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Aims Severe acute respiratory syndrome coronavirus-2 infection causes COVID-19, which in severe cases evokes life-threa
tening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vas
cular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its 
known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage, and perturbed 
haemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compart
ment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications  
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of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 
suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes be
tween both conditions has not been implemented to date.

Methods 
and results

We performed single-nucleus RNA-sequencing on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs, 
and 12 controls. The vascular fraction, comprising 38 794 nuclei, could be subclustered into 14 distinct EC subtypes. Non- 
vascular cell types, comprising 137 746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs 
of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive 
of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of 
systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their 
IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor–ligand 
interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previ
ously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF.

Conclusions This study uncovered novel insights into the abundance, expression patterns, and interactomes of EC subtypes in 
COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions.
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1. Introduction
The pandemic caused by severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2) continues to progress and flare up. COVID-19, caused 
by SARS-CoV-2 infection, manifests as acute respiratory distress syn
drome (ARDS)1 in severe cases, too often with life-threatening conse
quences. Despite ongoing vaccination programmes and therapeutic 
improvements,2,3 mortality of a fraction of acutely-ill severe 
COVID-19 patients and chronic morbidity of severe COVID-19 survi
vors remain unacceptably high, and SARS-CoV-2 mutants continue to 
threaten healthcare, economic welfare and quality of life in multiple 
countries. As single-cell studies provide an unbiased and comprehensive 
characterization of cellular landscapes, they represent a suitable strategy 
for increasing our understanding of the cell phenotypes and transcrip
tomic underpinnings of COVID-19. Previous single-cell studies profiled 
the response to SARS-CoV-2 in peripheral blood mononuclear cells and 
bronchoalveolar lavage fluid, primarily focusing on immune cells.4–12

Subsequent single-cell studies then also compiled inventories of the pul
monary cell heterogeneity in organs from deceased COVID-19 patients 
(‘lethal COVID-19’).13–15

Endothelial cells (ECs) have been proposed to contribute to vascular 
inflammation, recruitment/invasion of immune cells, vascular leakage, hy
percoagulability, vascular thrombotic occlusion, and resultant hypoxia in 
the lungs of severe COVID-19 patients.16–19 Moreover, non-vascular 
cells, in particular immune cells, in the pulmonary micro-environment 
can render ECs dysfunctional.20 Nevertheless, the vascular landscape, 
as well as its interplay with non-vascular cells, remains underexplored 
at in-depth single-cell resolution in COVID-19.

Important to consider when interrogating the lung vasculature, the 
lung harbours two circulatory systems: the pulmonary circulation, im
portant for gas exchange, and the systemic/bronchial vascular supply, 
providing oxygenated blood to the entire lung.21 In fact, in addition to 
the more established pulmonary EC subtypes, so-called peri-bronchial 
venous ECs were identified as a transcriptomically distinct vascular sub
cluster in a single-cell RNA-sequencing (scRNA-seq) study of lungs from 
healthy, idiopathic pulmonary fibrosis (IPF; a lung disease characterized 
by progressive lung scarring and irreversible lung dysfunction) and 
chronic obstructive pulmonary disease patients.22 In healthy lungs, this 
EC subtype is restricted to the bronchial vasculature surrounding large 
proximal airways, while in IPF lungs, peri-bronchial venous ECs expand 
and are observed in areas of bronchiolization and fibrosis.22 In subse
quent lung EC scRNA-seq studies, this EC subtype was specifically loca
lized to the systemic vasculature of the bronchial vascular plexus and 
visceral pleura in healthy lungs, and ultimately coined as ‘systemic 
venous’.15,23

IPF shares a number of major risk factors and molecular characteris
tics with COVID-19,24–26 and patients with COVID-19-associated 
ARDS often develop severe pulmonary fibrosis,27,28 which can be life- 
threatening in the acute stage and often results in incapacitating sequelae 
later on.29 A population of systemic venous ECs has also been recently 
detected in COVID-19 lungs,15 but its putative role in fibrotic lung dis
ease, as well as additional heterogeneity within this EC subpopulation, 
either within or between conditions, remains elusive to date.

Since a direct comparison of COVID-19-related vs. non-COVID-19- 
related pulmonary fibrosis has not been conducted to date, we per
formed a single-nucleus RNA-sequencing (snRNA-seq) study on frozen 
lung tissue from 7 COVID-19 decedents, 6 IPF patients (who required 
lung transplantation), and 12 controls (for detailed patient information, 
see Supplementary material online, Supplementary Methods and 
Table S1), and derived transcriptomes of 38 794 single ECs, distributed 
over 14 distinct subclusters. Whereas COVID-19 and IPF samples large
ly resembled each other in terms of subcluster distribution and differen
tially expressed genes, we detected notable differences in transcriptome 
signatures and subcluster abundances when comparing both conditions 
with control lungs, including an increased abundance of systemic venous, 
and newly discovered systemic capillary ECs in both COVID-19 and IPF 
lungs. By taking advantage of the 137 746 nuclei of non-vascular cell 
types, we performed EC-interactome analyses and identified a per
turbed cross-talk between vascular and non-vascular compartments in 
lethal COVID-19. We moreover identified a congruent set of 30 genes, 
selectively enriched in systemic ECs across multiple COVID-19 and IPF 
studies, comprising different patient cohorts and sequencing strategies. 
Altogether, we highlight key transcriptomic changes and interactions 
perturbed in COVID-19 with focus on the endothelium, partially over
lapping with IPF, and with potential importance for future therapeutic 
development.

2. Methods
2.1 Patient samples
Informed consent was obtained from all research subjects. Sample col
lection and use were approved by the local ethics committee (Medical 
Ethics Committee UZ/KU Leuven, see Supplementary material online,
Supplementary Methods for specific ethical protocols). The study com
plied with the principles outlined in the Declaration of Helsinki. All 
SARS-CoV-2-positive samples were handled and processed in a biosaf
ety Level-3 laboratory, according to the biocontainment procedures as
sociated with processing of SARS-CoV-2-positive samples. For more 
detailed patient information see Supplementary material online,
Supplementary Methods and Table S1. All non-COVID-19 control pa
tient tissues were collected before the 2020 pandemic, and therefore 
the tissues were negative for SARS-CoV-2.

2.2 Single nuclei isolation from control, 
COVID-19, and IPF lung tissues
For snRNA-seq, after collection, freezing of lung post-mortem/explant 
samples was performed as quickly as possible by placing the samples 
in cryo-tubes, which were subsequently snap-frozen with liquid N2 

(5 min). Afterwards, the tubes were placed on dry ice and stored at 
–80°C. The nuclei isolation protocol was adapted from Slyper et al.30

(see Supplementary material online, Supplementary Methods for 
more details).

2.3 snRNA-seq
Nuclei were counted using an automated cell counter (Luna, Logos 
Biosystems, Gyeonggi-do, South Korea), and converted to barcoded 
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Drop-seq libraries by using the Chromium Single 3′ Library, Gel Bead & 
Multiplex Kit and Chip Kit (10X Genomics; Pleasanton, CA, USA), aim
ing for an estimated number of 10 000 nuclei per library. Libraries were 
sequenced on an Illumina NovaSeq 6000. Demultiplexing according to 
the sample barcodes, and subsequent read alignment were done using 
Cell Ranger (v3.1.0). A human reference genome (GRCh38) was used, 
including intron sequences for mapping of reads obtained from 
snRNA-seq data. Three Fastq files were generated per sample: The I1 
Fastq contains the sample barcode, R1 Fastq contains the cell barcode 
and UMI, and the R2 Fastq contains the cDNA (88 nt).

2.4 snRNA-seq data analysis
After generation of the gene expression matrices, raw data were pro
cessed further in R (Version 4.0.1). The following quality control steps 
were performed: (i) genes expressed by <10 nuclei were removed; (ii) 
nuclei that expressed fewer than 250 genes (low quality), and with a de
tected number of genes >2 standard deviations above the mean (poten
tial doublets) were excluded from further analysis; (iii) nuclei with a detected 
fraction of mitochondrial genes >20% were removed. The resulting data 
(259 297 nuclei) were first normalized using the NormalizeData function as 
implemented in the Seurat package (v3.1). We next identified the top 
2000 highly variable genes (FindVariableFeatures function), followed by scaling 
of the data (ScaleData function). The data were then summarized by principal 
component analysis (PCA; RunPCA function). The top 35 PCs were used to 
construct a shared nearest-neighbor (SNN) graph (FindNeighbors function) 
used to cluster the dataset (FindClusters function, resolution = 0.5), followed 
by visualization using uniform manifold approximation and projection 
(UMAP; runUMAP function). Marker genes for each cluster were calculated 
using FindAllMarkers(), and clusters were annotated and subsetted (using the 
subset() function) into major cellular lineages based on the expression of ca
nonical marker genes, including PECAM1 and CDH5 for ECs, COL1A1, ACTA2, 
DCN, and LUM for stromal cells, EPCAM and SFTPC for epithelial cells, and 
PTPRC for immune cells (which could be further divided into NK/T cells 
(CD3E, NKG7), myeloid cells (MARCO, CD163, FCN1), B cells (MS4A1), 
mast cells (MS4A2, KIT), and plasma cells (JCHAIN)). Individual subclustering 
was then performed for the epithelial, stromal, immune (NK/T and myeloid 
subsets only) and endothelial subsets (see Supplementary material online,
Supplementary Methods for further details).

2.5 Histological and immunohistochemical 
analysis
For details, see Supplementary material online, Supplementary Methods.

2.6 Quantification and statistical analysis
Statistical analyses were performed using GraphPad Prism (GraphPad 
Software, USA). Comparison of changes between two groups was 
performed using an unpaired, two-tailed t-test (in case of normally dis
tributed data, as determined by performing a Shapiro–Wilk test) or a 
Mann–Whitney U test (unpaired; two-tailed; in case data were not nor
mally distributed). In case of unequal variance (F-test), a Welch t-test was 
used. Comparison of changes between multiple groups was performed 
using a Kruskal–Wallis test and Dunn’s test for multiple comparisons. All 
immunofluorescence or histochemical analyses were repeated in a min
imum of three patients per group and representative images are 
displayed.

3. Results
3.1 Atlas of pulmonary subtypes in lethal 
COVID-19 and IPF
The goal of this study was to analyze pulmonary cell transcriptomic 
heterogeneity in lethal COVID-19 at cellular resolution, and to com
pare it with the single-cell transcriptome signature of IPF. To as 
much as possible avoid confounding study design differences intro
duced by comparing existing datasets of COVID-19 and IPF lung tis
sues, we compared head-to-head both lung diseases in a single 
study, by performing snRNA-seq on frozen lung tissues from 7 
COVID-19 decedents, 6 IPF patients requiring lung transplantation, 
and 12 controls who died of causes unrelated to lung disease 
(Figure 1A, for clinical metadata see Supplementary material online, 
Table S1).

We profiled a total of 176 540 nuclei, distributed over different cellu
lar lineages, detected in every sample and condition: ECs (PECAM1), 
stromal cells (defined as a mix of fibroblasts (COL1A2, FN1), pericytes 
(PDGFRB), and smooth muscle cells (ACTA2), according to a previously 
published lung taxonomy31), epithelial cells (EMP2, EPCAM), and immune 
cells (mix of myeloid cell types (MRC1, ITGAX, FCN1), T cells (CD3E), NK 
cells (NKG7), B cells (MS4A1), mast cells (MS4A2) and plasma cells 
(JCHAIN)) (Figure 1A and B; Supplementary material online, Figure S1A
and Table S2). Epithelial cells were under-represented in lethal 
COVID-19 lungs, whereas stromal cells were enriched (Figure 1C and 
D), a finding corroborated by immunostaining for the epithelial marker 
cytokeratin-7 (CK7) (Figure 1E), and the stromal cell marker alpha-smooth 
muscle actin (αSMA) (Figure 1F), in line with previous findings.15 Similar 
trends were observed in IPF, as previously reported.22,32–34 Further sub
clustering of the different cellular lineages revealed 61 subclusters 
(Figure 1G), in line with reported single-cell human lung taxon
omies,22,31,35,36 and detected in all three conditions.

3.2 Phenotypic heterogeneity of ECs in 
COVID-19, IPF, and control lung tissue
Given the increasing availability of single-cell analyses of non-vascular cell 
types in COVID-19 and IPF lungs,13–15 and the underexplored nature of 
ECs at single-cell resolution in both diseases, we focused primarily on 
the EC cohort in our dataset (n = 38 794 nuclei across all three condi
tions). Using previously published vascular bed marker genes and anno
tations,22,23,35 14 transcriptionally distinct EC subclusters could be 
identified (Figure 2A and B; Supplementary material online, Figure S1B 
and C and Table S2). To enable accurate comparisons with other lung 
single-cell studies, we based our chosen EC subtype nomenclature on 
a comprehensive integrated single-cell atlas of human lung ECs23 as 
much as possible. Specifically, we uncovered: two clusters of arterial 
ECs (1–2; GJA5, ARL15, DKK2), of which Artery 2 distinguished itself 
by increased expression of IGFBP3 and CXCL12; capillary arterial ECs 
(3), expressing both arterial (GJA5), and capillary marker genes (FCN3) 
(representing arteriolar ECs); aerocytes (4; CA4, ACE, EDNRB); two clus
ters of general capillary ECs (5–6; NOSTRIN, FCN3, BTNL9), of which 
Cluster 6 additionally expressed inflammatory marker genes (CX3CL1, 
ICAM1); capillary venous ECs (7; FCN3, ACKR1, SELP) (representing ve
nular ECs) and two clusters of pulmonary venous ECs (8–9; ACKR1, 
SELP), of which Cluster 9 specifically showed elevated expression of 
CPE, PTGIS and NRG1; large vessel ECs (10), expressing both arterial 
and venous marker genes (BMX, SELP, EDN1); the recently described 
COL15A1+ peri-bronchial22 or systemic venous23 ECs (11; COL15A1, 
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SPRY1, ZNF385D, POSTN), as well as a COL15A1+ capillary EC population 
that we coined ‘systemic capillary’ ECs (12; COL15A1, INSR, ZNF385D) 
(see below for details); proliferating ECs (13; MKI67) and lymphatic ECs 
[14; PROX1, MMRN1 (Figure 2A and B)].

We next explored differences in abundance of certain EC subtypes 
across control, COVID-19, and IPF samples, to investigate whether a dif
ferential abundance of certain EC subtypes can be associated with any of 
these conditions. As a population, ECs were similarly abundant in con
trol, COVID-19, and IPF lungs (Figure 1C and D), but at the subcluster 
level, we observed an underrepresentation of general capillaries, while 

systemic venous and capillary EC populations were expanded in both 
COVID-19 and IPF lungs (Figure 2C and D).

3.3 ECs in lethal COVID-19: transcriptome 
signatures of increased stress, altered 
immune signalling, and perturbed barrier 
integrity
To characterize the global gene expression signatures of the vascular 
compartment across conditions, we performed differential gene 

snRNA-seq study 
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Overview of the 61 different subclusters identified in epithelial, stromal, endothelial, and immune lineages (for a description of all subclusters and their 
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expression analysis (DGEA) and gene set enrichment analysis of all 
(pooled) COVID-19 or IPF vs. control ECs (see Supplementary 
material online, Table S3). These analyses revealed, among others, an en
richment for genes involved in antigen presentation, hypoxia signalling 
and extracellular matrix (ECM) interactions in COVID-19, while several 
gene sets related to immune system regulation, inflammation, and cell– 
cell adhesion were negatively enriched (Figure 3A and B). To explore 
whether the enrichment/depletion of these gene sets was selective to 
a specific EC subtype, we analyzed the expression of representative 
genes belonging to these enriched pathways across the major identified 
EC subtypes (see Supplementary material online, Supplementary 
Methods for details on pooling of the different subclusters). We ob
served that genes encoding heat shock proteins (HSP90AA1, HSPA1A) in
volved in cellular stress were particularly enriched in COVID-19 
pulmonary microvascular ECs (Figure 3C), presumably evoked by the 
harsh microenvironmental conditions in these lungs and the reported en
dothelialitis.37 Genes involved in ECM production/remodelling and asso
ciated matrix/receptor signalling (TIMP1, FBN1, MMP16, COL15A1) were 
enriched in both COVID-19 and IPF ECs (Figure 3C). This enrichment was 
observed in arterial and systemic ECs, but was particularly prominent in 
venous ECs (Figure 3C), and suggests a potential involvement of the vas
culature in creating a pro-fibrotic environment in both conditions.

ECs in COVID-19 lungs (and similarly in IPF lungs) furthermore 
showed decreased expression of certain genes and gene sets involved 

in immunity/inflammation (chemokines/cytokines, TNF and JAK/STAT 
signalling), possibly contributing to dampening of the immune response 
(Figure 3B and C). For instance, transcript levels of immunostimulatory 
genes including ICAM1 (leucocyte recruitment/adhesion, and a known 
marker of EC activation) and IRF1 (pro-inflammatory EC activation) 
were downregulated in both COVID-19 and IPF, as observed in tumour 
ECs,35,38 across the majority of EC subtypes (Figure 3C). Conversely, le
vels of IDO1, which positively correlates with SARS-CoV-2 viral load in 
COVID-19 autopsy samples,39 were upregulated in COVID-19 and IPF 
(arterial/microvascular) ECs (Figure 3C). An increased abundance of 
IDO1+ ECs (CD31+) was also observed by immunostaining of lung sec
tions in COVID-19 (see Supplementary material online, Figure S1D). 
While in vitro studies suggested immunosuppressive roles of endothelial 
IDO1, the roles of IDO1 in ECs in the in vivo setting are yet to be deter
mined and may be context-dependent. Overall, the immune gene signa
ture in lethal COVID-19 (and IPF) seemed to be complex. For instance, 
in general capillary ECs, which are considered semi-professional antigen 
presenting cells40 and reduced in numbers as a population in COVID-19 
(Figure 2C and D), levels of genes involved in antigen processing and pres
entation were upregulated in COVID-19 (Figure 3C), possibly in an at
tempt to mount a compensatory immune response. Altogether, ECs 
in COVID-19 and IPF exhibit an immunosuppressive transcriptome sig
nature, though the relevance of other immunostimulatory gene signa
tures requires further study.
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Figure 2 Vascular subclusters in COVID-19, IPF, and control lungs. A, UMAP plot of EC transcriptomes, colour- and number-coded for the 14 subtypes 
identified by graph-based clustering. B, Dot plot heatmap of the expression of EC subtype-specific marker genes used for subcluster annotation. The size 
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condition D, Fraction of EC subtypes in COVID-19, IPF, and control samples. Data are mean ± SEM, Kruskal–Wallis, and Dunn’s test for multiple compar
isons, n = 7 (COVID-19), 6 (IPF), 12 (controls), *P < 0.05, **P < 0.01.
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Consistent with the reported vascular activation and leakage in 
COVID-19 lungs,37 gene sets involved in cell–cell adhesion were de
creased in COVID-19 ECs (Figure 3B and C). For instance, expression 
of CDH5, important for endothelial junction stability, as well as of other 
genes involved in EC barrier maintenance and vessel wall integrity 
(ITGB1, RAP1B, CDC42, OCLN, VCL)41–43 or vascular quiescence and 
homeostasis (S1PR1) was generally decreased in COVID-19 EC sub
types, most strikingly in aerocytes (Figure 3C). Despite reports of vascu
lar damage in IPF,44 such transcriptome changes were not clearly 

detected in IPF lung ECs (Figure 3C), raising the question whether im
paired EC barrier integrity is a trait more selective to lethal 
COVID-19. Notably, transcripts of ANGPT1 (known to tighten the ves
sel wall and to lower vascular permeability)45 were reduced only 
in COVID-19 ECs (mainly in aerocytes), while levels of ANGPT2, a 
context-dependent regulator of vascular leakage, pro-inflammatory sig
naling and a predictive biomarker of intensive care unit admission of 
COVID-19 patients,46 were upregulated (mainly in systemic and lymph
atic ECs) in both diseases (Figure 3C).
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Gene sets involved in regulating haemostasis, a process derailed in 
COVID-19 and modulated by ECs,47 were generally not significantly al
tered across conditions in our dataset (see Supplementary material 
online, Table S3). In line with this, key genes involved in these processes 
showed a mixed expression pattern in COVID-19 and IPF ECs, with the 
expression of the pro-coagulation gene F8 predominantly being de
creased in IPF only, whereas certain anti-coagulation genes (PROCR, 
THBD) were more dominantly decreased in COVID-19 ECs 
(Figure 3C). Prominent differential expression of TFPI (anti-coagulation) 
and PLAT (clot dissolution), on the other hand, could not be clearly de
tected in COVID-19 and IPF ECs (Figure 3C).

Unbiased hierarchical clustering complemented with multiscale boot
strapping revealed that transcriptomes of microvascular and venous ECs 
seemed to be most prominently rewired in COVID-19 (Figure 3D), in 
line with our findings described above. Besides the abovementioned genes 
and gene sets, gene set variation analysis revealed additional genes and pro
cesses, for instance vascular smooth muscle contraction, glycolysis, HIF-1α 
signalling and others, specifically altered in COVID-19 and/or IPF, warrant
ing further exploration (see Supplementary material online, Figure S2A).

To assess robustness of our findings, we next compared our data with an 
independent lung snRNA-seq dataset of COVID-19 and control patients.15

Using unbiased hierarchical clustering, we revealed that most 
COVID-19-derived EC subtypes from both studies clustered together, 
and separate from control (or IPF) samples, when analyzing the same set 
of EC-enriched genes as shown in Figure 3C (see Supplementary material 
online, Figure S2B). When unbiasedly calculating the set of genes enriched 
(adjusted P-value ≤ 0.05; log-fold change ≥ 0.25) in the EC-compartment 
of both studies, we found a set of 127 genes congruently enriched (see 
Supplementary material online, Figure S2C and Table S3). To evaluate enrich
ment of these congruent genes in ARDS in a non-COVID-19 context, we 
generated a bulk RNA-sequencing (RNA-seq) dataset of post-mortem lung 
tissue from severe COVID-19 and influenza A (H1N1) patients, as well as 
non-COVID-19 controls (see Supplementary material online, Figure S2D, 
for clinical information of COVID-19 and influenza patients in this cohort, 
see37). Bulk deconvolution, using our snRNA-seq dataset as a reference, 
predicted the presence of all major cellular lineages (epithelial, stromal, 
endothelial and immune cells) in the bulk RNA-seq dataset (see 
Supplementary material online, Figure S2E). Hierarchical clustering, using 
the congruent 127-gene signature, revealed that COVID-19 patients clus
tered separately from control and influenza patients (see Supplementary 
material online, Figure S2F). Nonetheless, gene expression patterns were 
largely similar in influenza and COVID-19 patients, but most pronounced 
in COVID-19 (see Supplementary material online, Figure S2F). Finally, 
when analyzing the same set of genes in a bulk RNA-seq dataset of lung tis
sue from a human ACE2-expressing transgenic (K18-hACE2) mouse mod
el of severe COVID-1948 (see Supplementary material online, Figure S2G), 
we observed enriched expression of about half of the EC-enriched end- 
stage COVID-19 genes, suggesting that the enrichment of at least part of 
our observed signatures may be COVID-19-associated, and not merely a 
consequence of general ARDS or cohort-related confounders (e.g. ventila
tion, treatment regimens).

Altogether, ECs in COVID-19 lungs thus selectively exhibited a signa
ture involved in cellular stress and perturbed barrier maintenance/integ
rity, and (partially) shared signatures with IPF indicative of increased 
ECM deposition/remodelling and altered immunomodulation, with on 
one hand the downregulation of pro-inflammatory genes and adhesion 
molecules, while on the other hand upregulating multiple genes involved 
in antigen presentation. These signatures seem, at least in part, specific 
to and/or more pronounced in late-stage COVID-19.

3.4 EC cross-talk with other pulmonary cell 
types in COVID-19 and IPF
Given the prominent transcriptomic changes in COVID-19 and IPF ECs, 
we next explored with which other pulmonary cells they were predicted 
to interact, and which of such interactions might likely explain the al
tered vascular gene expression landscape. We therefore used all non- 
vascular cell types in our snRNA-seq data to characterize their cross-talk 
with ECs in every condition. Given the recently published landscapes of 
stromal, epithelial, and immune cell subtypes in healthy, COVID-19, and 
IPF lung tissue,13–15,22 we refer to Supplementary material online, Figures 
S3–S6 and Tables S2 and S3 and the Supplementary Methods for a de
tailed overview of their unsupervised clustering analyses and annotation, 
as well as their differential abundance in COVID-19 and IPF vs. control 
lung tissue. Using CellPhoneDB,49 we characterized the cross-talk be
tween ECs (all subtypes pooled) and other major pulmonary cell types 
by assessing their predicted receptor–ligand interaction landscape. 
Whereas the full interactome analysis is provided in Supplementary 
material online, Table S4, we specifically focused on the interactions be
tween the pulmonary cellular environment and the endothelium 
(Figure 4A–C; Supplementary material online, Figure S7A and B). For 
subtype-specific expression of EC-expressed interaction partners, we 
refer to Supplementary material online, Figure S7C. Our analyses re
vealed several interactions, previously not yet implicated in COVID-19 
or IPF pathobiology.

In COVID-19 and IPF, fewer interactions involved in angiogenesis, vas
cular integrity and homeostasis (EGFR-TGFB1, FGFR1-KL/FGF7, 
NRP2-SEMA3F, PDGFB-PDGFRA/PDGFRB) were identified within 
the vascular compartment itself, or between ECs and epithelial or stro
mal cells (Figure 4A–C). Moreover, among downregulated interactions 
between the same cell types in COVID-19 was DLL4/JAG1-NOTCH1 
signalling (Figure 4A–C). Loss of endothelial NOTCH1 signalling has 
been associated with perturbed vascular remodelling and a reduction 
of fenestrae in hepatic sinusoidal ECs, portal hypertension and intussus
ceptive angiogenesis (IA),50 an alternative mode of vascularization docu
mented in COVID-19 autopsy samples.37 Likewise, interactions 
potentially driving vascular leakage/permeability were also specifically 
detected in COVID-19, or COVID-19 and IPF. For instance, Ephrin re
ceptor signalling in ECs (EPHA4; predominantly expressed in arterial and 
systemic ECs), induced by Ephrins (EFNA1, EFNA5) in epithelial and 
stromal cells (Figure 4B and C; Supplementary material online, 
Figure S7C), which may increase EC permeability and vessel leakage,51

was detected in COVID-19 and IPF samples, but not in control lungs. 
Furthermore, signalling of anti-angiogenic SEMA3A (predicted to be se
creted by the endothelium) through its receptors (NRP1, Plexins) on 
ECs, stromal or epithelial cells, was selectively predicted to occur in 
COVID-19 (Figure 4A–C), and has been implicated in increasing vascular 
permeability.52

On the other hand, certain gene expression signatures suggested pos
sible compensatorily induced repair mechanisms. Indeed, various other 
interactions uniquely predicted in COVID-19 or in both COVID-19 and 
IPF were predominantly involved in maintaining vessel integrity. For in
stance, IGF1, expressed by stromal cells, was predicted to signal through 
IGF1R on ECs in COVID-19 and IPF (Figure 4C). IGF1 may exert pro- 
migratory effects on ECs,53 is believed to decrease permeability and 
may act as a vasodilator,54 all of which might be compensatorily induced 
to repair the vascular defects in COVID-19 and IPF. Furthermore, 
COVID-19-selective signalling of HGF (secreted by stromal cells) 
through the MET receptor on ECs (Figure 4C) may inhibit 
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Figure 4 Predicted endothelial—non-endothelial cell interactions in COVID-19 and IPF lungs. A–C, Heatmaps, visualizing the interaction score for the 
predicted receptor–ligand pairs (P ≤ 0.05) within the (A) vascular compartment itself (EC–EC interactions), (B) between ECs and epithelial cells, or (C ) 
between ECs and stromal cells in control, COVID-19 and IPF lungs. Only interactions enriched or reduced in COVID-19 and/or IPF vs. control lungs 
are plotted. In bold indicated and boxed interactions are enriched in COVID-19 or COVID-19 and IPF lungs compared with controls.
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hypoxia-induced EC apoptosis,55 and is important for EC motility, pro
liferation and angiogenesis.56

In line with our abovementioned observations of reduced EC-specific ex
pression of genes involved in immunity/inflammation in COVID-19, among 
interactions predicted between ECs and immune cells, we observed a se
lective reduction in cross-talk involved in leucocyte adhesion, recruitment 
and trans-endothelial migration (JAM2/JAM3 or ICAM1 on ECs with integrin 
complexes on immune cells) and T-cell activation (CD2–CD58 and CD46– 
JAG1 axes)57,58 (see Supplementary material online, Figure S7A and B). 
Interactions involved in myeloid cell recruitment and/or apoptosis [NRP1 
on myeloid cells, SEMA3A on (aerocyte and lymphatic) ECs]59,60 were spe
cifically enriched in COVID-19 lungs (see Supplementary material online, 
Figure S7A, C). A decrease in signalling involved in pathogen clearance 
(ANXA1–FPR1/FPR3) was also specifically observed in COVID-19 (see 
Supplementary material online, Figure S7A). Furthermore, while increased 
signalling through the GAS6–MERTK/AXL axis (also implicated in clearing 
of pathogens) was selectively observed in IPF lungs, this interaction was 
not detected in COVID-19 (see Supplementary material online, 
Figure S7A), highlighting potential differences between COVID-19 and IPF 
lung pathology from an immunoregulatory standpoint.

In agreement, we observed a few additional notable differences be
tween COVID-19 EC-interactomes and those present in IPF explant 
lungs. For instance, the interaction of EC-secreted bone morphogenetic 
protein 6 (BMP6) (known to exert pro-fibrogenic effects61) with BMP re
ceptors on almost all non-EC cell types, and vascular endothelial growth 
factor beta (described to contribute to hypoxia-induced vascular remod
elling and hypertension in the lung62) secretion by epithelial cells, pre
dicted to signal through FLT1/NRP1 on ECs, were both uniquely 
identified in IPF (Figure 4B and C and Supplementary material online, 
Figure S7A and B). Moreover, increased secretion of IL15 by ECs was pre
dicted to signal through IL15RA on stromal cells specifically in the context 
of COVID-19 (Figure 4C). The expression of IL15 was predominantly pre
sent in systemic ECs (see Supplementary material online, Figure S7C), 
whereas IL15RA was mainly detected in fibroblast subclusters of the stro
mal cell compartment (see Supplementary material online, Table S2), and 
complementary NicheNet analysis (see Supplementary material online, 
Figure S8A), to explore the putative downstream effects of systemic 
EC-mediated IL15 signalling in COVID-19 fibroblasts, revealed that the 
glycolytic genes PKM and PGK1 were among downstream target genes 
regulated by IL15 (see Supplementary material online, Figure S8B). 
Glycolysis is known to be important for ECM production and the fibro
genic phenotype of fibroblasts,63 and indeed, compared with control or 
IPF, several members of the glycolysis pathway were upregulated specif
ically in COVID-19 stromal cells (see Supplementary material online, 
Figure S8C). These findings may suggest that, despite (partial) commonal
ities regarding EC-interactomes involved in impaired barrier integrity in 
lethal COVID-19 and IPF, different drivers of the fibrogenic response 
and vascular remodelling may underlie both conditions.

3.5 Increased abundance of the systemic 
vasculature in lethal COVID-19 and IPF
As mentioned above, we observed a selective expansion of the systemic 
(venous and capillary) vasculature in both COVID-19 and IPF lungs, 
while general capillaries significantly decreased in abundance in both 
conditions (Figure 2C and D). This observed shift on one hand likely re
flects damage of the pulmonary circulation, yet on the other hand may 
suggest a possible compensatory expansion of the systemic circulation 
to secure sufficient blood supply, as seen in IPF and other pulmonary 

diseases.22 Immunostainings for COL15A1 (used as a canonical marker 
for peri-bronchial/systemic venous ECs22,23) and CD105 confirmed the 
bronchial localization of systemic venous/peri-bronchial ECs in healthy 
lungs, opposed to a predominant presence in fibrotic regions in 
COVID-19 lungs (Figure 5A), verifying our snRNA-seq findings, and in 
line with previous observations (see Introduction) in IPF lungs.22

Notably, and unlike previously reported work,22,23 we not only iden
tified a subpopulation of systemic venous ECs in our dataset, but also a 
second population of ECs expressing reported markers of the systemic 
vasculature (ZNF385D, SPRY1, COL15A1, EBF1),22,23 but lacking clear ex
pression of venous marker genes (ACKR1, HDAC9, SELP) (Figure 5B). 
Instead, these ECs more strongly resemble microvascular ECs, based 
on their expression of markers commonly detected in general capillary 
ECs (KDR, RGCC, BTNL9)23,35 (Figure 5B). We hypothesized that the dis
crepancy between our findings and other studies, in which such a micro
vascular systemic EC subtype was not identified as a transcriptomically 
separate cluster, is likely due to the substantially higher number of 
ECs captured in our dataset, allowing us to chart vascular heterogeneity 
to a larger extent. To explore this further, we extracted single systemic 
ECs from external, publicly available datasets of either COVID-1915 or 
IPF lungs,22,64 and used SingleR65 to annotate these cells using our sys
temic EC subclusters as a reference. Indeed, systemic ECs in all three da
tasets could be separated into venous and microvascular subsets 
(Figure 5C). This analysis verified the presence of a transcriptomically dis
tinct subcluster of systemic capillary ECs, thereby adding a thus far over
looked, but additional layer of transcriptional heterogeneity within the 
pulmonary systemic vascular population. Notably, immunostainings con
firmed the presence of both systemic venous ECs (COL15A1 + CD105+ 

in direct proximity of αSMA+ smooth muscle cells) and systemic capillary 
ECs (COL15A1 + CD105+, distant from αSMA+ smooth muscle cells) in 
COVID-19 (and healthy) lungs (Figure S9).

Considering that cellular subtypes, which are congruently altered across 
different conditions, may represent interesting therapeutic targets, the 
common enrichment of the systemic vasculature in both COVID-19 
and IPF lungs may open interesting avenues for further translational inves
tigation. We therefore performed DGEA, comparing pooled COVID-19 
or IPF systemic venous and capillary EC subclusters (jointly referred to as 
‘systemic ECs’) to their control counterparts (using only our in-house gen
erated dataset), to explore robust systemic EC marker genes enriched in 
both conditions. This analysis revealed a set of 107 common genes, of 
which several are involved in ECM production/remodelling and associated 
matrix/receptor signalling (TIMP2, FBN1, FN1, MMP16, COL15A1, ITGB4, 
LAMA3, A2M, JAM2) and cellular migration (INSR, TGFBR2, MET, CDH13) 
(Figure 5D; Supplementary material online, Table S5), suggesting that sys
temic ECs in lethal COVID-19 and IPF may be endowed with increased 
migratory and fibrogenic properties.

To more comprehensively establish a signature of systemic EC mark
er genes congruently enriched in IPF and COVID-19 across different pa
tient cohorts, we again took advantage of the abovementioned publicly 
available COVID-1915 and IPF lung22,64 datasets to assess similarity of 
(systemic) ECs across all studies. First, we calculated the top-50 most 
highly ranking marker genes of all EC subtypes (pooled, see Methods), 
and used pairwise Jaccard similarity coefficients to reveal that the tran
scriptomes of EC subtypes (including systemic ECs) are highly conserved 
across studies (and thus conditions) (Figure 5E). Furthermore, a 
meta-analysis of marker genes specific to systemic ECs in each dataset 
revealed a list of 30 congruent genes, significantly enriched in systemic 
ECs, in all studies in health and disease (Figure 5F and G; 
Supplementary material online, Table S5). Within this signature, obtained 

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvac139#supplementary-data
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Figure 5 Systemic vasculature in COVID-19 and IPF lungs. A, Representative immunofluorescent images of lung sections from COVID-19 and control 
subjects, immunostained for CD105 and COL15A1. Hoechst labels nuclei. High magnification (left) and low magnification overview images (right) are 
shown. Smaller images to the right of larger images are magnifications of the respective boxed areas. Scale bar: 50 μm in high magnification images and 
their zoom-in areas. Scale bar: 250 μm in low magnification overview images and their zoom-in areas. B, Dot plot heatmap of the expression of systemic, 
capillary, and venous EC marker genes. The size and colour intensity of each dot represent, respectively, the percentage of cells within each subcluster 
expressing the marker gene and the average level of expression of the marker in this subcluster. Colour scale: top (red), high expression; bottom 
(blue), low expression. C, SingleR annotation of systemic ECs extracted from the indicated publicly available single-cell/nucleus studies, visualized as cluster 
projections. The top-50 most highly ranking markers of systemic capillary and venous subclusters in our in-house snRNA-seq dataset were used as a ref
erence. D, Gene expression heatmap of individual genes involved in ECM production/remodelling and migration, in the indicated cell types and conditions. 
Genes were selected from Gene Ontology enrichment analysis, as presented in Supplementary material online, Table S5. Colour scale: top (red), high ex
pression; bottom (blue), low expression. E, PCA of pairwise Jaccard similarity coefficients of top-50 marker genes enriched in different EC subclusters 
extracted from indicated single-cell studies. Symbols indicate studies, colours indicate EC subclusters. F, UpSet plot of systemic EC-enriched genes across 
the four different datasets included in the meta-analysis. Black connected dots beneath the graph indicate which studies are intersected. Left (red) bar: 30 
intersecting genes commonly enriched in systemic ECs in all studies [false discovery rate (q-value) <0.05]. G, Gene expression heatmap of genes (n = 30) 
commonly enriched in systemic ECs across studies (see left (red) bar in F), in the indicated EC subtypes identified in our snRNA-seq atlas. Colour scale: top 
(red), high expression; bottom (blue), low expression. EC subtypes were pooled into major artery (EC1–3), capillary (cap; EC4–6), vein (EC7–9) and sys
temic (EC11–12) subgroups. H, Violin plots, visualizing the log-fold change distribution of the 30-gene congruent systemic EC signature obtained in (F ). 
Coloured dots indicate genes congruently enriched in COVID-19 vs. control and/or IPF vs. control lungs across all studies included in the analysis; grey 
dots indicate all other genes in the 30-gene signature.
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from independent patient cohorts, experimental setups (single-cell vs. 
single-nucleus RNA-seq) and conditions (COVID-19 or IPF), EPS8, 
ANKRD28, BACE2 and MCTP1 were also robustly enriched in 
COVID-19 and IPF systemic ECs (compared with their control counter
parts) across studies (Figure 5H). The function of these genes in 
COVID-19 and IPF, or ECs in general, however remains elusive to date.

Together, ECs in lethal COVID-19 are dominantly enriched for a 
population of systemic ECs, with high transcriptional resemblance to 
their counterparts in IPF, suggesting, besides the vast differences in the 
cause and progression of COVID-19 and IPF, a common EC subtype 
may contribute to vascular remodelling observed in both conditions.

4. Discussion
We conducted this pulmonary single-nucleus analysis to identify EC phe
notypes exhibiting transcriptome signature changes that might suggest a 
possible contribution to the vascular problems faced by lethal 
COVID-19 patients. Moreover, we aimed to compare EC transcrip
tomes between COVID-19 and IPF lungs, to pinpoint key similarities 
and differences between two conditions characterized by progressive fi
brotic lung disease. Our study, in which we profiled >35 000 ECs ex
tracted from post-mortem biopsies of COVID-19 and control lungs, 
as well as IPF explant lungs, resulted in multiple novel insights.

First, we observed a gene expression signature suggestive of vascular 
leakage, decreased barrier integrity, and possible dampened immunity in 
the vascular compartment of COVID-19 and (to some extent) IPF lungs 
(Figure 6). Of note, while changes in RNA abundance may not always be 
informative for inference of final protein activity, the functional roles for 
some of our identified barrier-associated genes may be context- 
dependent, the downregulation of only one tight junction protein may 

be compensated by others, and vascular barrier regulation by these junc
tional molecules also relies at levels beyond mRNA transcription, our re
sults are based on the downregulation of a group of genes involved in 
these processes, not a single gene. Alongside the plethora of indications 
of vascular leakage in other studies of COVID-19 lung disease,17,37,66 our 
results are thus in line with the concept of vascular leakage as a key hall
mark of end-stage COVID-19. Moreover, our data highlight prominent 
transcriptome rewiring of barrier-related genes in the aerocyte (import
ant for gas exchange, and part of the blood–air barrier)67 and general 
capillary compartments of the pulmonary vasculature, both of which 
are shown to localize to the alveolar wall of the lung,23 possibly in line 
with the extensive alveolar damage reported in severe COVID-19 
patients.68

Our EC-centred interactome analysis, based on predictions requiring 
further validation, confirmed these observations and further revealed vari
ous routes of EC-microenvironmental cross-talk that could potentially 
drive this dysfunctional state of the vasculature, predominantly driven 
by decreased EC–non-EC signalling involved in general vascular integrity 
and homeostasis (Figure 6), together revealing novel insights into and sug
gesting potential drivers of vascular derailment in fibrotic lung conditions. 
In addition, EC activation is commonly reported as a key characteristic in 
acute COVID-19, yet our results (e.g. decreased expression of ICAM1, 
IRF1) may reflect a potential dampening of EC-mediated immune re
sponses in lethal COVID-19. While in tumour ECs, downregulation of im
munostimulatory genes is considered an immune escape mechanism of 
the tumour, in chronic disease conditions like COVID-19 and IPF, it 
may potentially present a compensatory mechanism to thwart the uncon
trollable inflammation in the tissue. On the other hand, the immune gene 
signature of ECs in lethal COVID-19 (and IPF) seemed to be complex, as 
we also found evidence for reduced levels of CD274 (encoding PD-L1), an 
immune checkpoint inhibitor,69 in both COVID-19 and IPF, while levels of 

Figure 6 Transcriptomic changes in the COVID-19 and IPF vasculature. Schematic representation of vascular transcriptomic rewiring in COVID-19 and 
IPF vs. control lungs. Upper left panel: the vasculature in (lethal) COVID-19 and IPF lungs harbours a gene expression signature suggestive of vascular leak
age, decreased barrier integrity, increased ECM deposition, and possible dampened immunity. Upper right panel: EC-centred interactome analysis revealed 
various routes of EC-microenvironmental cross-talk that could potentially drive the dysfunctional state of the vasculature in COVID-19 and IPF. Lower 
panel: ECs in lethal COVID-19 and IPF are dominantly enriched for systemic venous and capillary ECs, whereas general (pulmonary) capillary ECs are de
creased in abundance. The transcriptomic signature of systemic ECs suggests an involvement in ECM production/deposition, possibly contributing to the 
overall fibrotic environment in lethal COVID-19 and IPF. ECM, extracellular matrix; HSPs, heat shock proteins.
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genes involved in antigen processing and presentation were upregulated 
primarily in COVID-19. Whereas certain hallmarks of EC activation (e.g. 
loss of vascular integrity, upregulation of HLA genes) are thus apparent 
in the transcriptome signature of lethal COVID-19 ECs, other hallmarks 
(upregulation of leucocyte adhesion molecules) are absent, possibly high
lighting important vascular differences between early (acute) and lethal 
disease stages in COVID-19 lungs, warranting further investigation into 
the (translational) relevance of our identified gene signatures.

Second, while single-cell resolution studies of post-mortem lung tissue 
in other types of ARDS are currently lacking, our comparative analyses 
suggest that the transcriptomic changes observed in COVID-19 (ECs) 
can in part also be found in lungs of SARS-CoV-2-infected mice, suggesting 
that, at least to a substantial extent, these changes are independent of po
tential confounding factors inherently present in patient cohorts (e.g. 
underlying health conditions, treatment regimen, post-mortem ischaemia, 
etc.). Moreover, although bulk RNA-seq informs on general transcription
al signatures and thus cannot particularly inform on EC-selective transcrip
tome changes, we observed similar expression patterns of a 
COVID-19-enriched, EC-specific gene expression signature in bulk 
RNA-seq data of COVID-19 and influenza-associated ARDS lung samples. 
However, changes were most pronounced in COVID-19.

Third, whereas the overall abundance of the COVID-19 and IPF pul
monary vascular compartment was unchanged in comparison with con
trol lungs, we observed a significant reduction of general capillaries in 
both conditions. We did not specifically observe an enrichment in (regen
erative) proliferating ECs as reported in the resolution phase of influenza 
infection in mice.70 Differences in species and disease type/severity/staging 
may have caused this discrepancy between the two studies. The systemic 
EC population, within which we identified a thus far overlooked micro
vascular population, was significantly enriched in both COVID-19 and 
IPF lungs, compared with the control setting. In line with reports on in
flammatory lung disease,71 these findings suggest that the systemic EC 
phenotype may possibly be triggered to induce repair of the damaged pul
monary circulation in COVID-19 (Figure 6).

However, the transcriptome signature of systemic ECs presented with 
a notable enrichment for genes involved in ECM remodelling/organization 
and migration in both COVID-19 and IPF. Interactome analysis further
more suggested a selective interaction between IL15, predicted to be se
creted predominantly by systemic ECs, and IL15RA expressed on stromal 
cells. By possibly stimulating glycolysis, our data may suggest that systemic 
ECs, besides their potential intrinsic pro-fibrotic properties, could also act 
as a driver of the fibrogenic response of stromal cells. Altogether, these 
findings may indicate a possible contribution of the systemic vasculature 
to progressive pulmonary fibrosis, raising the question whether targeting 
the systemic vasculature may represent a plausible anti-fibrotic strategy. 
However, considering their likely contribution to tissue repair, an optimal 
targeting strategy could entail specific inhibition of their pro-fibrotic or po
tential pathological properties, instead of a complete impediment of the 
systemic vasculature. In that light, our integrated meta-analysis revealed 
a set of 30 genes robustly expressed by systemic ECs across different 
COVID-19 and IPF studies, patient cohorts and sequencing strategies, 
with 4 genes robustly upregulated in the disease context, and may thus 
represent a good starting point for further study into the functional 
and/or pathological role of these candidates in the systemic vasculature. 
Whether systemic venous and capillary ECs might, despite their partially 
overlapping transcriptomes, exhibit distinct functions during either the fi
brotic response or vascular repair remains to be elucidated. Notably, the 
fibrotic response also involves stromal cell types [in which ECM 
remodelling-related genes/processes were also found upregulated in 

COVID-19 (see Supplementary material online, Figure S5G and H)], which 
have to be considered in this context as well.

We acknowledge that our findings are limited by the patient cohort 
size, COVID-19-associated confounders (e.g. prolonged mechanical ven
tilation, therapeutic regimens) and require further, functional validation. 
Furthermore, while in lethal/end-stage COVID-19 patients the virus is 
considered to no longer actively replicate,72 we did not determine active 
SARS-CoV-2 infection at the time of death in our patient cohort. We also 
cannot exclude the possibility that treatment with corticosteroids might 
have affected (in part) the observed transcriptomic landscape in severe 
COVID-19 tissues, including the decreased expression of immunoregula
tory genes. Nonetheless, the analyzed samples are comparable with pre
vious COVID-19 lung/tissue atlases,14,15 and representative of patients 
who received the standard-of-care treatments given in the respective clin
ical setting. While the therapeutic implications of our findings remain elu
sive, our study has nevertheless contributed to unravelling the 
heterogeneous composition and potential functions of the vasculature 
in COVID-19 and IPF lungs, and provides a rich resource for exploration 
of both vascular and non-vascular cell types in the context of progressive 
pulmonary fibrosis in these two lethal conditions. In addition, since pul
monary fibrosis is often a long-term consequence of severe COVID-19, 
we speculate that the abundant presence of systemic ECs may not only 
pose problems for acute COVID-19 patients, but also for COVID-19 sur
vivors. This is particularly relevant in the context of long COVID, a condi
tion in which the vasculature may play an important role as well.73 Finally, 
given the current scarcity of model systems that accurately reflect severe/ 
lethal COVID-19, our results shed important novel light into the gene ex
pression landscape of the vasculature in this affliction, and may open up 
future opportunities regarding screening, monitoring and therapeutic 
management of (long) COVID patients.
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Translational perspective
While assessing clinical and molecular characteristics of severe and lethal COVID-19 cases, the vasculature’s undeniable role in disease progression 
has been widely acknowledged. COVID-19 lung pathology moreover shares certain clinical features with late-stage idiopathic pulmonary fibrosis 
(IPF)—yet an in-depth interrogation and direct comparison of the endothelium at single-cell level in both conditions is still lacking. By comparing the 
transcriptomes of endothelial cells (ECs) from lungs of deceased COVID-19 patients to those from IPF explant and control lungs, we gathered key 
insights into the heterogeneous composition and potential roles of ECs in both lethal diseases, which may serve as a foundation for development of 
novel therapeutics.
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