et al., 2020; Xie and Zhu, 2020; Prata et al., 2020; Yuan et al., 2021a; Ai
et al., 2022; Zhou et al., 2022; He et al., 2021; Fong and Smith, 2022;
Nottmeyer and Sera, 2021; Donzelli et al., 2022). Among those, three stud-
ies were performed on a global scale (Liu et al., 2022; Yuan et al., 2021a),
but they considered the country as unit of analysis. City-level studies are
more appropriate given the lower measurement error on the outcome and
on the exposure. Moreover, they allow accounting for phenomena, like
high levels of population density or humanmobility, which are only observ-
able on a small scale (Bhaskaran et al., 2013).

The aim of this study is to use city-level time-series models to evaluate
the association between meteorological exposures (e.g., temperature, hu-
midity, and UV radiation) and COVID-19 incidence at the global scale.

2. Methods

2.1. Data sources and extraction

The data extraction was performed bymembers of the Multi-City Multi-
Country (MCC) Network, an international research network focused on the
study of environmental conditions, climate change, and human health
(https://mccstudy.lshtm.ac.uk/). We considered the COVID-19 case time-
series data for 455 cities between 3 February and 31 October 2020. Details
of the cities and sources can be found in Supplementary Table S1.

We obtained exposure data from the Copernicus ERA5 dataset with a
latitude-longitude grid size of 0.25° × 0.25°(roughly 28 × 28 km)
(Copernicus, n.d.). We selected temperature and dew temperature in 2 m
3

above the surface as well as the surface downwelling shortwave radiation
(solar UV radiation, J/m2). For these variables daily averages were taken
from the closest grid cell for each city or small region.

We calculated the relative humidity (RH) from temperature and abso-
lute humidity (AH) using the R “humidity” package (Cai, n.d.). RH mea-
sures the percentage of water molecules in the air relative to
concentration at full saturation, whereas AH measures the amount of
water vapor in a specific volume of air (Babin, 2020). This is the formula
of how AH relates to RH and temperature: (Mander, 2020)

AH g=m3� � ¼ 6:112� e
17:67�T

�
Cð Þ

T
�
Cð Þþ243:5 � RH %ð Þ � 2:1674
273:15þ T �Cð Þ

The following variables were captured as we expected them to be con-
founders of the associations between weather variables and COVID-19 inci-
dence. We extracted the Government Stringency Index (GSI) from the
Oxford COVID-19 Government Response Tracker (OxCGRT) to control for
changing governmental public health measures implemented in response
to the pandemic (Hale et al., 2021). The GSI scale ranges from 0 to 100
points with 100 representing the strictest measures implemented to hinder
COVID-19 transmission such as closure policies, movement restrictions, in-
come support, and testing policies. For the purpose of sensitivity analysis,
we also used residential mobility from the Google Mobility index which
measures the change in average duration of time spent at home compared
to the median for the same weekday in a pre-pandemic period (3 January
to 6 February 2020) (Google LLC, n.d.).

We considered the long-termmean temperature, demographic informa-
tion on population size, density, and age proportion above 65 years in the
fixed effects of the meta-regression. Demographic variables were collected
from the Organisation for Economic Co-operation and Development
(OECD) Global Human Settlement Layer Urban Centre Database unless
specified otherwise in the results (OECD, 2016). This data was available
at the city-level from the MCC Network.

2.2. Statistical analysis

2.2.1. Descriptive analysis
For the descriptive data analysis, the daily and cumulative COVID-19

cases of the included cities were summed for each country and the cases
per 100.000 inhabitants were calculated using total population size of
each city (OECD data) (OECD, 2016).

2.2.2. Two-stage design
We used a two-stage design to assess the association between the mete-

orological factors and COVID-19 incidence. The first stage consists of esti-
mating the city-specific exposure-response association considering time-
varying confounding in a time-series regression (TSR). In the second
stage, a meta-analytic model is used to combine the city-specific estimates
to obtain the pooled exposure-response association curve.

For the first stage of the analysis, independent models for each exposure
were formulated for all locations. The city-specific time-series were short-
ened to start up to 15 days (depending on the considered days of lag) before
the first time that 10 cases occurred in that city. This aims to exclude first
imported cases. The exposures were modelled using distributed lag non-
linear models (DLNMs) (Gasparrini, 2014). The basis function for the expo-
sure dimension (temperature, AH, RH, and UV radiation) was chosen as a
2nd degree polynomial. The lag dimension was modelled with a natural
cubic spline containing two equally spaced (at logarithmic scale) internal
knots. In the main analysis, a lag of 15 days was considered, since the incu-
bation period was estimated to be around 6 days for COVID-19 (McAloon
et al., 2020; Quesada et al., 2021) and there is a delay in testing and
reporting. The two bases were then combined to make a bi-dimensional
basis called a “cross-basis” (Gasparrini, 2011). The residual variation of
case counts was assumed to follow a quasi-Poisson distribution.

https://mccstudy.lshtm.ac.uk/
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Several confounding factors were considered in the main model. Since
the reporting, as well as many other factors (e.g., social behaviour and test-
ing capacities), might vary between weekdays, we included a series of
dummy day of the week variable (dow). Two other time-varying con-
founders were considered. The intra-year trend of COVID-19 was consid-
ered in the model using a natural spline function of the date with
6 degrees of freedom (df) (NS(date, df = 6)) which equals approximately
1.5 df per month. Changing governmental public health measures were
modelled with a linear lag association model of GSI considering up to
15 days of lag dependence (CBGSI). The model was built using the R pack-
age “dlnm” (Gasparrini, 2011). An autocorrelation term was included to
account for transmission dynamics (Imai et al., 2015). For this purpose,
the logarithm of one day lagged cases added to 0.5 was included (AC).

In summary, the basic first stage model for each exposure (temperature,
RH, AH, or UV) which was performed for each city looked like this:

Ln yð Þ∼CBexposure,lag¼15 þ ACþ dowþ CBGSI þ NS date, df ¼ 6ð Þ (I)

For the subsequent second stage meta-analysis, the R package
“mixmeta” was used (Sera et al., 2019). The coefficients representing esti-
mated meteorology to COVID-19 associations were cumulated over all
lags and their covariance matrices which were obtained at the first step
were pooled over all included locations using a random effect meta-
analytic model. We used the estimation method of restricted maximum
likelihood (REML). In the main model (Model A), we considered groups
Fig. 1.World map showing the includ

4

defined jointly by country and climatic zones as random effects. The same
model was used in Model B but only for the subset of locations with com-
plete data in the meta-predictors (GDP, mean temperature, and % of popu-
lation aged >65 years). In the subset of locations with complete data, we
then also fitted the meta-regression model with the meta-predictors as
fixed effects (Model C). To evaluate the role of country in explaining the
heterogeneity in the association curves, we considered models with city
as a random effect and country as a fixed effect (Model D), or random effect
(Model E). We then derived country-level Best Linear Unbiased Prediction
(BLUP) curves from Model E.

Using the pooled polynomial basis coefficients, we plotted the pooled
mean curve (for all included cities) of COVID-19 risk against each exposure
(temperature, RH, AHandUV) expressed as relative risk (RR) to themedian
level which was set as the minimum exposure value.

2.3. Sensitivity analysis

We performed a sensitivity analysis of the observed effect on the days of
lags accounted in the first stage model by varying the length of the lag pe-
riod from 15 to 10 days. The influence of choice of df used to model intra-
year trends was also explored by altering from 6 df to 4 df. Furthermore, we
evaluated the possible time-varying confounding of air pollution by consid-
ering city-level particulatematter (PM10) data in the first stage model using
a distributed linear model (DLM) parametrization and up to 15 days of lag.
The PM10 data was obtained from the Copernicus Atmosphere Monitoring
ed cities colour-coded by region.
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Service (CAMS) global near-real time service (Christophe, 2019; Morcrette,
2009; Benedetti, 2009). The hourly modelled values of surface PM10
(0.4×0.4 arc degrees grid cell resolution)were averaged daily over the ob-
servation period and linked to the city using the city centroid coordinates.
The statistical analysis was performed using R 4.1.2 statistical software.

3. Results

3.1. Descriptive analysis

This analysis considered 10.5 million confirmed COVID-19 cases across
455 different cities in 20 countries between 3 February and 31 October
2020. The city locations are shown below as well as the country-wide ag-
gregated time-series of daily reported COVID-19 cases per 100.000, in the
included city populations (Figs. 1 and 2). In most of the countries in the
northern hemisphere we can recognise two waves in late winter or early
spring and in autumn, while countries in the southern hemisphere
(e.g., Brazil, Chile, Peru, and South Africa) experienced a single wave dur-
ing the observation period of this study. Table 1 shows the country-wide cu-
mulative incidence per 100,000 inhabitants which varied from 49 in South
Korea to 8350 in the USA. The average minimum and maximum recorded
exposures per country within the observation period are reported in
Table 1. Daily country averages of themeteorological variables over the ob-
servation period are represented in Supplementary Figs. S1–4. Countries in
a tropical climate or in the southern hemisphere (e.g., Brazil, Chile,Mexico,
Peru, Singapore, and South Africa) show less variation of the meteorologi-
cal variables, especially mean temperature, RH and AH. The correlation be-
tween the four exposures is shown in Supplementary Table S4. An overview
of the governmental interventions against COVID-19 over time can be seen
Fig. 2. Time-series of COVID-19 cases per 100,000 inhabitants aggregat

5

in Supplementary Fig. S5. Most countries started out with stringent restric-
tions in the beginning of 2020 and loosened themby themiddle of the year.
Some tightened them again towards the end of October 2020 (Supplemen-
tary Fig. S5). Estonia had the lowest overall level of governmental interven-
tions with an average GSI of 36.9% during the observation period, whereas
Peru ranked highest on governmental stringency with an average GSI at
75.8 % (Table 1).

3.2. Association between COVID-19 cases and temperature

The pooled association curve, representing overall results across all cit-
ies, obtained from the pooledmodels for temperature exposure (Model A) is
represented in Fig. 3a. Low temperatures were associated with higher risk
of infection. At 7.5 °C the relative risk of COVID-19 incidence is 1.33-fold
higher (CI-95 %: 1.08;1.64) compared to a reference level at 17.0 °C. The
exposure-lag association indicated increased RRswith a 3-day lag after tem-
perature exposure, reached a peak at 8–9 days, and decayed by the end of
the observed 15 days' lag period (Supplementary Fig. S6a). We observed
a substantial heterogeneity in the meta-analytic model (I2 = 67.3 %). In-
vestigating the city-level factors which could explain this heterogeneity
(Model C), we found that old population (% population aged >65 years),
the average daily mean temperature, and GDPmodified the association be-
tween temperature and COVID-19 incidence (Supplementary Fig. S7a, Sup-
plementary Table S2). Cities with an older population and lower long-term
mean temperature seemed to have a higher impact of lower temperature on
COVID-19 spread, but overall, these factors explain only 1.1 % of heteroge-
neity. We also investigated the role of country on heterogeneity comparing
the meta-analytic model with and without country modelled as fixed effect
with an I2 decrease equal to 4.3 % (Supplementary Table S2). The Fig. 4
ed by country over the period from 3 February to 31 October 2020.



Table 1
Summary table of observed COVID-19 cases, meteorological exposures, and governmental stringency index in the different countries.

Country Number of included
cities

Cumulative cases per day
[# per 100.000]

Daily mean temperature
[°C]

Daily mean RH
[%]

Daily mean AH
[g/m3]

Daily mean UV
[J/m2]

OxCGRT GSI
[%]

Brazil 13 1677 24.3 76.5 17.5 210.7 65.0
(4.7, 31.7) (30.2, 99.0) (5.9, 23.6) (20.3, 353.7) (51.6, 69.8)

Canada 15 578 12.6 67.3 8.3 207.8 60.4
(−21.0, 28.9) (23.7, 95.8) (0.7, 20.3) (10.9, 368.1) (6.7, 65.1)

Chile 4 8052 11.9 74.1 7.9 169.5 68.7
(1.85, 23.7) (34.8, 96.7) (4.0, 13.2) (3.8, 357.6) (0.0, 78.4)

Czech Republic 1 7390 13.8 65.4 8.2 176.7 52.1
(−1.5, 25.7) (33.6, 93.6) (2.2, 14.8) (9.7, 316.0) (10.9, 80.2)

Estonia 1 410 10.9 75.9 8.1 165.0 40.8
(−3.2, 22.5) (46.0, 96.2) (2.3, 14.6) (6.7, 336.1) (0.0, 63.5)

Finland 1 915 10.9 75.2 7.90 168.6 44.4
(−2.6, 23.2) (45.9, 97.9) (2.2, 13.9) (6.4, 341.9) (16.2, 57.8)

France 17 477 15.9 69.0 9.6 202.0 60.0
(0.5, 30.0) (24.1, 96.9) (2.4, 20.3) (11.2, 352.2) (12.0, 75.0)

Germany 12 575 14.1 66.6 8.4 177.1 56.2
(−1.4, 29.2) (30.8, 97.5) (2.2, 16.0) (4.5, 338.7) (14.6, 69.8)

Italy 23 2013 18.6 67.5 11.21 222.9 68.4
(1.0, 30.8) (26.9, 97.7) (2.1, 22.0) (9.6, 345.0) (49.7, 81.0)

Japan 10 163 19.8 74.2 14.0 182.6 43.9
(−5.9, 32.6) (34.2, 97.8) (2.4, 25.4) (11.3, 342.9) (16.2, 49.0)

Kuwait 1 2949 (Kuwait Population, 2021) 30.2 40.6 12.4 274.7 58.5
(7.8, 41.3) (18.6, 84.1) (2.6, 29.4) (114.8, 336.0) (5.2, 79.2)

Mexico 8 1367 20.2 59.5 10.5 269.6 51.9
(9.5, 31.1) (9.8, 96.9) (2.2, 20.3) (40.1, 371.4) (0.0, 62.5)

Peru 18 3489 (Peru Population, 2021) 15.0 67.0 9.8 236.7 76.3
(1.1, 30.1) (5.0, 96.3) (0.5, 24.1) (36.2, 383.8) (13.0, 81.8)

Romania 8 1006 (Romania Population, 2021) 18.5 63.7 10.4 211.1 52.0
(3.3, 30.1) (22.9, 97.8) (2.1, 19.2) (14.6, 338.2) (42.2, 71.4)

Singapore 1 2879 27.6 80.6 21.9 196.3 60.7
(26.0, 29.3) (71.2, 86.5) (20.0, 23.6) (49.1, 304.8) (31.7, 78.7)

South Africa 1 1998 (South Africa Population, 2021) 15.1 78.6 10.30 172.7 68.9
(9.9, 19.8) (56.8, 95.2) (6.2, 13.5) (30.4, 350.1) (14.1, 80.2)

South Korea 6 49 18.5 73.3 13.0 185.1 53.3
(−6.0, 29.8) (24.8, 98.0) (1.1, 24.7) (134.8, 332.1) (22.9, 72.9)

Spain 52 6210 17.9 63.9 9.9 232.2 56.8
(0.3, 34.2) (17.0, 97.3) (1.7, 22.1) (12.9, 368.6) (2.1, 72.9)

United Kingdom 54 1254 13.4 75.4 9.0 170.6 65.4
(2.3, 26.2) (41.9, 99.4) (3.7, 16.9) (5.9, 344.0) (8.3, 71.9)

United States 209 8350 19.4 64.4 11.7 225.7 63.0
(−14.1, 41.0) (5.8, 100.0) (0.7, 26.0) (7.1, 384.3) (8.3, 66.2)
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shows the country specific curves obtained using BLUPs prediction from the
Model E with country as a random effect. We observed different patterns of
the temperature COVID-19 incidence curve with most countries showing
curves with higher COVID-19 incidence with cold temperatures (e.g.
Chile, Czech Republic, Estonia, Germany, Italy, Japan, Kuwait, Romania,
Spain and UK), some with limited exposure variation had a flat curve
(Brazil, Peru, Singapore and South Africa), three had no evidence of an as-
sociation (France, Canada and US), and three showed a tendency of in-
creased COVID-19 risk with higher temperatures (Finland, South Korea,
Mexico).

3.3. Association between COVID-19 cases and humidity

Overall, little evidence was found for an association between relative
humidity and COVID-19 spread (Model A), with a slight tendency of a
lower risk of infection for higher level of RH (Fig. 3b). With respect to a ref-
erence level set at 65 % RH, the RR of observing COVID-19 cases was
0.89 at 85 % RH (CI-95 %: 0.75; 1.06). This association did not diverge
from RR = 1.00 when considering different lags (Supplementary
Fig. S6b). There was substantial heterogeneity in this association (I2 =
68.3 %), but examination of meta-predictors and country specific curves
showed no interpretable patterns (Supplementary Fig. S7b). Country
modelled as a fixed effect explained 3.6 % of the heterogeneity (Supple-
mentary Table S2). Fig. 5 shows the country specific curves obtained
using BLUPs prediction from the model with country as random effect
(Model E). Adjusting for daily mean temperature gives a tendency of a pro-
tective effect at higher levels of RH (Supplementary Fig. S8).
6

For AH, we observed an inverse association (Model A in Fig. 3c). Com-
pared to the median value of 11.0 g/m3 there was a 1.33-fold increased RR
at the AH of 6.0 g/m3 (95%-CI: 1.12; 1.57). The RRs were observed to be
increased (RR > 1.00) between 3 and 15 days of lag (Supplementary
Fig. S6c). Themeta-predictors old population, long-termmean temperature
and GDP explained 3.7 % of the heterogeneity (Supplementary Fig. S7c,
Supplementary Table S2). Cities with higher long-term mean temperature
show a lower risk of COVID-19 infection associated with high levels of
AH. Country modelled as fixed effect explained 4.7 % of the heterogeneity.
Country BLUPs estimates are presented in Fig. 6 (Model E). As observed for
temperature, we found different patterns of the association between AH
and COVID-19 incidence in different countries. There are countries with
higher COVID-19 incidence with low AH (e.g., Chile, Czech Republic,
Estonia, France, Japan, Spain and UK), countries with no evidence of an as-
sociation (Brazil, Kuwait, Mexico, Italy, Romania, Singapore, South Africa
and US), and countries showing a tendency of increased COVID-19 risk
with higher AH (Canada, Finland, and South Korea).

3.4. Association between COVID-19 cases and UV

We found some evidence of an association between UV exposure and
COVID-19 spread (Model A in Fig. 3d).Meta-predictors have little influence
on the association curve explaining only 1.2 % of the I2 (Supplementary
Fig. S6d, Supplementary Table S2). Country modelled as fixed effect ex-
plained 3.4 % of the heterogeneity. Country BLUPs estimates are presented
in Fig. 7, with some countries (Canada, Finland, Kuwait, Mexico, Spain and
US) showing lower COVID-19 incidence with lower levels of UV radiation.



Fig. 3. Association between meteorological variables and COVID-19 incidence. Association curves were obtained with meta-regression Model A with random effect defined
by country and climatic zones.
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3.5. Sensitivity analysis

A sensitivity analysis was conducted to assess the robustness of esti-
mates of the previously described models. A decrease to 10 days of lag or
lower degrees of freedom of long-term trend (4 df instead of 6 df) in general
led to similar association curves (Supplementary Fig. S10 and S11). Also,
the inclusion of PM10 into the first stage model resulted in no major change
of the exposure to COVID-19 associations (Supplementary Fig. S12). Strat-
ifying the analysis according to climatic zone, for air temperature all curves
show a decreasing trend. For RH tropical cities show a higher COVID-19
spread in dry conditions. More variability was observed for AH and UV ra-
diation (Supplementary Fig. S13).

4. Discussion

4.1. Main findings

Overall, this study supports previous findings that temperature and ab-
solute humidity are environmental factors that potentially influence the
spread of COVID-19. Globally, low temperatures and low absolute humidity
were associated with higher COVID-19 incidences, but for RH no evidence
of an association was found. There was substantial heterogeneity in the as-
sociations of the respective environmental exposures and COVID-19 risk
between countries.

4.2. Possible biological and behavioural mechanisms

Our results can be viewed in light of previous studies investigating the
mechanistic principles behind associations between meteorological vari-
ables and COVID-19. The observation that low temperatures lead to higher
7

transmission rates of viral disease has beenmade in many previous studies.
Biophysical theory and laboratory results suggest that lower temperatures
support the stability and viability of viral particles (Polozov et al., 2008;
Chan et al., 2011b). Additionally, animal experiments hint towards a con-
nection with lower blood circulation and consequent local impairment of
adaptive immunity at low temperatures, thereby affecting the host's im-
mune system's ability to fight respiratory viruses (Lowen et al., 2007;
Tang, 2009).

The association between lower levels of humidity and higher levels of
infections could be explained by virus-containing droplets having short bal-
listic settling characteristics under wet conditions. In contrast at dry condi-
tions, droplets evaporate forming dry nuclei that are able to maintain
floating over longer durations of time (Rosti et al., 2020; Wei et al.,
2022). Influenza-related studies also hinted at an impaired immune re-
sponse under dry conditions (e.g., through impaired mucociliary clearance
and other innate responses) (Kudo et al., 2019). A US study found that out-
door AH is a good predictor for indoor AH while this is not true for RH
(Nguyen and Dockery, 2016). Hence, it could be that AH is a more useful
predictor for COVID-19 incidence than RH. Previous studies came to that
conclusion regarding AH as predictor for influenza transmission rates as
well (Metz and Finn, 2015). However, the high correlation between AH
and temperature (r = 0.88, average of all cities in our dataset) implies
that it is difficult to disentangle effects of the two exposures, with one of
the associations possibly merely reflecting confounding by the other.

There was some evidence of a positive association between COVID-19
cases and UV radiation. This was unexpected, as one hypothesis is that
UV light could cause inactivation of viruses in the air and on surfaces
(Carleton et al., 2020). Also, there is a theory that more solar radiation
could lead to less vitamin D deficiency (contributing to a better functioning
immune system).



Fig. 4. Country specific association between temperature and COVID-19 incidence. For each country the number (n) of cities included in the analysis is indicated.
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Fig. 5. Country specific association between relative humidity and COVID-19 incidence. For each country the number (n) of cities included in the analysis is indicated.
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Fig. 6. Country specific association between absolute humidity and COVID-19 incidence. For each country the number (n) of cities included in the analysis is indicated.
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Fig. 7. Country specific association between UV radiation and COVID-19 incidence. For each country the number (n) of cities included in the analysis is indicated.
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4.3. Comparison to other modelling studies

Due to the extensively growing literature in this field, the state of scien-
tific knowledge on this topic is constantly evolving. A review from late
2020 reporting on about 60 studies on associations between COVID-19
and weather identified a variety of findings for temperature and humidity
(Briz-Redón and Serrano-Aroca, 2020). The included studies that reported
a linear trend mostly showed a negative association between COVID-19
cases and temperature as well as humidity (33 vs. 6 studies and 13 vs. 3, re-
spectively). Global analyses support these local findings for temperature
and humidity. Using different methodologies Sarkodie et al., Wu et al.,
Yuan et al., and Zhang et al. all found a negative association between tem-
perature and RH with COVID-19 case rates in 20 countries, 166 countries,
127 countries, and 1236 regions globally with data until April, March,
August, and May 2020, respectively (Sarkodie and Owusu, 2020; Wu
et al., 2020; Yuan et al., 2021b; Zhang et al., 2021). The study from Yuan
et al. alsowidened their analysis to include 188 countries with data through
December 2020, and also analysed the non-linear associations, showing
similar exposure response associations as found in our study using general-
ized additive model and as well DLNM methods (Yuan et al., 2021a; Yuan
et al., 2021b). The temperature of minimum COVID-19 risk in both Yuan
et al. studies was around 20 °C and for RH the risk was highest at humidity
around 70 %. Another global study using DLNM from Guo et al. including
190 countries showed a similar association for temperature (highest RR at
5 °C and lowest at 20 °C) but exhibited a different exposure-risk association
for RH (riskmaximum at 72%RH) (Guo et al., 2021). Two studies that also
used DLNMmodels on US counties only also found elevated infection risks
(increased Rt levels) at lower temperatures and one of them as well for
lower specific humidities (Rubin et al., 2020; Ma et al., 2021). Fontal
et al. analysed the transitory associations of temperature and AH until Oc-
tober 2020 in 10 world regions and obtained negative associations for
both (Fontal et al., 2021). One global study did find only a small effect of
temperature in 3739 global locations (Xu et al.) and two global studies
did not find a statistically relevant effect for temperature (Carleton et al.,
Islam et al.) and RH (Islam et al.) in 206 countries and 3235 regions, respec-
tively (Carleton et al., 2020a; Xu et al., 2021; Islam et al., 2021). However,
Guo et al., Xu et al., Carleton et al., and Islam et al. all had a comparatively
short study period reaching until April 2020 (Carleton et al., 2020a; Xu
et al., 2021; Guo et al., 2021; Islam et al., 2021).

We recently performed a different global city-level analysis of meteoro-
logical factors and SARS-CoV-2 transmission (Majumder and Ray, 2021).
This used an ecological approach comparing effective reproduction number
(Re) and meteorological variables between cities in the early phase of
the pandemic, and identified a non-linear (though primarily downward)
association between mean temperature, and absolute humidity with Re,
and a tendency of a negative association between RH and Re. Non-
pharmaceutical interventions had a greater effect on Re. The results of the
current study complement our previous results that showed higher Re at
lower mean temperature, lower absolute humidity, and a negative associa-
tion between RH and Re.

Regarding UV exposure, out of the 60 studies analysed in the previously
mentioned systematic review, only six analysed solar radiation and among
those there was no consensus of whether there is an association and if so
what type of association (Briz-Redón and Serrano-Aroca, 2020). Two of
the previouslymentioned global analyses also includedUVvariables. Carle-
ton et al. reported in contrast to our study that higher UV radiations were
associated with lower COVID-19 growth rates, whereas Islam et al. con-
cluded the relationship to be inconclusive within the same time period
(Carleton et al., 2020a; Islam et al., 2021).

4.4. Strength and weaknesses

Our study has several important strengths. It considered a multitude of
locations globally with smaller spatial units of analysis and longer observa-
tion periods than most published studies. Lagged effects of exposure were
considered, as were potential non-linear relationships of the exposure
12
with COVID-19 incidence. Ecological and time-varying confounders were
analysed and incorporated.

Possible short comings of this study are that the case definitions differed
from country to country, that GSI might not adjust sufficiently for changes
in governmental measures over time, and that the distribution of cities in-
cluded is not equally distributed around the globe, with some regions un-
derrepresented and only few locations close to the equator. Thus, while
this study is one of the most detailed global analyses to date, the pooled es-
timates provide insights into the associations in the included cities but are
not fully representative for everywhere around the globe. Also, a global es-
timate itself might be of limited use due to the heterogeneity among loca-
tions that was encountered. We considered factors explaining this
heterogeneity and we found that long-term mean temperature (a proxy of
the city climate) and the percentage of the population older than 65 years
modify the association found. There was a tendency in cities with lower
long-term temperature and older population to have higher COVID-19 inci-
dence in colder and drier conditions, but these factors explain only a small
amount of the observed heterogeneity leading to some difference among
countries. These differences could be due to limited sample size in some
countries (e.g., Estonia, Finland, South Africa), and different and narrower
ranges of exposure experience in countries (e.g. Brazil, Mexico, Chile, Peru
and Singapore). Moreover, the observed differences could also be due to
different adaptation of local populations to various weather conditions.

5. Conclusion

This study indicates that there is a tendency of a higher risk of COVID-
19 cases at low temperature or absolute humidity levels, which aligns to
an extent with available mechanistic explanations and previous literature
basis. The between country heterogeneity of weather-related effects on
COVID-19 when applying our uniform modelling framework in a global
analysis shows the importance of determining location specific estimates
of meteorological effects on COVID-19 spread. As more data accumulates,
studies using longer observational periods will help elucidate weather-
sensitivity and seasonal patterns of COVID-19 transmission.
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