
1Scientific Data | (2022) 9:546 | https://doi.org/10.1038/s41597-022-01640-8

www.nature.com/scientificdata

Geographical characterisation of 
British urban form and function 
using the spatial signatures 
framework
Martin Fleischmann  1 ✉ & Daniel arribas-Bel  1,2

the spatial arrangement of the building blocks that make up cities matters to understand the rules 
directing their dynamics. Our study outlines the development of the national open-source classification 
of space according to its form and function into a single typology. We create a bespoke granular spatial 
unit, the enclosed tessellation, and measure characters capturing its form and function within a 
relevant spatial context. Using K-Means clustering of individual enclosed tessellation cells, we generate 
a classification of space for the whole of Great Britain. Contiguous enclosed tessellation cells belonging 
to the same class are merged forming spatial signature geometries and their typology. We identify 16 
distinct types of spatial signatures stretching from wild countryside, through various kinds of suburbia 
to types denoting urban centres according to their regional importance. the open data product 
presented here has the potential to serve as boundary delineation for other researchers interested in 
urban environments and policymakers looking for a unique perspective on cities and their structure.

Background & Summary
How the building blocks that make up cities are spatially arranged is worth quantifying and understanding. By 
“building blocks”, we mean both the activities and agents that inhabit cities, as well as the (infra)structure that 
supports them. The former can be conceptualised as urban function, while the latter falls under the study of 
urban form. Understanding urban form and function is important for two main reasons. First, the combination 
of both encodes rich information about the history, character and evolution of cities. For example, the shape 
and properties of the street network encode the technology of the time (e.g., automobile); while the degree of 
mix in land uses can reflect cultural values. Second, the spatial pattern of urban form and function also acts as 
a frame that influences a variety of outcomes, from economic productivity to socio-economic cohesion to envi-
ronmental sustainability. In this paper, we use the Spatial Signatures framework1,2, which develops a “character-
isation of space based on form and function designed to understand urban environments”1. Spatial signatures 
are theory-informed, data-driven computable classes that describe the form and function of a consistent patch 
of geography. Figure 1 presents an overview of the development of a spatial signature classification. We build a 
series of enclosures that we combine with building footprints to further subdivide geographical space into what 
we call enclosed tessellation cells (ETCs). We then attach form and function characters to each of these subdi-
visions, and use those to group them into consistent and differentiated classes we call signatures. Each phase is 
expanded in detail in the next section. We introduce an open data product (ODP3) containing a classification of 
spatial signatures for Great Britain (illustrated in a Fig. 2). In doing so, we provide an analysis-ready layer that 
brings together urban form and function consistently, in detail, and at national scale. To the best of our knowl-
edge, this is the first dataset capturing urban form and function published both with a degree of detail and scale 
as ours. Our results are based on the analysis of more than 14 million of ETCs, to each of which we attach more 
than 300 characters capturing a wide range of aspects relating to urban form and function. We provide access 
to both granular geographical boundaries of the delineated spatial signatures as well as measurements for each 
character at the signature level. The ODP also includes a web map that allows exploration without any technical 
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requirement other than a web browser, and we have open sourced all the code, including details on the computa-
tional backend. The uniqueness of our ODP makes it challenging to set up a technical validation as a comparison 
with existing datasets. Nevertheless, we relate our signatures to a few well-established data products that capture 
each a subset of the form and function dimensions we consider. Our results are encouraging in that they show 
broad agreement in expected areas, but also highlight aspects that can only be discovered when considering 
form and function in tandem. The approach and outputs presented bring several benefits to a range of stakehold-
ers interested in cities. This spatial signatures ODP provides insight generated from detailed, comprehensive and 
computationally intensive data analysis and presents it in a way that is easy to access, work with and integrate 

Fig. 1 Diagram illustrating the sequential steps leading to the delineation of spatial signatures. From a series of 
enclosing components, to enclosures, enclosed tessellation (ET), the addition of form and function characters to 
ET cells, and the development of spatial signatures.

Fig. 2 Illustration of a classification of spatial signatures in Liverpool and Birkenhead area, in the north west of 
England.
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into larger projects. Together with the importance of form and function discussed above, we anticipate the out-
put will be relevant to both academic researchers as well as policymakers and practitioners. As a framework, the 
spatial signatures provide a flexible yet generalisable way to understand, characterise and quantify urban form 
and function. One way to understand our results is as an application to Great Britain of a more general approach 
to quantitatively characterise the spatial dimension of cities. As such, our conceptual approach can be applied 
in many more local contexts and regions beyond Great Britain. It is true that Great Britain currently represents 
an unusual case in that it is specially “data dense”, with a large variety of open data that may not be readily avail-
able in other parts of the world. However, given form and function reinforce each other, spatial signatures are 
designed to be robust to variations in the specific data sources used, and two different classifications do not need 
to be based on exactly the same data to be useful. At the same time, we note that the combination of volunteered 
geographic information (e.g., OpenStreetMap) and technologies such as modern satellites and artificial intel-
ligence are filling many of these gaps very rapidly, and we anticipate near-future developments that will make 
the implementation of classifications such as the one presented here possible in almost any (urban) area of the 
planet. In this sense, our ODP (data, code, and methodology) can be a useful illustration for researchers and 
practitioners who, even if not specifically interested in the British use case, would like to implement a similar 
approach on their own. As illustration of potential applications, we provide two. The spatial signatures may be 
used to delineate types of (origin and destination) locations in mobility analysis, that could unveil patterns of 
commuting or migration in situations like the COVID-19 pandemic. A second application may focus directly on 
supporting policy on inequalities. For example the spatial signatures can underpin analysis on equality of access 
to services and amenities within the UKs Levelling Up agenda4, using them to target areas based on their signa-
ture type, since they will share key structural components. It is important to note we do not expect signatures to 
focus on a single aspect of urban environment as, for example, Local Climate Zones5 do with climate, but instead 
on a wider range of uses due to their inclusion of both form and function and a data driven nature reflecting the 
specific place rather than abstract conceptual classes. In this respect, we hope the present paper serves not only 
to document our own work but to inspire future efforts aimed at urban form and function.

Methods
The method of identification of spatial signatures consists of three top-level steps. First, we delineate a spatial 
unit of analysis that reflects the structure of urban phenomena on a very granular level. Then we characterise 
each of them according to form and function, capturing the nature of each unit and its spatial context. Finally, 
we use cluster analysis to derive a typology of our spatial units that, once combined into contiguous areas, forms 
a typology of spatial signatures.

Spatial unit. The first major methodological decision relates to the definition of the spatial unit. An ideal can-
didate needs to reflect space in a granular manner, and we argue it should fulfil three conditions. First, it should be 
indivisible, meaning that any subdivision would result in a unit that is incapable of capturing the nature of urban 
form and function. Second, it needs to be internally consistent - it should always reflect only a single signature 
type. Last, it should be geographically exhaustive, covering the entirety of the study area. Spatial units used in 
literature can be split into three groups. One is using administrative boundaries like city regions6, wards or census 
output areas7, that are convenient to obtain and can be easily linked to auxiliary data. However, those rarely reflect 
the morphological composition of urban space and, in some cases, may even “obscure morphologic reality”8. At 
the same time, most of them are divisible, and larger units are not always internally consistent. Another group is 
based on arbitrary uniform grids linked either to spatial indexing methods like H39 or Ordnance Survey National 
Grid, or to ancillary data of remote sensing or other origins like a WorldPop grid10. Grids however cannot be 
considered internally consistent as they do not consider the underlying structure of the landscape. Finally, urban 
morphology studies tend to use morphological elements as street segments11, blocks12, buildings13 or plots14 as 
units of analysis. Some of those could be seen as indivisible and internally consistent, but since they are largely 
based on built-up fabric, they are not exhaustive. For example, in areas without any building or street, there is 
no spatial unit to work with. Plots could be theoretically considered as exhaustive, consistent and indivisible, but 
there is no accepted conceptual definition and unified geometric representation15. We are, therefore, proposing 
an application of an alternative spatial unit called enclosed tessellation cell (ETC), defined as “the portion of space 
that results from growing a morphological tessellation within an enclosure delineated by a series of natural or 
built barriers identified from the literature on urban form, function and perception”1. ETCs follow the morpho-
logical tradition in that it is based on the physical elements of an environment but overcome the drawbacks of 
conventionally used units. Its geometry is generated in the three steps illustrated in a Fig. 3. First, a set of features 
representing physical barriers subdividing space, in our case composed of the street network, railways, rivers and 
a coastline, is combined, generating a layer of boundaries (3 A). These then partition space into smaller enclosed 
geometries called enclosures (3 B), which can be very granular or very coarse depending on the geographic con-
text. In dense city centres where a single enclosure represents a single block is a high frequency of small enclo-
sures. At the same time, in the countryside, this approach leads to very few large enclosures as their delimiters 
are far away from each other. Enclosures are then combined with building footprints (3 B), which act as anchors 
in space and potentially subdivide enclosures into enclosed tessellation cells using the morphological tessellation 
algorithm16 (3 D), a polygon-based adaptation of Voronoi tessellation. The resulting geometries are indivisible as 
they contain, at most, a single anchor building, internally consistent due to their granularity and link to morpho-
logical elements composing urban fabric, and geographically exhaustive as they cover an entire area limited by 
specified boundaries. In our ODP for Great Britain, street networks are extracted from OS Open Roads datasets17 
representing simplified road centrelines cleaned of underground road segments. Railways are retrieved from OS 
OpenMap - Local18 (“RailwayTrack” layer) which captures surface railway tracks. Rivers are extracted from OS 
OpenRivers19 representing river network of GB as centrelines, and a coastline is retrieved from OS Strategi®20, 
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capturing coastline as a continuous line geometry. Building geometry is extracted, again, from OS OpenMap - 
Local (“Building” layer) and represents generalised building footprint polygons. Note that the dataset does not 
distinguish between individual buildings when they are adjacent (e.g. perimeter block composed of multiple 
buildings is represented by a single polygon).

Characterisation of space. Spatial signatures capture the character of the built and unbuilt environment 
based on two components - form and function. Each of them is quantified at the level of individual ETCs using 
methods appropriate for each specific dataset. While form is described using urban morphometrics (i.e. quanti-
tative analysis of urban form)21, function is a composite of a variety of data inputs. We outline each component 
with a bit more detail below.

Form. Morphometric characterisation of urban form is based on the numerical description of four elements 
capturing the built environment - buildings, streets, ETCs, and enclosures - and reflects their patterns based on 
six categories of characters: dimensions, shapes, spatial distribution, intensity, connectivity and diversity22. Each 
element is considered across different scales, from the measurement of individual geometries, to relations of 
neighbouring geometries, to a graph-based analysis of the street network. The combination of elements, catego-
ries and scales results in a set of 59 individual morphometric characters listed in the Tables 1 and 2. The selection 
builds on the principles outlined by21 and later explored by23, both following the rules derived by24. The gist is 
to include as many characters present in literature as is feasible, while minimising potential collinearity and 
limiting redundancy of information. That can be caused by capturing the same phenomena, like a specific aspect 
of the shape of a building, using multiple characters. Note that the characters that are statistically correlated but 
capture different concepts are kept as such information reflects the nature of urban form and thus increases the 
robustness of the method. However, measuring individual characters is not enough to understand the predom-
inant spatial patterns. For some types of urban environment, high heterogeneity is not uncommon. This means 
that using, for example, areas of building footprints would, in most cases, result in largely discontinuous clusters 
that do not capture the pattern within an area. Therefore, we represent each of the morphometric characters 
using three summary variables reflecting statistical distributions of measured data within a spatial context of 
each ETC. Context is defined as tenth order of contiguity computed across the mesh composed of contiguous 
ETCs as illustrated in Fig. 4. Furthermore, each value is weighted by the inverse distance between so-called poles 
of inaccessibility (defined as a centre of a maximum inscribed circle) of each ETC. Three proxy variables then 
capture the first, the second and the third quartile of the resulting weighted distribution. Such a characterisation 
can capture the contextual tendency of each morphometric character and hence identify contiguous clusters in 
both homogenous and heterogeneous urban tissues. These contextual values are then used as an input for cluster 
analysis while the original non-contextualised versions are left out, making the final form component composed 
of 177 contextual characters.

Function. Characterisation of the function component uses a different approach. While data describing urban 
form are not generally available in a processed format, forcing us to employ morphometric approaches, dif-
ferent aspects of function are often available as open data products. We guide the compilation of functional 
characters following three main principles: first, we identify from the literature on urban function key areas 
to be represented; second, we translate those abstract areas into measurable features; and third, we select open 
data available in for Great Britain that allows for the redistribution of derivative products. With a list of function 
characters selected, the main goal of our characterisation of ETCs based on function is to develop appropriate 
transfer methods to link data published as grids or linked to administrative boundaries to ETCs. In this work, 
we are using five different transfer methods: Areal interpolation, Building-based dasymetric areal interpola-
tion25 using building footprint area, Network-constrained accessibility, Euclidean accessibility, and Zonal sta-
tistics. Areal interpolation is used when the functional data covers the entirety of space in the form of polygon 
geometry and when there is no assumption that the phenomena it captures are linked directly to the human 
population, such as land cover data. When there is an assumption of relation to the population, building-based 
dasymetric areal interpolation is used instead. The main difference is that instead of ETC polygons, building 
footprint polygons linked to individual ETCs are used as a target of interpolation. That ensures that data like 
population estimates are linked to ETCs proportionally to their ability to house population rather than by their 

A B C D

Fig. 3 Diagram illustrating the sequential steps leading to the delineation of enclosed tessellation. From a series 
of enclosing components, where blue are streets and yellow river banks (A), to enclosures (B), incorporation of 
buildings as anchors (C) to final tessellation cells (D).
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area. Network-constrained accessibility is used when the input data represents points of interest like locations of 
supermarkets. Points are then snapped to the nearest node on the street network and linked to the ETCs through 
the count of observations accessible from the cell within 15 minutes of walk (1200 m on the street network) 
and a distance to the nearest point. In some cases, Euclidean (as-crow-flies) accessibility is measured instead 
to accommodate for phenomena that are often outside the reach of a drivable network like water bodies. Zonal 
statistics are used to transfer data originally stored in a raster format to ETCs as the mean value of raster pixels 
intersecting each polygon geometry. Finally, characters based on interpolation and zonal statistics are expressed 
using their contextual versions following the method used for form characters to, again, reflect the contextual 
pattern of measured values. As in the case of morphometric characters, only contextual versions are then used 
in the cluster analysis. The selection of datasets and the chosen transfer method are listed in the Supplementary 
Table 1.

Cluster analysis. When combined, contextual summaries of form and function characters (or characters 
themselves when they are reflecting the context by definition) compose a dataset describing each ETC by 328 var-
iables (177 contextual characters representing 59 initial characters for form and 151 for function composed of 144 

Fig. 4 Illustration of a definition of spatial context used to capture the distribution of values around each ET 
cell. For the yellow ET cell in the middle, we propose to define a neighbourhood of 10 topological steps on the 
tessellation and weight the importance of each cell within such an area by inverse distance between poles of 
inaccessibility of each cell.
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contextual characters representing 48 characters that do not capture context by design and 10 accessibility-based 
characters that do). Assigning equal weight to each variable, we standardize them applying Z-score normaliza-
tion, and use them as input for K-Means cluster analysis. Although collinearity is likely to be present between 
several of them, we do not view this as a problem: we select each character not from a purely statistical point of 
view (i.e., which ones will be more effective at segmenting the dataset), but instead from a conceptual one. Each 
variable has been identified by the literature on urban form and function as a relevant aspect that contributes to 
collectively characterising these two more abstract concepts. We thus see this situation as a way of adding robust-
ness to the measurement of more conceptual notions which are ultimately our aim. We opt for K-Means because 
we consider it strikes a compromise in the trade-off between performance and scalability. K-Means is widely used 
in the literature on unsupervised learning, and in much of that concerning the clustering of geographic entities26. 
To select the algorithm, we experimented with a random subset of our dataset, comparing K-Means with alterna-
tives such as Gaussian Mixture Models (GMM) or Self-Organising Maps (SOM). We found results from the latter 
two were not notably better in terms of cluster compactness and qualitative examination of the geographic clus-
ters, but were significantly slower in computation runtime, posing serious challenges to be run at scale. Although 
K-Means does not consider space explicitly, our approach incorporates information about the geographic con-
text of each observation through the operation described above and illustrated in Fig. 4. We prefer this over a 
spatially-constrained algorithm (e.g., SKATER27) that restricts the clustering only among spatially contiguous 
observations because we are not interested in areas that are spatially contiguous unless they are sufficiently sim-
ilar to each other on the attribute space. Our contextual approach is more similar to spatially-encouraged algo-
rithms such as the GeoSOM28 or spatially-encouraged spectral clustering29 that incorporate geographic proximity 
when clustering but do not restrict. Our choice in this case was led by its scalability over other such algorithms. 
Nevertheless, we consider this a fruitful avenue for future research. Due to the nature of the selected K-Means 
clustering, the step preceding the final analysis is the selection of an optimal number of clusters. We use the clus-
tergram exploratory method30, reflecting the behaviour of different options, the relationship between clustering 
solutions regarding the allocation of individual observations to classes, and the separation between the clusters 
within each tested solution (Fig. 5). Clustergram is further accompanied by measures of internal validation meas-
ures - the Silhouette score diagram, Calinski-Harabasz index31 and Davies-Bouldin index32. The optimal number 
of classes is selected based on the interpretation of clustergram supported by additional measures aiming at a bal-
ance between cluster separation and an appropriate detail of resulting classification. We use mini batch K-Means 

character category reference

area of building dimension 41

perimeter of building dimension 42

courtyard area of building dimension 43

circular compactness of building shape 21

corners of building shape 44

squareness of building shape 44

equivalent rectangular index of building shape 45

elongation of building shape 44

centroid - corner distance deviation of building shape 23

centroid - corner mean distance of building dimension 43

orientation of building distribution 43

street alignment of building distribution 43

cell alignment of building distribution 23

longest axis length of ETC dimension 23

area of ETC dimension 13

circular compactness of ETC shape 23

equivalent rectangular index of ETC shape 23

orientation of ETC distribution 23

covered area ratio of ETC intensity 46

length of street segment dimension 12

width of street profile dimension 11

openness of street profile distribution 11

width deviation of street profile diversity 11

linearity of street segment shape 11

area covered by edge-attached ETCs dimension 23

buildings per meter of street segment intensity 23

area covered by node-attached ETCs dimension 23

alignment of neighbouring buildings distribution 47

mean distance between neighbouring buildings distribution 47

Table 1. Morphometric characters used to describe the form component of spatial signatures (part 1). For 
details of the implementation, refer to the reproducible Jupyter notebooks available at urbangrammarai.xyz.
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with a batch size of 1,000,000 and 100 initialisations to create the clustergram and test number of clusters between 
2 and 25. The results indicate 10 clusters as an optimal solution. The final clustering solution is generated using 
mini batch K-Means with a batch size of 1,000,000 and 1,000 initialisations to ensure the stability of the outcome. 
The results of the clustering capture the first group of a national signature classification composed of ten clusters. 
However, since the classified ETCs cover the entirety of space, from vast natural open spaces to dense city centres, 
it may result in only a few classes representing urban areas. While that is caused by the variable heterogeneity of 
our dataset in combination with K-Means clustering, the measured characters have the ability to further distin-
guish classes of already identified clusters. As spatial signatures are focused on the urban environment, we further 
subdivide those clusters covering a substantial portion of urban areas using another iteration of K-Means cluster-
ing (one class into nine and another into three clusters). Both subdivisions were created using standard K-Means 
(single batch) using 1,000 initialisations. The resulting classification then provides a classification capturing the 
typology of spatial signatures with a detailed focus on urban development. Finally, individual spatial signature 
geometries are generated as a combination of adjacent ETCs belonging to the same signature class. To describe 
each geometry and each signature type, we measure mean values of the original, non-contextualised characters, 
and release it as additional descriptive tables. The resulting numerical profile of each signature type is available as 
a Supplementary Table 2. Tables 3 and 4 contain pen portraits derived from these numerical profiles.

Fig. 5 Clustergram and relevant metrics of a goodness of fit (Silhouette score, Calinski-Harabazs score, 
Davies-Bouldin score) for tested numbers of clusters. The clustergram suggest two potential solutions, the very 
conservative option of 4 clusters and 10 clusters selected as an optimal result (indicated by a vertical yellow line).
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Data records
The data product33 described in this article is available through the Consumer Data Research Centre Open 
Data repository34 under the Open Government Licence v3.0 license and archived33. The dataset stored in the 
repository contains a GeoPackage with a signature geometry (OSGB36/British National Grid (EPSG:27700) 
CRS) and related signature type, plain-text pen portraits describing individual signature types, a series of CSV 
files describing individual signatures and signature types, and a CSV files linking signature types to the Output 
Area and Lower Super Output Area geometry. An online interactive map of spatial signatures for the whole of 
Great Britain is available on the project website (https://urbangrammarai.xyz/great-britain). The underlying 
data used to create the ODP are available in a dedicated GitHub repository available from (https://github.com/
urbangrammarai/signatures_gb).

technical Validation
Character importance. The characters used in the cluster analysis have each different importance in dis-
tinguish between signature types. Those characters which spatial distribution most closely matches the distribu-
tion of signatures can be seen as more important that those that are seemingly random or mostly invariant (as 
some of the land cover classes are). Unpacking the importance of individual characters from K-Means clustering 
cannot be done directly. However, we provide indirect evidence from two different approaches. First, we can 
use the F-test to assess the significance of the relationship between characters and signature types by regressing 
each character on a set of indicator variables with our signature classes. If the variation in the character maps 
onto that between classes, the F-test will reject the null hypothesis and will be considered significant. In the sec-
ond exercise, we train a supervised model, in our case Random Forest, designed to predict individual signature 
types from input data. The former unpacks whether all the characters play a role in the delineation of clusters 
while the latter provides indication on feature importance - a relative measure of strength of each character 
in distinguishing between the types. Out of 328 characters, 18 are invariant (the full list includes: ‘Land cover 
[Airports] Q1, Land cover [Mineral extraction sites] Q1, Land cover [Road and rail networks and associated land] 
Q1, Land cover [Water bodies] Q1, Land cover [Inland marshes] Q1, Land cover [Dump sites] Q1, Land cover 
[Water courses] Q2, Land cover [Burnt areas] Q2, Land cover [Water courses] Q1, Land cover [Burnt areas] Q1, 
Land cover [Agro-forestry areas] Q3, Land cover [Coastal lagoons] Q2, Land cover [Burnt areas] Q3, Land cover 

character category reference

perimeter-weighted neighbours of ETC distribution 23

area covered by neighbouring cells dimension 23

reached ETCs by neighbouring segments intensity 23

reached area by neighbouring segments dimension 23

node degree of junction distribution 48

mean distance to neighbouring nodes of street network dimension 23

mean inter-building distance distribution 49

weighted reached enclosures of ETC intensity 23

reached ETCs by tessellation contiguity intensity 23

reached area by tessellation contiguity dimension 23

area of enclosure dimension 21

perimeter of enclosure dimension 12

circular compactness of enclosure shape 43

equivalent rectangular index of enclosure shape 45

compactness-weighted axis of enclosure shape 50

orientation of enclosure distribution 12

perimeter-weighted neighbours of enclosure distribution 23

area-weighted ETCs of enclosure intensity 23

local meshedness of street network connectivity 50

mean segment length within 3 steps dimension 23

local cul-de-sac length of street network dimension 23

reached area by local street network dimension 23

reached ETCs by local street network intensity 23

local node density of street network intensity 23

local proportion of cul-de-sacs of street network connectivity 51

local proportion of 3-way intersections of street network connectivity 48

local proportion of 4-way intersections of street network connectivity 48

local degree weighted node density of street network intensity 21

local closeness of street network connectivity 52

square clustering of street network connectivity 23

Table 2. Morphometric characters used to describe the form component of spatial signatures (part 2). For 
details of the implementation, refer to the reproducible Jupyter notebooks available at urbangrammarai.xyz.
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[Agro-forestry areas] Q1, Land cover [Agro-forestry areas] Q2, Land cover [Dump sites] Q2, Land cover [Coastal 
lagoons] Q1, Land cover [Coastal lagoons] Q3’) and five insignificant at the 5% level (the full list includes: Land 
cover [Green urban areas] Q1, Land cover [Road and rail networks and associated land] Q2, Land cover [Water 
bodies] Q2, Land cover [Transitional woodland-shrub] Q1, Land cover [Coniferous forest] Q1) (all derived from 
land cover) according to the F-test results. The results of the Random Forest-based feature importance approach 
are shown in a Table 5. As can be seen, form-based characters dominate the top 10 characters, but it is worth not-
ing that these top 10 characters together bear only 0.196 of the overall importance. A similar exercise can be done 
on at the level of individual clusters, with a binary Random Forest model trained to distinguish that particular 
class from the other. Resulting relative importance of top 10 characters for each signature type is presented in a 
Supplementary Table 3. While it is clear that form-based characters still dominate the prediction, the more urban 

Signature type Pen Portait

Wild countryside
In “Wild countryside”, human influence is the least intensive. This signature covers large open spaces in the 
countryside where no urbanisation happens apart from occasional roads, cottages, and pastures. You can find it 
across the Scottish Highlands, numerous national parks such as Lake District, or in the majority of Wales.

Countryside agriculture
“Countryside agriculture” features much of the English countryside and displays a high degree of agriculture 
including both fields and pastures. There are a few buildings scattered across the area but, for the most part, it is 
green space.

Urban buffer
“Urban buffer” can be characterised as a green belt around cities. This signature includes mostly agricultural 
land in the immediate adjacency of towns and cities, often including edge development. It still feels more like 
countryside than urban, but these signatures are much smaller compared to other countryside types.

Open sprawl
“Open sprawl” represents the transition between countryside and urbanised land. It is located in the outskirts of 
cities or around smaller towns and is typically made up of large open space areas intertwined with different kinds 
of human development, from highways to smaller neighbourhoods.

Disconnected suburbia
“Disconnected suburbia” includes residential developments in the outskirts of cities or even towns and villages 
with convoluted, disconnected street networks, low built-up and population densities, and lack of jobs and 
services. This signature type is entirely car-dependent.

Accessible suburbia
“Accessible suburbia” covers residential development on the urban periphery with a relatively legible and 
connected street network, albeit less so than other more urban signature types. Areas in this signature feature 
low density, both in terms of population and built-up area, lack of jobs and services. For these reasons, 
“accessible suburbia” largely acts as dormitories.

Warehouse/Park land
“Warehouse/Park land” covers predominantly industrial areas and other work-related developments made 
of box-like buildings with large footprints. It contains many jobs of manual nature such as manufacturing or 
construction, and very little population live here compared to the rest of urban areas. Occasionally this type also 
covers areas of parks with large scale green open areas.

Gridded residential 
quarters

“Gridded residential quarters” are areas with street networks forming a well-connected grid-like (high density 
of 4-way intersections) pattern, resulting in places with smaller blocks and higher granularity. This signature is 
mostly residential but includes some services and jobs, and it tends to be located away from city centres.

Table 3. Interpretative pen portraits characterising each signature type based on its numerical profile (part 1).

Signature type Pen Portait

Connected residential 
neighbourhoods

“Connected residential neighbourhoods” are relatively dense urban areas, both in terms of population and built-
up area, that tend to be formed around well-connected street networks. They have access to services and some 
jobs but may be further away from city centres leading to higher dependency on cars and public transport for their 
residents.

Dense residential 
neighbourhoods

A “dense residential neighbourhood” is an abundant signature often covering large parts of cities outside of their 
centres. It has primarily residential purpose and high population density, varied street network patterns, and some 
services and jobs but not in high intensity.

Dense urban 
neighbourhoods

“Dense urban neighbourhoods” are areas of inner-city with high population and built-up density of a 
predominantly residential nature but with direct access to jobs and services. This signature type tends to be 
relatively walkable and, in the case of some towns, may even form their centres.

Local urbanity
“Local urbanity” reflects town centres, outer parts of city centres or even district centres. In all cases, this signature 
is very much urban in essence, combining high population and built-up density, access to amenities and jobs. Yet, 
it is on the lower end of the hierarchy of signature types denoting urban centres with only a local significance.

Regional urbanity
“Regional urbanity” captures centres of mid-size cities with regional importance such as Liverpool, Plymouth or 
Newcastle upon Tyne. It is often encircled by “Local urbanity” signatures and can form outer rings of city centres 
in large cities. It features high population density, as well as a high number of jobs and amenities within walkable 
distance.

Metropolitan urbanity
Signature type “Metropolitan urbanity” captures the centre of the largest cities in Great Britain such as Glasgow, 
Birmingham or Manchester. It is characterised by a very high number of jobs in the area, high built-up density 
and often high population density. This type serves as the core centre of the entire metropolitan areas.

Concentrated urbanity
Concentrated urbanity” is a signature type found in the city centre of London and nowhere else in Great Britain. 
It reflects the uniqueness of London in the British context with an extremely high number of jobs and amenities 
located nearby, as well as high built-up and population densities. Buildings in this signature are large and tightly 
packed, forming complex shapes with courtyards and little green space.

Hyper concentrated 
urbanity

The epitome of urbanity in the British context. “Hyper concentrated urbanity” is a signature type present only 
in the centre of London, around the Soho district, and covering Oxford and Regent streets. This signature is the 
result of centuries of urban primacy, with a multitude of historical layers interwoven, very high built-up and 
population density, and extreme abundance of amenities, services and jobs.

Table 4. Interpretative pen portraits characterising each signature type based on its numerical profile (part 2).
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signature types are, the higher the importance of function seems to be. Complete tables with all characters are 
available as online Tables 1 and 2.

Comparison. Spatial signatures are unique as a classification method, limiting the potential validation. 
Therefore, we rather present a comparison of signatures and ancillary datasets capturing conceptually similar 
aspects of the environment. We compare the signatures with four of such datasets, each focusing on a different 
classification perspective, but all related to our classification to a degree when we can assume there will be a meas-
urable level of association between the two:

•	 WorldPop settlement patterns of building footprints (2021)10

•	 Classification of Multidimensional Open Data of Urban Morphology (MODUM) (2015)7

•	 Copernicus Urban Atlas (2018)35

•	 Local Climate Zones (2019)36

Comparison approach. All datasets, spatial signatures and those selected for a comparison contain a cat-
egorical classification of space linked to their unique geometry. The first requirement to be able to compare data 
products is to transfer their information to the same geometry. We take two approaches for this step, depending 
on the dataset we are comparing the signatures with: an interpolation of one set of polygon-based data to another 
(input to ETCs); or the conversion of spatial signatures to the raster representation matching an input raster, 
which is computationally more efficient when one of the layers is already a raster. The second step is a statis-
tical comparison of two sets of classification labels, one representing spatial signature typology and the other 
comparison classes. We use contingency tables and Pearson’s χ2 test to determine whether the frequencies of 
observed (signature types) and expected (comparison types) labels significantly differ in one or more categories. 
Furthermore, we use Cramér’s V statistics37 to assess the strength of the association.

Worldpop settlement patterns of building footprints. WorldPop settlement patterns of building 
footprints dataset aims to derive a typology of morphological patterns based on a gridded approach with cells of 
100 × 100 m, and building footprints. Authors measure six morphometric characters linked to the grid cells and 
use them as input for an unsupervised clustering algorithm leading to a six-class typology. As the classification is 
dependent on building footprints, grid cells that do not contain any information on the building-based pattern 
are treated as missing in the final data product. For the comparison, this missing category is treated as a single 
class. It is assumed that the top-level large scale patterns detected by the WorldPop method and spatial signatures 
will provide similar results. However, there will be differences caused by the inclusion of function in spatial sig-
natures, higher granularity of both initial spatial units and the resulting classification (6 vs 19 classes). Signature 
typology is rasterized and linked to the WorldPop grid. The resulting contingency table is shown in Fig. 6. There 
is a significant relationship between two typologies, χ2 (114, N = 22993921) = 13341832, p < 0.001. The strength 
of association measured as Cramér’s V is 0.311, indicating moderate association. The contingency table shows 
that WorldPop classes tend to be linked to groups of signature types of a similarly degree of urbanity. A WorldPop 
class 15 is “undefined” due to the lack of building footprints in the area, therefore overlapping a large portion of 
signatures. The difference between classifications is likely driven by two main aspects - one is the different number 
of classes. We can see that WorldPop classes tend to cluster within a limited number of signature types and vice 
versa. The only exception is allocation of signature types into classes 4 and 6, which seems to heavily overlap. 
That is possibly caused by the second aspect - inclusion of function. Both classes 4 and 6 tend to be outside of city 
centres but still within urban areas. While it is the footprint-based form that is driving the difference between 
them, signatures in the same area are often distinguished by function and varies access to amenities and services.

Multidimensional open data urban morphology. Multidimensional Open Data Urban Morphology 
(MODUM) classification describes a typology of neighbourhoods derived from 18 indicators capturing built 
environment as streets, railways or parks, linked to the Census Output Area geometry. The classification identifies 

relative importance

covered area ratio of ETC (Q1) 0.036944

covered area ratio of ETC (Q2) 0.031717

perimeter-weighted neighbours of ETC (Q2) 0.023476

mean inter-building distance (Q2) 0.016662

area of ETC (Q3) 0.016005

area covered by node-attached ETCs (Q3) 0.014813

longest axis length of ETC (Q2) 0.014501

weighted reached enclosures of ETC (Q1) 0.014115

reached area by neighbouring segments (Q3) 0.014000

reached area by neighbouring segments (Q1) 0.013904

Table 5. Relative importance of top 10 most important characters in predicting spatial signature types using the 
Random Forest model.
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8 types of neighbourhoods. Compared to the WorldPop classification, MODUM takes into account more fea-
tures of the built environment than building footprints, which makes it conceptually closer to the spatial signa-
tures. However, it is still focusing predominantly on the form component, although there are some indicators 
that would be classified as function within the signatures framework (e.g. population). The MODUM method 
uses a different way of capturing context compared to the signatures, which leads to some classes being deter-
mined predominantly by a single character. For example, the Railway Buzz type forms a narrow strip around the 

Fig. 6 Contingency table showing frequencies (in %) of WorldPop classes within signature types.

Fig. 7 Contingency table showing frequencies (in %) of MODUM classes within signature types.
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railway network, which is an effect signatures avoid. MODUM typology is available only for England and Wales. 
Therefore, the comparison takes into account only ETCs covering the same area. The classification is linked to 
the ETC geometry is based on the proportion (the type covering the largest portion of ETC is assigned). The 
resulting contingency table is shown in Fig. 7. There is a significant relationship between two typologies, χ2 (152, 
N = 13067584) = 13938867, p < 0.001. The strength of association measured as Cramér’s V is 0.300, indicating 
moderate association of very similar levels we have seen above. The contingency table indicates similar relation-
ships, where a single MODUM class overlaps a group of signature types. However, the groups tend to be well 
defined and formed based on the similarity of types. Signature types are minimally present in MODUM classes 
driven by a single character (Railway Buzz, Waterside Settings, High Street and Promenades), suggesting the more 
balanced weight of characters.

Copernicus urban atlas. Copernicus Urban Atlas is the least similar of the comparison datasets. It is a 
high-resolution land use classification of functional urban areas derived primarily from Earth Observation data 
enriched by other reference data as OpenStreetMap or topographic maps. Its smallest spatial unit in urban areas 
is 0.25 ha and 1 ha in rural areas, defined primarily by physical barriers. It identifies 27 predefined classes using 
the supervised method. The majority of urban areas is classified as urban fabric further distinguished based on 
continuity and density resulting in six classes of the urban fabric. The classification does not consider the type of 

Fig. 8 Contingency table showing frequencies (in %) of Urban Atlas classes within signature types.
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the pattern or any other aspect. Furthermore, it does not take into account what signatures call context as each 
spatial unit is classified independently, which in some cases leads to the high heterogeneity of classification within 
a small portion of land. Signatures take a different approach. Consequently, it is expected that the similarity 
between the two will be limited. Urban Atlas is available only for functional urban areas (FUA), leaving rural areas 
unclassified. Comparison then applies to FUAs only. The classification is linked to the ETC geometry based on the 
proportion (the type covering the largest portion of ETC is assigned). The resulting contingency table is shown 
in Fig. 8. There is a significant relationship between two typologies, χ2 (450, N = 8396642) = 5229900, p < 0.001. 
The strength of association measured as Cramér’s V is 0.186, indicating a weak association. The contingency table 
shows the difference in the aim of spatial signatures and that of Urban Atlas with a majority of signatures being 
linked to a few of Urban Atlas classes. Within relevant classes, we see a tendency of signature types to cluster 
within Urban Atlas classes based on the level of urbanity, albeit not as strong as in the previous two cases. The 
main reason behind such a large difference are the aims of both classifications. While the Copernicus Urban Atlas 
attempts to capture land cover, resulting in a large number of non-urban classes, spatial signatures are aimed at 
urban environment with 13 out of 16 classes covering primarily urbanised areas.

Local climate zones. Local climate zones (LCZ) are conceptual classes originally designed to support study 
of urban climate as temperature. It consists of 17 classes of which 10 can be classified as urban and 7 and natural 
ones. In the context of Great Britain, the dataset used in this study does not contain 2 of them, Lightweight low-rise 
and Compact highrise as they are not present in the British landscape. The datasets produced by36 released LCZs 
in a 100 meters grid based on the 2016 data. As the LCZs are remotely sensed in this case, authors report overall 
average accuracy of 80% As a conceptual classification aimed to cover all possible types of primarily urban cli-
mate zones globally, LZCs may not be optimal when looking into a single country with specific history of urban 
development. This is further indicated by classes that are missing. It is therefore likely that large parts of British 
cities will fall into only a few of LCZ classes, while being represented by a much larger number of signature types. 
Signature typology is rasterized and linked to the LCZ grid. The resulting contingency table is shown in Fig. 9. 
There is a significant relationship between two typologies, χ2 (225, N = 16203338) = 18467242, p < 0.001. The 
strength of association measured as Cramér’s V is 0.276, indicating a modest to weak association, close to values 
we have seen in first two cases. As expected, urban signature types are clustered primarily within Compact midrise 
and Open lowrise LCZs, while non-urban signatures mostly fall into the Low plants LCZ. The difference between 
signatures and LCZs can be accounted to two aspects. One, as we have seen before is the inclusion of function 
in spatial signatures, differentiating e.g. LCZ’s Open lowrise into many signature types. The other is data-driven 
nature of signatures compared to conceptual LCZs, where differences in signature types are below the resolution 
capability of simple matrix composed of density and compactness levels. On the other, it is encouraging to see that 
most of signature types fall predominantly in a single LCZ class, suggesting that while both classifications are built 
differently, they are able to capture similar large-scale patterns in cities.

Fig. 9 Contingency table showing frequencies (in %) of Local Climate Zones within signature types.
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Summary. None of the comparisons shows more than a moderate association, but since none of the com-
parison datasets is aiming to capture the same conceptualization of space as spatial signatures do, such a result 
is expected. The moderate association with both WorldPop settlements patterns and MODUM is reassuring as 
both are conceptually closer to signatures than the Urban Atlas (especially in their unsupervised design). Urban 
Atlas, though very different in its aims and methods, still shows a measurable association, which we interpret as 
sign that the key structural aspects forming cities are captured by both. The comparison exercise suggests that 
general patterns forming cities are shared among signatures and existing typologies. Signature types tend to form 
groups when we look at their relation to comparison classes and it is not uncommon that a single signature type 
is present in multiple groups linked to different classes. However, all these groups tend to be formed based on the 
similarity and illustrate the granularity of the presented classification compared to existing datasets, allowing us 
to distinguish, for example, five types of signature types forming town and city centres.

Usage Notes
The released data product follows widespread standards for geographic data storage and should be easy to inte-
grate with other data and methods by researchers wanting to reuse it. However, due to the density of signature 
geometry (resulting from the detailed ETCs), it may be needed to simplify the geometry for a smoother inter-
active experience on machines with limited resources. Replication of the analysis optimally requires at least a 
single computational node with a large amount of RAM (+100GB) due to the size of the input data and detail on 
which signature characterisation is computed. It is also recommended revisiting the state of the development of 
related software packages, notably momepy38, libpysal39, tobler25 and dask-geopandas as they may 
soon offer more efficient drop-in replacements of the custom code used to produce this dataset.

Code availability
The source code used to produce this dataset is openly available in a GitHub repository at https://github.com/
urbangrammarai/spatial_signatures and in the form of a website on https://urbangrammarai.xyz. Code is 
organized in a series of Jupyter notebooks and have been executed within the darribas:gds_dev:6.140 
Docker container, unless specified otherwise in the individual notebooks.
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