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ABSTRACT

Objective: COVID-19 survivors are at risk for long-term health effects, but assessing the sequelae of COVID-19

at large scales is challenging. High-throughput methods to efficiently identify new medical problems arising

after acute medical events using the electronic health record (EHR) could improve surveillance for long-term

consequences of acute medical problems like COVID-19.

Materials and Methods: We augmented an existing high-throughput phenotyping method (PheWAS) to identify

new diagnoses occurring after an acute temporal event in the EHR. We then used the temporal-informed pheno-

types to assess development of new medical problems among COVID-19 survivors enrolled in an EHR cohort of

adults tested for COVID-19 at Vanderbilt University Medical Center.

Results: The study cohort included 186 105 adults tested for COVID-19 from March 5, 2020 to November 1, 2021;

of which 30 088 (16.2%) tested positive. Median follow-up after testing was 412 days (IQR 274–528). Our

temporal-informed phenotyping was able to distinguish phenotype chapters based on chronicity of their con-

stituent diagnoses. PheWAS with temporal-informed phenotypes identified increased risk for 43 diagnoses

among COVID-19 survivors during outpatient follow-up, including multiple new respiratory, cardiovascular,

neurological, and pregnancy-related conditions. Findings were robust to sensitivity analyses, and several phe-

notypic associations were supported by changes in outpatient vital signs or laboratory tests from the pretesting

to postrecovery period.

Conclusion: Temporal-informed PheWAS identified new diagnoses affecting multiple organ systems among

COVID-19 survivors. These findings can inform future efforts to enable longitudinal health surveillance for survi-

vors of COVID-19 and other acute medical conditions using the EHR.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic continues to

evolve, with more than 400 million confirmed cases worldwide over

numerous waves.1 Although most COVID-19 patients ultimately

recover, many survivors report new medical problems arising after

recovery from their acute illness.2–15 With millions potentially at

risk for long-term adverse health effects, methods to efficiently iden-

tify new medical problems occurring in survivors of COVID-19 or

other acute medical events could be valuable for clinicians, research-

ers, and policymakers to improve identification of at-risk patients,
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discover new disease patterns, anticipate long-term consequences of

acute illness on health systems, and plan for future pandemics.

Several database studies of medical conditions arising among

COVID-19 survivors have been reported,5,9,11,15 however, these

studies relied upon proprietary commercial claims or administrative

data,9 unique national databases,5,11 or employed complex feature

engineering and advanced statistical methods,11,15 which potentially

limits replication of research across institutions. Phenome-wide

association study (PheWAS) is a high-throughput informatics frame-

work initially developed to examine the effects of genetic variation

on a wide range of physiological and clinical outcomes using elec-

tronic health records (EHRs).16–20 PheWAS has a well-documented

R package incorporating feature engineering and analysis methods

to facilitate study design and harmonization of research.17,18,21

There also is increasing use of PheWAS to investigate the phenotypic

consequences of nongenetic variables such as race, healthcare costs,

or comorbidity burden.22–29 While these characteristics appear

favorable for enabling reproducible high-throughput studies of

COVID-19 survivorship, the PheWAS feature engineering software

does not account for temporal changes in a patient’s medical condi-

tions over time. To our knowledge prior PheWAS studies have not

evaluated the development of new diagnoses after an acute medical

event in real-world data.

Objective
In this study, we developed a temporal-informed phenotyping

framework within the native PheWAS architecture to identify new

diagnoses in the EHR occurring after an acute temporal event. Using

this approach, we then systematically screened a large regional US

registry to identify new medical conditions arising after recovery

from acute COVID-19, hypothesizing that COVID-19 survivors

have increased risk for new diagnoses ranging across the medical

phenome.

MATERIALS AND METHODS

Patient population and data sources
We used patient data from Vanderbilt University Medical Center’s

(VUMC) longitudinal COVID-19 EHR registry, and included all

adults aged �18 years who had reverse transcription polymerase

chain reaction (RT–PCR) testing for SARS-CoV-2 at VUMC from

March 5, 2020 to November 1, 2021.30,31 We excluded patients

who had an ICD-10-CM code for laboratory-confirmed COVID-19

(U07.1) but never had a positive RT–PCR test at our institution, and

patients who died before recovery from illness (defined below).

Additional details on VUMC’s COVID-19 registry database

along with data cleaning methods are provided in Supplementary

Appendix.

Defining postacute COVID-19 in the EHR
Our temporal point of interest for identifying new medical problems

was recovery from acute COVID-19. Using a generally accepted def-

inition for postacute COVID-19 as 4 weeks after onset of symp-

toms,2,3,11 we defined recovery from acute disease and transition to

the postacute phase as either 30 days after SARS-CoV-2 testing for

nonhospitalized patients or 30 days after discharge for hospitalized

patients (Figure 1). We used date of discharge for hospitalized

patients as many critically ill COVID-19 patients have long hospital

courses lasting weeks or months. We used the same definitions of

the postacute phase for never-infected patients to maintain congru-

ent timing between the infected and uninfected groups.

Data collection
We collected ICD-9-CM and ICD-10-CM diagnosis codes entered

into the EHR and grouped them into unique clinical phenotypes

(phecodes) as commonly defined for PheWAS analyses.18,20,32 We

also collected vital sign values and results of common clinical labo-

ratory tests obtained both prior to SARS-CoV-2 testing and after the

postacute phase. We censored data collection at January 1, 2022 so

that the last patients tested in November 1, 2021 had at least

30 days of follow-up in the postacute period. In keeping with usual

practice for PheWAS, we defined “phenotype cases” as patients

with a corresponding phecode on at least 2 separate days, and

“phenotype controls” as patients with zero codes.18,21 The native

PheWAS feature engineering algorithm was used to automatically

generate diagnosis-specific exclusion criteria for each phecode to

mitigate contamination of the control group with potential cases. As

an example: for an analysis of atrial fibrillation (phecode 427.21),

patients who lack an atrial fibrillation diagnosis code but have

potentially related diagnoses, signs, or symptoms of heart-rhythm

disorders such as atrial flutter (phecode 427.22), palpitations (phe-

code 427.9), or cardiac pacemaker in situ (phecode 427.91) are

excluded from the analysis rather than considered “phenotype con-

trols”.23,32

Temporal-informed phenotype feature engineering
In assessing medical conditions arising after a temporal event, a

naive phenotyping approach would be to use all diagnosis codes

occurring after the event of interest. However, many medical diag-

noses are chronic conditions for which patients receive repeated

care. The naive phenotyping approach may not adequately distin-

guish new diagnoses from ongoing care for chronic diagnoses. To

address this misclassification problem, we developed a temporal-

informed phenotyping approach which separates each patient’s

medical phenome into 2 datasets based on occurrence of the diagno-

sis code relative to the event of interest (in this study, transition to

the postacute phase, Figure 1). We applied the PheWAS feature engi-

neering method to the pre-event and postevent diagnosis code sets

separately, and then recombined them using Boolean logic to gener-

ate the temporal-informed phenotypes. In the final phenotype set,

cases were patients with the phecode in postevent data and absent in

pre-event data, while controls were patients where the phecode was

absent in both sets. Patients who had an exclusion in either dataset

or were a case in the pre-event data were converted to exclusions in

the final temporal-informed phenotype dataset (Supplementary

Table S1 and Appendix).

Statistical analyses and phenome-wide association

testing
To assess the effects of our temporal-informed phenotyping on clas-

sifying PheWAS phenotypes, we compared case and control counts

under the temporal-informed phenotyping approach to case and

control counts under the naive approach. For each phecode, we cal-

culated the case and control retention proportion pretention as:

pretention ¼
gtemporal-informed

gnaive

(1)

Where ntemporal-informed is the phenotype case or control counts

using temporal-informed phenotyping and nnaive is the phenotype
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case or control count under the naive approach. We compared case

retention and control retention among phecode chapters (18 sepa-

rate organ systems or categories based on ICD-9 chapters) using the

nonparametric Mann-Whitney U test. Tests of individual propor-

tions were performed using the chi-squared test.

In our analyses of temporal-informed phenotypes, the exposures

of interest were (1) COVID-19 survivorship among all patients in

the cohort, and (2) survivorship of severe COVID-19 (defined as

admission to the hospital requiring supplemental oxygen) among

SARS-CoV-2 positive patients.33–35 We performed PheWAS using

Figure 1. Graphical timeline of data collection from electronic health record and phenotype encoding schematic. Graphical timeline of index SARS-CoV-2 test,

recovery, and phenotype case and control definitions for (A) patients who were not hospitalized or (B) were hospitalized around time of index SARS-CoV-2 test.

Index date was defined as date of either first positive SARS-CoV-2 polymerase chain reaction (PCR) or first negative test for never-infected patients. Recovery

date was defined as either (A) 30 days after the index SARS-CoV-2 test in nonhospitalized patients or (B) 30 days after hospital discharge in hospitalized patients.

(C) Schematic of temporal-informed phenotype feature engineering. The source EHR database was queried for diagnostic billing codes and the dataset was sepa-

rated based on occurrence of codes before or after the temporal event (recovery date). Phecode feature engineering was applied to both “pre-event” and

“postevent” datasets separately, then recombined to generate the final temporal-informed phenotypes. In this illustration, the patient is a temporal-informed

case for phenotypes 359.2 and 427.21 (denoted as “T”) as they had the corresponding diagnosis codes entered into the medical record on at least 2 separate

dates after the temporal event, and did not have the diagnosis codes on a visit either before SARS-CoV-2 testing or during the acute phase. The patient is

excluded from analyses of phenotypes 401.1, 480.2, 496.1, and 521.8 (denoted as “–”) as they had those phecodes prior to the recovery date. The patient is a con-

trol for all phenotypes where they had zero codes in both the pre- and postevent datasets (eg, 204, 1001, and others; denoted as “F”). If the patient had a diagno-

sis-specific exclusion for a phecode in either dataset, the patient was excluded for that phecode in the temporal-informed phenotypes (Supplementary Table S1

and Appendix).
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logistic regression to model the log-odds of developing each

temporal-informed phenotype in the postacute period given the pres-

ence or absence of the exposure of interest, adjusting for demo-

graphic and comorbidity covariates as:

logit pðYi ¼ 1 j Exposure; CovariatesÞ
¼ b0 þ bEXPOSURE � Exposureþ bCOVAR � Covariates (2)

where i¼f1, . . ., ng phecodes with at least 10 phenotype cases in the

cohort.20,32 For vital signs and clinical laboratory tests, we modeled

the change in value from pretesting to the postacute period as:

ð½Ypost�acute � Ypre�testing�j Exposure; CovariatesÞ
¼ b0 þ bEXPOSURE � Exposureþ bCOVAR � Covariates (3)

where Ypre-testing is the median value from all outpatient measure-

ments obtained within 180 days prior to SARS-CoV-2 testing and

Ypostacute is the median value from all outpatient measurements

within 365 days after entering the postacute phase. Comorbidities

were ascertained using a phecode-based mapping of the Charlson

comorbidities (Supplementary Table S2 and Appendix).36 Secondary

analyses were performed on demographic subgroups (stratified by

sex and race), and timing of the new diagnoses (before or after

60 days following recovery). Sensitivity analyses were also per-

formed to assess effects of our model assumptions for loss to follow

up, length of EHR history, the threshold for “phenotype case”, and

bias from differences in baseline clinical variables. Differences in

phenotype outcomes are reported as adjusted odds ratios (ORs),

95% confidence intervals (CIs) using Wald’s method, and associated

P values. Differences in continuous outcomes are reported as group-

wise adjusted mean difference and 95% CIs. Statistical significance

was set using a Bonferroni correction for number of independent

tests. Additional details on model covariates and sensitivity analyses

are provided in Supplementary Appendix. All analyses were per-

formed using the R package PheWAS.21

Ethics, reporting statements, and role of funders
This study was conducted with approval from the Vanderbilt Uni-

versity Institutional Review Board (study approval numbers:

#200512, #200731) under a waiver of informed consent. Patients

were not directly contacted for the study. All patient data were

abstracted from the EHR registry and maintained in accordance

with institutional and federal privacy laws. The study was reported

according to the Reporting of studies Conducted using Observatio-

nal Routinely-collected health Data (RECORD) and Structured

Template and Reporting Tool for Real World Evidence (STaRT-

RWE).37,38 The funding institutions and agencies had no role in the

design and conduct of the study; collection, management, analysis,

and interpretation of the data; preparation, review, or approval of

the manuscript; nor in the decision to submit the manuscript for

publication.

RESULTS

Study population
We identified 195 860 adults tested for SARS-CoV-2 at VUMC dur-

ing the study period. We excluded 9755 who had missing data on

birth date or sex, reported a history of COVID-19 infection but

never had a positive SARS-CoV-2 RT–PCR test at VUMC, or died

before reaching the postacute phase, leaving 186 105 adults in the

primary cohort (Supplementary Figure S1 and Appendix). Among

these, 30 088 (16.2%) tested positive. Median age at initial test was

46 years (IQR 32–61), 57.1% were female, and 4677 were pregnant

around the time of SARS-CoV-2 testing. We followed patients in the

EHR registry for a median 412 days (IQR 274–528) resulting in

199 407 person-years of observation after testing, with 113 198

(60.8%) having at least 1 follow-up visit in our system after recov-

ery. Additional demographic and clinical characteristics of the study

population are shown in Table 1 and Supplementary Table S3 (Sup-

plementary Appendix).

Temporal-informed phenotyping of postacute period
At the data censoring date and after mapping for diagnosis-specific

exclusions, 1347 phecodes were well-represented in the study popu-

lation with �10 phenotype cases under the naive approach. Most

diagnosis codes entered in the EHR after recovery pertained to con-

ditions that were also present before the postacute phase. After

applying our temporal-informed phenotyping to identify new diag-

noses following recovery, the median case retention per phecode

was 36.1% (IQR: 23.6%–51.5%) and 902 (70.0%) phecodes

remained well-represented in the cohort. Figure 2 illustrates the dis-

tribution of case retention by phecode chapter. Phenotypes in the

musculoskeletal, dermatologic, and symptoms chapters were most

likely to represent new diagnoses in the postacute period, whereas

neoplasms were least likely to represent new diagnoses (Supplemen-

tary Table S4 and Appendix). Control retention under temporal-

informed phenotyping was high (per-phecode median 91.7%; IQR:

87.9%–95.1%; Supplementary Figure S2 and Appendix), although

several respiratory phenotypes (eg, shortness of breath, cough,

abnormal chest sounds) had lower control retention as these pheco-

des were very common around the date of testing for SARS-CoV-2

(Supplementary Figure S3 and Appendix). Patients with �6 months

of care at VUMC prior to testing were more likely to have at least 1

new diagnoses in the EHR under temporal-informed phenotyping

compared to patients with no substantial care history at our institu-

tion (39.1% vs 30.8%, P<1.0�10�15), indicating the temporal-

informed phenotypes were not driven by patients with short EHR

histories.

Temporal-informed PheWAS identifies new postacute

phenotypes in COVID-19 survivors
Temporal-informed PheWAS demonstrated that survivors of

COVID-19 had increased odds for developing 43 distinct pheno-

types during outpatient follow-up (Figure 3, Table 2). Phenotypes

that reached phenome-wide significance encompassed 12 disease

categories, with circulatory (7 phenotypes), pregnancy complica-

tions (7 phenotypes), respiratory (5 phenotypes), and neurological

(4 phenotypes) chapters having the greatest number of associated

phenotypes. In contrast, the naive approach identified 219 pheno-

types reaching Bonferroni-adjusted significance (Supplementary

Table S5, Figure S4, and Appendix). Although the top associations

by temporal-informed phenotyping were also observed in the naive

analysis, discerning the clinical relevance of any association in the

naive analyses was difficult due to the high number of associations

pertaining to phenotypes of acute illness (eg, altered mental status,

hypotension, respiratory failure, sepsis, septicemia, acidosis) or

chronic medical conditions know to be risk factors for COVID-19

(eg, chronic kidney disease, essential hypertension, hyperlipide-

mia).24,25 Only 28 phenotypes identified by temporal-informed phe-

notyping were found among the top 100 diagnoses identified by

naive phenotyping. Additionally, associations with phenotypes for

memory loss and postinflammatory pulmonary fibrosis were only
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seen using temporal-informed analyses. Strength of associations

(based on P value) was higher under the naive approach due to

higher phenotype case counts, but adjusted odds ratios were similar

under both approaches (Supplementary Figure S5 and Appendix).

Figure 4 illustrates subgroup analyses based on demographics

and timing of the postacute diagnoses. New postacute phenotypes

related to gastrointestinal complications of surgery, obesity, abnor-

mal glucose control, pregnancy complications, and anemia were

common to both White, Non-Hispanic and Black, Non-Hispanic

subgroups, while new chronic fatigue syndrome was unique among

Black, Non-Hispanic COVID-19 survivors. Phenotypic associa-

tions were evenly distributed among males and females, although

males had more phenotypes related to new abnormal pulmonary

function while females had more new cardiovascular phenotypes.

Many of the temporal-informed diagnoses were initially made late

(>60 days) into the postacute period, however, 14 phenotypes pre-

sented earlier during the first 60 days after recovery. Subgroup Phe-

WAS results are available in the Supplementary Appendix

(Supplementary Tables S6–S8). Our findings were also robust to

sensitivity analyses. Most phenotypic associations were replicated

when using: (1) patients with �1 follow-up visit in our system after

recovery, (2) patients with an EHR length �6 months prior to test-

ing, (3) using a less stringent phenotype case threshold, and (4) a

propensity-matched cohort which matched 3 never-infected

Table 1. Characteristics of registry cohort

Characteristic Never infected SARS-CoV-2 positive Overall

Number in cohort 156 017 30 088 186 105

Age, median [IQR], years 46 [32, 62] 43 [30, 57] 46 [32, 62]

Sex (%)

Female 89 547 (57.4) 16 718 (55.6) 106 265 (57.1)

Male 66 470 (42.6) 13 370 (44.4) 79 840 (42.9)

Race (%)

Black 17 106 (11.0) 3274 (10.9) 20 380 (11.0)

Other race or multiracial 7901 (5.1) 1714 (5.7) 9615 (5.2)

Unknown/not reported 18 996 (12.2) 5924 (19.7) 24 920 (13.4)

White 112 014 (71.8) 19 176 (63.7) 131 190 (70.5)

Ethnicity (%)

Hispanic/Latino 4759 (3.1) 1217 (4.0) 5976 (3.2)

Non-Hispanic/Non-Latino 128 049 (82.1) 21 936 (72.9) 149 985 (80.6)

Unknown/not reported 23 209 (14.9) 6935 (23.0) 30 144 (16.2)

Received care at VUMC prior to SARS-CoV-2 test (%)a 106 839 (68.5) 20 860 (69.3) 127 699 (68.6)

SARS-CoV-2 testing indication (%)

Asymptomatic screeningb 89 727 (57.5) 6095 (20.3) 95 822 (51.5)

Symptomatic testing 66 290 (42.5) 23 993 (79.7) 90 283 (48.5)

EHR observation time

After SARS-CoV-2 test, median [IQR], days 420 [267, 533] 392 [317, 459] 412 [274, 528]

After recovery, median [IQR], days 378 [215, 495] 361 [285, 427] 374 [224, 489]

Hospitalization associated with SARS-CoV-2 test (%)c 43 146 (27.7) 3393 (11.3) 46 539 (25.0)

Severe COVID-19 (%)d – 2358 (7.8) –

Follow-up visit type (%)e

Any follow-up visit 96 615 (61.9) 16 583 (55.1) 113 198 (60.8)

Office visit 89 559 (57.4) 15 593 (51.8) 105 152 (56.5)

Laboratory/anticoagulation visit 42 646 (27.3) 7216 (24.0) 49 862 (26.8)

Inpatient surgery or procedure 27 213 (17.4) 4091 (13.6) 31 304 (16.8)

Telemedicine visit 16 617 (10.7) 2478 (8.2) 19 095 (10.3)

Outpatient surgery or procedure 19 725 (12.6) 2728 (9.1) 22 453 (12.1)

Allied health practitioner visitf 14 821 (9.5) 2580 (8.6) 17 401 (9.4)

Infusion/radiation care 4043 (2.6) 542 (1.8) 4585 (2.5)

Maternity care 3899 (2.5) 482 (1.6) 4381 (2.4)

Outpatient observation in Emergency Department 2403 (1.5) 422 (1.4) 2825 (1.5)

Inpatient medical admission 1197 (0.8) 1239 (4.1) 2436 (1.3)

Time from SARS-CoV-2 test to first follow-up visit, median [IQR], days 66 [44, 139] 86 [48, 181] 69 [44, 145]

Pregnant during study observation period (%) 7565 (4.8) 609 (2.0) 8174 (4.4)

Pregnant around time of SARS-CoV-2 test (%) 4488 (2.9) 189 (0.6) 4677 (2.5)

Died during postacute phase (%) 1535 (1.0) 158 (0.5) 1693 (0.9)

aDefined as having at least 2 visits at VUMC prior to SARS-CoV-2 test separated by at least 180 days.
bReasons for asymptomatic screening included: asymptomatic admission to the hospital for another diagnosis, preprocedural or presurgical screening, known

SARS-CoV-2 exposure, prereceipt of immunosupressive or antineoplastic therapy, pretransplant evaluation, or requirement for placement in postacute care or

long-term nursing care.
cSARS-CoV-2 test performed within 15 days prior to a hospital admission or during a hospital admission.
dSevere COVID-19: admitted to hospital and received supplemental oxygen.
eSome patients had more than 1 visit type.
fAllied health practitioner visits included visits coded as being nurse-only visits, dietitian or nutritionist visits, and clinical support or educational visits.
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Figure 2. Phecode case retention by temporal-informed phenotyping. Histograms of phenotype case retention per PheWAS code (phecode) using temporal-

informed phenotyping. Individual histograms indicate each chapter within the phecode hierarchy.32 Number of phecodes per chapter are shown on x axis, case

retention per phecode is shown on y axis. Labels indicate number of phenotypes with �10 cases and median [interquartile range] of the per-phecode case reten-

tion in each chapter.

Figure 3. Temporal-informed phenome scan of postacute COVID-19. PheWAS plot of new postacute phenotypes identified by temporal-informed phenotyping for

COVID-19 survivors vs never-infected patients as the referent group (n¼186 105, phenotypes available for testing¼902). The x axis represents phecodes grouped

by chapter within the phecode hierarchy.32 The y axis represents the negative log-transformed P values obtained using logistic regression after adjusting for age,

sex, race, ethnicity, length of EHR observation after recovery, indication for testing, and medical comorbidities prior to testing. Upward triangles represent pheno-

types with odds ratio >1.0 for COVID-19 survivors and downward triangles represent phenotypes with odds ratio <1.0. Horizontal red line indicates the phe-

nome-wide significance P value significance using a Bonferroni correction (P¼5.54�10�5).
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controls to each COVID-19 survivor (Supplementary Tables S9–

S12, Figure S6, and Appendix).

Postacute clinical phenotypes associated with severe

COVID-19
Among the 30 088 COVID-19 survivors, those with severe disease

(n¼2358, 7.8%) had substantially higher odds of developing multi-

ple respiratory and cardiovascular phenotypes with the top pheno-

typic associations being new respiratory failure, hypertension, and

abnormalities on lung examination. Additional postacute pheno-

types associated with severe SARS-CoV-2 survivors are shown in

Table 3.

Validation of select temporal-informed phenotypic

associations in the EHR
As several phenotypes identified in our temporal-informed analyses

are ostensibly chronic conditions, we selected a subset of the

temporal-informed phenotypic associations that had structured

EHR data readily available via an associated vital sign or laboratory

test (eg, body mass index [BMI] for obesity, blood pressure for

hypertension, hemoglobin level for anemia). We then assessed if

SARS-CoV-2 infection was also associated with changes in the vital

sign or lab value from pretesting to postacute periods among

patients with normal values prior to SARS-CoV-2 testing. As an

example, among the 37 838 patients who were not obese (BMI<30)

and had both pretesting and postacute BMI recorded in the EHR,

Table 2. Summary of temporal-informed PheWAS in postacute COVID-19

Phecodea Description Odds ratio 95% CI P value No. cases No. controls

512.9 Other dyspnea 3.04 (2.52–3.68) 5.54� 10�31 811 93 936

512.7 Shortness of breath 2.49 (2.09–2.96) 2.73� 10�24 988 93 936

569.2 Gastrointestinal complications of surgery 6.54 (4.38–9.75) 3.32� 10�20 116 166 825

278.11 Morbid obesity 2.35 (1.93–2.86) 1.49� 10�17 624 154 861

649 Conditions of the mother complicating pregnancy,

childbirth, or the puerperium

3.85 (2.76–5.38) 2.66� 10�15 169 95 518

509.1 Respiratory failure 7.09 (4.35–11.6) 3.89� 10�15 101 157 792

136 Other infectious and parasitic diseases 9.20 (5.14–16.5) 8.43� 10�14 54 181 966

359.2 Myopathy 20.5 (9.24–45.4) 9.99� 10�14 33 174 863

427.9 Palpitations 2.14 (1.75–2.61) 1.40� 10�13 628 137 086

418.1 Precordial pain 3.21 (2.35–4.39) 2.71� 10�13 278 138 537

418 Nonspecific chest pain 2.01 (1.66–2.43) 1.19� 10�12 746 138 537

646 Other complications of pregnancy NEC 5.91 (3.55–9.83) 7.89� 10�12 69 99 542

585.1 Acute renal failure 3.15 (2.26–4.38) 9.49� 10�12 309 157 475

427.21 Atrial fibrillation 2.62 (1.98–3.48) 2.56� 10�11 443 137 086

1010 Other tests 3.17 (2.19–4.60) 1.21� 10�9 155 169 347

644 Anemia during pregnancy 7.43 (3.74–14.7) 9.91� 10�9 38 101 761

1010.6 Reproductive and maternal health services 1.75 (1.44–2.12) 9.99� 10�9 591 172 787

638 Other high-risk pregnancy 2.19 (1.67–2.86) 1.34� 10�8 312 178 757

350.1 Abnormal involuntary movements 2.53 (1.83–3.48) 1.46� 10�8 256 170 487

671 Venous/cerebrovascular complications &

embolism in pregnancy and the puerperium

21.5 (7.25–63.7) 3.10� 10�8 17 103 586

649.1 Diabetes or abnormal glucose tolerance

complicating pregnancy

4.73 (2.68–8.34) 7.77� 10�8 57 95 518

782.3 Edema 2.08 (1.59–2.73) 8.34� 10�8 424 168 184

452.2 Deep vein thrombosis [DVT] 3.23 (2.09–4.99) 1.26� 10�7 138 162 711

285 Other anemias 2.05 (1.56–2.68) 1.85� 10�7 473 146 505

781 Symptoms involving nervous and musculoskeletal systems 3.07 (2.01–4.68) 1.88� 10�7 151 180 070

1013 Asphyxia and hypoxemia 5.51 (2.89–10.5) 2.07� 10�7 52 175 439

292 Neurological deficits 2.39 (1.72–3.32) 2.31� 10�7 242 162 234

599.2 Retention of urine 2.93 (1.95–4.41) 2.45� 10�7 184 149 134

514 Abnormal findings examination of lungs 2.29 (1.64–3.20) 9.86� 10�7 350 163 569

587 Kidney replaced by transplant 32.4 (7.99–131.) 1.12� 10�6 22 157 475

401.1 Essential hypertension 1.42 (1.23–1.64) 2.17� 10�6 1698 122 907

278.1 Obesity 1.70 (1.36–2.12) 2.33� 10�6 566 154 861

327.32 Obstructive sleep apnea 1.69 (1.36–2.11) 2.51� 10�6 669 150 608

420.1 Myocarditis 10.0 (3.83–26.2) 2.67� 10�6 20 177 003

250.2 Type 2 diabetes 1.77 (1.38–2.25) 4.75� 10�6 572 148 033

348.8 Encephalopathy, not elsewhere classified 6.23 (2.76–14.1) 1.10� 10�5 32 160 519

653 Problems associated with amniotic cavity and membranes 8.04 (3.15–20.5) 1.32� 10�5 19 97 532

502 Postinflammatory pulmonary fibrosis 5.47 (2.49–12.0) 2.26� 10�5 40 157 792

284.1 Pancytopenia 3.25 (1.87–5.66) 2.96� 10�5 94 146 505

38.3 Bacteremia 8.03 (2.95–21.9) 4.54� 10�5 19 166 009

292.3 Memory loss 1.99 (1.43–2.77) 5.09� 10�5 287 162 234

285.21 Anemia in chronic kidney disease 3.10 (1.79–5.36) 5.22� 10�5 104 146 505

54 Herpes simplex 3.66 (1.95–6.85) 5.22� 10�5 54 149 827

aA list of ICD-10-CM codes included in each phecode is available at: https://phewascatalog.org/phecodes_icd10cm.32
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BMI increased by 0.21 (61.4) kg/m2 in COVID-19 survivors com-

pared to 0.01 (61.6) kg/m2 in never infected patients (adjusted

mean difference: 0.16; 95% CI: 0.12–0.21; P¼2.00�10�13).

COVID-19 survivors also tended to have more substantial changes

in heart rate and white blood cell (WBC) count, compared to never

infected patients (Table 4, Figure 5). Small changes were also noted

in systolic blood pressure, respiratory rate, and estimated glomerular

filtration rate although difference for these values were smaller than

the minimum unit of measure for these variables. Although these dif-

ferences between groups were small (�1%–2% of typical baseline

values) the vital sign changes aligned with the direction of the associ-

ated clinical phenotype. We did not observe substantial differences

between groups in labs for hemoglobin, platelets, serum potassium,

hemoglobin A1C, or serum glucose (Supplementary Figure S7).

DISCUSSION

Principal findings
Temporal-informed phenotyping identified a range of new diagnoses

among COVID-19 survivors affecting multiple organ systems. Com-

pared with the naive approach of using all diagnosis codes occurring

after the event, temporal-informed phenotyping was less influenced

by phenotypes related to acute illness or previous medical history.

While the underlying mechanisms of these postacute manifestations

of COVID-19 remain uncertain, they may reflect late effects of

inflammation or vascular injury and the sequelae of severe illness

among hospitalized survivors.2,3 Several postacute phenotype associ-

ations were also supported by changes in vital signs values from pre-

testing to the postacute period. Although the observed differences in

Figure 4. Temporal-informed phenome scans of postacute COVID-19 by demographic subgroups and timing of postacute diagnoses. PheWAS results for new

postacute phenotypes identified by temporal-informed phenotyping among all adults tested for SARS-CoV-2 (left column, n¼186 105), stratified by demographic

subgroups (male sex, female sex, White non-Hispanic, Black non-Hispanic), and stratified by onset of the new diagnoses (“Early” diagnoses: within 60 days after

recovery; “Late diagnoses”: later than 60 days after recovery). The y axis represents phecodes group by chapter within the phecode hierarchy.32 Cell color inten-

sity illustrates adjusted P values by logistic regression. Text in cells show point estimates for effect odds ratios. Text in bold/italic and with a “*” indicate PheWAS

associations that were statistically significant using a Bonferroni correction. Results for phecodes with a statistically significant association in any subgroup anal-

ysis are displayed. Empty cells indicate analyses with insufficient phenotype cases (<10) to perform the analysis for that phenotype in the subgroup.
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vital signs attributable to COVID-19 survivorship were typically

small, they still may have substantial long-term implications on a

population-level scale. A meta-analysis of 46 prospective cohort

studies found an increase in resting heart rate by 10 bpm was associ-

ated with a 9% increase in all-cause mortality and 8% increase in

cardiovascular mortality.39 Thus, given the unprecedented scale of

the COVID-19 pandemic, even the modest changes in these parame-

ters observed in our study may portend profound long-term implica-

tions on public health.

Comparison with other studies
Our findings align with other reports on long-term consequences of

COVID-19.2,4–14 Ayoubkhani et al5 found increased rates of death,

hospital readmission, diabetes, cardiovascular events, and chronic

kidney and liver disease among COVID-19 survivors using hospital

administrative data from the United Kingdom. Daugherty et al9

observed increased risk of multiple new cardiovascular, respiratory,

hematologic, and neurologic diagnoses among COVID-19 survivors

using insurance administrative claims data from the United States.

Al-Aly et al11 reported excess burden of respiratory, nervous system,

metabolic, mental health, cardiovascular, and gastrointestinal disor-

ders among COVID-19 survivors receiving care through the US Vet-

erans Health Administration. Similar to our findings of increased

myopathy, neurological deficits, encephalopathy, and memory loss,

Taquet et al12 found that COVID-19 survivors had elevated risk for

developing multiple neurologic and psychiatric disorders in a multi-

national EHR dataset. Estiri et al15 evaluated the temporal evolution

postacute COVID-19 phenotypes among patients in a single US aca-

demic center using a sequence-based framework MLHO, also

observing substantially increased rates of cardiovascular, respira-

tory, endocrine, and neurologic phenotypes among COVID-19 sur-

vivors.

Strengths
Our temporal-informed phenotyping framework naturally augments

classical PheWAS, allowing us to identify potential postacute

sequelae of COVID-19 and replicate several associations identified

in other studies. The distribution of case retention under

Table 4. Changes in outpatient vital signs or laboratory studies for select temporal-informed phenotypes

Change in lab or vital sign from pretesting to postacutea

Postacute phenotype(s) Vital sign/lab (units) Subgroupb Never

infected

mean (SD)c

SARS-CoV-2

positive

mean (SD)c

Adjusted

mean difference

(95% CI)d

P valuee

Obesity morbid obesity BMI (kg/m2) Nonobese (n¼ 37 838) 0.01 (1.6) 0.21 (1.4) 0.16 (0.12–0.21) 2.00� 10�13

Essential hypertension Systolic blood pressure

(mmHg)

Normal blood pressure or

prehypertension (n¼ 28 912)

�0.2 (13.0) 0.4 (12.0) 0.5 (0.1–1.0) 0.015

Palpitations atrial

fibrillation

Heart rate (bpm) Normal heart rate, no arrhythmia

diagnoses (n¼ 31 364)

0.1 (12) 1.1 (12) 1.0 (0.6–1.3) 3.81� 10�7

Respiratory failure Respiratory rate (min�1) Normal respiratory rate, no lung

disorders (n¼ 19 764)

�0.1 (2.2) 0.1 (2.3) 0.2 (0.1–0.3) 3.89� 10�5

Pancytopenia White blood cell (103/mL) Normal WBC, no hematologic

disorders (n¼ 12 346)

0.0 (1.9) 0.2 (1.9) 0.2 (0.1–0.3) 5.72� 10�6

Acute renal failure Estimated GFR (mL/min) No renal failure or kidney

transplant (n¼ 14 305)

0 (13) 1 (12) 1 (0–1) 0.008

aAmong patients with the vital sign or lab value recorded both within 180 days prior to SARS-CoV-2 testing and within 365 days following recovery.
bPrior to SARS-CoV-2 testing.
cCalculated for each patient as Ypostacute�Ypretesting, where Y is the vital sign value or laboratory value. Negative values indicate a decrease in the vital sign/lab

value from the pretesting to the postacute phases, and positive values indicate an increase in the vital sign/lab value.
dMean difference and 95% CI between groups adjusted for age, sex, race, ethnicity, and time between pre-SARS-CoV-2 test value and postacute value.
eAdjusted P values using linear regression.

Table 3. Summary temporal-informed PheWAS for severe COVID-19 survivors

Phecodea Description Odds ratio 95% CI P value No. cases No. controls

509.1 Respiratory failure 225 (62.7–808) 1.02� 10�15 31 25 204

401.1 Essential hypertension 3.71 (2.55–5.39) 6.72� 10�12 243 21 801

514 Abnormal findings examination of lungs 10.7 (4.93–23.4) 2.30� 10�9 42 25 588

504 Other interstitial lung disease 142 (24.7–818) 1.55� 10�6 10 25 204

507 Pleurisy or pleural effusion 28.5 (7.92–103) 1.76� 10�6 14 25 204

427.21 Atrial fibrillation 4.26 (2.38–7.63) 6.11� 10�6 68 23 263

798 Malaise and fatigue 2.91 (1.87–4.52) 1.95� 10�6 162 19 803

276.13 Hyperpotassemia 12.0 (4.15–34.7) 4.45� 10�6 24 24 600

502 Postinflammatory pulmonary fibrosis 47.5 (8.11–278) 1.86� 10�5 10 25 204

250.22 Type 2 diabetes with renal manifestations 45.7 (7.79–268) 2.30� 10�5 32 24 221

1013 Asphyxia and hypoxia 11.8 (3.45–40.5) 8.59� 10�5 15 26 963

aA list of ICD-10-CM codes included in each phecode is available at: https://phewascatalog.org/phecodes_icd10cm.28
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temporal-informed phenotyping for various phecodes aligned with

our clinical experience. Phecode chapters with more short-lived condi-

tions like symptoms, musculoskeletal, and dermatologic diagnoses

had the highest case retention, while chapters with mostly chronic

diagnoses such as neoplasms and congenital abnormalities had the

lowest case retention. Although other phenotyping approaches incor-

porating temporal information have been reported, many rely upon

complex machine learning methods that require specialized computa-

tional expertise, and/or focus on predicting a specific disease processes

or future outcome.15,22,40–43 In contrast, our method uses PheWAS in

a hypothesis-free approach to broadly scan the entire medical phe-

nome for new diagnoses occurring at any time after a discrete medical

event. The PheWAS framework has several advantages over other

high-throughput phenotyping approaches. It reduces the phenome fea-

ture space size from �68000 ICD-10-CM codes to �1800 clinically

relevant phecodes, improving computational efficiency. The pheno-

type feature engineering method in the PheWAS software package

automatically incorporates diagnosis-specific exclusion criteria to

limit contamination of controls with potential cases, providing addi-

tional specificity compared to other phenotyping methodologies.19–21

PheWAS analyses are also more accessible to researchers than more

complex machine learning methods.44 Thus, our temporal-informed

phenotyping could be easily adapted to examine the postacute pheno-

type consequences among survivors other acute medical event such as

pneumonia or sepsis.45,46

VUMC is a major provider of primary through quaternary care

in the American Mid-South and encompasses a broad patient popu-

lation seeking SARS-CoV-2 testing. Follow-up rates were relatively

high with 113 198 (60.8%) patients having at least 1 follow-up visit

in the postacute phase. This study leveraged our longstanding insti-

tutional experience with using the EHR for secondary research,19,30

allowing us to capture deep phenotyping information, such as

SARS-CoV-2 testing indication and setting of postacute diagnoses,

which may not be well-represented in administrative datasets or

cross-institutional research databases.11,47 We were also able to

compare temporal-informed phenotypes between survivors of severe

COVID-19 vs survivors of nonsevere COVID-19, and we correlated

several temporal-informed phenotypic associations with changes in

vital signs or laboratory values from the pretesting to postacute

periods.

Limitations
As with all observational studies, residual confounding is possible as

not all relevant risk factors for COVID-19 are well-represented in

the EHR (eg, social interactions, household members, or travel his-

tory), but we included a broad set of clinical and EHR covariates in

our PheWAS models that are available in many EHRs. We used in-

house SARS-CoV-2 test results to identify COVID-19 cases which

may have a higher sensitivity than diagnostic billing codes,31,48 but

not all regional clinics/hospitals share our EHR and some of our

“never infected” patients may have tested positive elsewhere. To

mitigate risk of misclassifying COVID-19 status we excluded all

patients who reported a clinical diagnosis of COVID-19 but did not

have a corresponding positive PCR test in our EHR. Additionally,

patients in our study may have received postacute care at outside

facilities; those diagnoses that may not have been available in our

Figure 5. Changes in select vital signs and laboratory test values in postacute COVID-19. COVID-19 survivors had more substantial changes in (A) body mass

index, (B) heart rate, (C) respiratory rate, and (D) white blood cell count from pretesting to postrecovery compared with never-infected controls. For each patient

we used the median pretesting values obtained during outpatient visits occurring within 180 days before the index SARS-CoV-2 test, and the median postrecov-

ery values obtained during outpatient visits occurring within 365 days after recovery from illness. Dots represent mean values in each exposure group, bars rep-

resent standard errors of the mean. Labels represent the adjusted mean difference between COVID-19 survivors and never-infected controls, number of patients

with data for each analysis, and P values obtained by multiple linear regression.
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EHR. Given the highly fragmented nature of the US healthcare sys-

tem, this data fragmentation risk is inherent to any US study using

real-world EHR data. Our institution mostly draws patients from

the American Mid-South, thus, our findings may not be generaliz-

able to other patient populations, but we anticipate extending this

methodology to larger multicenter networks in future work.

Although ICD-coded diagnoses are commonly used in EHR cohort

studies, they may not fully describe the spectrum of symptoms

reported by COVID-19 survivors, and additional analyses examin-

ing symptoms and clinical findings extracted from narrative text

could reveal additional disease patterns in this population.43 This

study also did not examine differences among survivors of various

SARS-CoV-2 variants as variant typing is not routinely performed at

our institution. The B.1.1.7-Alpha variant was the dominant strain

in Tennessee until early July 2021, with the B.1.617.2-Delta variant

remaining dominant through the remainder of the observation

period.49 Additional analyses will be necessary in the future to assess

how novel SARS-CoV-2 variants including BA.1-Omicron may

influence long-term outcomes among COVID-19 survivors in our

region. Finally, our study design can only detect clinical associations

between COVID-19 and development of new medical phenotypes;

further studies are required to understand the mechanisms underly-

ing these disease associations.

CONCLUSION

Temporal-informed phenotyping naturally augments the traditional

PheWAS framework. Using temporal-informed PheWAS, we found

that COVID-19 survivors in our institutional EHR registry had

increased risk for a broad range of new medical problems after

recovery from acute illness. PheWAS with temporal-informed phe-

notyping represents a promising approach to study the phenotypic

consequences of acute medical conditions like COVID-19 over time,

enabling rapid assessment of the entire medical phenome at

population-level scales. These findings can assist clinicians in identi-

fying medical problems arising among survivors of acute medical

events, allow researchers to efficiently coordinate studies of morbid-

ity trends, and help policymakers plan for the ongoing health conse-

quences of future pandemics.
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