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Integrated cohort of esophageal squamous
cell cancer reveals genomic features
underlying clinical characteristics

Minghao Li1,5, Zicheng Zhang2,3,5, Qianrong Wang4, Yan Yi3 & Baosheng Li 1,3

Esophageal squamous cell cancer (ESCC) is the major pathologic type of
esophageal cancer in Asian population. To systematically evaluate the muta-
tional features underlying clinical characteristics, we establish the integrated
dataset of ESCC-META that consists of 1930 ESCC genomes from 33 datasets.
The data process pipelines lead to well homogeneity of this integrated cohort
for further analysis. We identified 11 mutational signatures in ESCC, some of
which are related to clinical features, and firstly detect the significant mutated
hotspots in TGFBR2 and IRF2BPL. We screen the survival related mutational
features and found some genes had different prognostic impacts between
early and late stage, such as PIK3CA and NFE2L2. Based on the results, an
applicable approach of mutational score is proposed and validated to predict
prognosis in ESCC. As an open-sourced, quality-controlled and updating
mutational landscape, the ESCC-METAdataset could facilitate further genomic
and translational study in this field.

Esophageal squamous cell cancer (ESCC) arises from the epithelial
cells of the esophagus and presented typical features of squamous cell
carcinoma, which is themajor pathologic type of esophageal cancer in
Asian population1. Since 2012, there had been dozens of investigations
published using the whole-genome sequence (WGS) or whole-exome
sequence (WES) strategy to explore the genetics of ESCC. These stu-
dies depicted the general mutational landscape of ESCC, including the
significantlymutated genes such as TP53,CDKN2A, EP300, PIK3CA, and
NOTCH1, the commonly influenced pathways such as PI3K-AKT axis,
cell cycle, and histonemodification, and the commonly identified age-
related and APOBEC enzymes-related mutational signatures2–20.

However, in the analysis of clinical variables-related genomic
features, which is essential for translational research, many previously
reported results were contradictory. The high genomic heterogeneity
of ESCC and the sample size in a single dataset limited the statistical
power in detailed comparisons. The integration of multi-source
genomic and clinical data that could provide a more detailed muta-
tional atlas, especially for events with low frequency, might be a

solution to the problem, whereas the data-source-associated con-
founding factors must be well identified and controlled.

Here, we show a quality-controlled integrated ESCC genomic
dataset of ESCC-META cohort, and based on it, we systematically
evaluate the genomic features underlying clinical characteristics.

Results
Overview of ESCC-META cohort
To build the integrated tumor-type-specific genomic cohort, we
established a set of pipelines for data selection and process (see
Methods for details).Currently,wehad integrated 1930ESCCgenomes
from 33 datasets, including our own sequence cohort of ECRT (n = 42,
Fig. 1a). Among them, 413 patients from 15 datasets (including our own
sequence data) were reanalyzed from raw reads data, and the rest
somatic mutational records (1517 patients from 18 datasets) were
prepared from the published mutational list (Supplementary Data 1,2
and Supplementary Table 1).With enormous efforts in data processing
and verification, we minimized the potential influence of the
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heterogeneities in data sources, sequence strategy, and analysis
methods among datasets (see Methods for details).

In the tSNE dimensionality reduction analysis, the distributions of
clusters were mainly shaped by frequently mutated genes, while no
obvious batch effects among datasets could be observed (Fig. 1b). The
most frequently mutated genes would not necessarily suggest their
important contributions in ESCC tumorigenesis, because many of
themmight owe to their great coding lengths, such as TTN andMUC16
(Supplementary Fig. 1b). However, their mutational among cohorts

could be used to assess the homogeneity among datasets. We exam-
ined themutational frequencies of themost frequently mutated genes
in ESCC, including TP53 (78%), TTN (35%),MUC16 (16%),NOTCH1 (16%),
CSMD3 (15%), KMT2D (11%), FAT1 (10%), and LRP1B (10%). These genes
were generally ranked among the topmutated genes in single datasets,
and their cumulative mutational frequencies in the overall dataset
were very close to the pooled mutational frequencies calculated by
inverse variance weighted estimation (Fig. 1c, seeMethods for details),
which suggested well homogeneity in commonly mutated genes. We
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Fig. 1 | Overview of the ESCC-MATA cohort. a All of the included studies and the
number of the nonsilent mutations in the ESCC-META cohort. The datasets were
ranked by their sample size from left to right. The red horizontal line indicated the
median number in overall genomes. b The scatter plot of all genomes by t-SNE
analysis. The dots were colored by datasets (left) or mutational status of TTN and
TP53 (right). The t-SNE analysis was performed by the mutation matrix of all inte-
grated genomes of the top 1000 genes. c forest plot of the mutational frequency
formost common genes in ESCC among all included datasets. The total number of
patients in each dataset was labeled in the leftmost panel (blue region). The gene-
specific mutated numbers and frequencies in each dataset were presented in the
left panel of the gene-specific region. The corresponding forest plots were in the
right part. The error band for each line in the forest plot represents the 95% con-
fidence interval of mutational frequency. d Comparison of the mutational load

between different tumor stages. All the patients with available stage information
were involved in this comparison. The Krustal–Wallis test was used to estimate the
significance among the four groups, and theWilcoxon test wasused to estimate the
difference in two groups comparison. In the boxplot, the lower extreme line, lower
end of box, inner line of box, upper end of box and upper extreme line represent
the value of (Q1 − 1.5×IQR), Q1, Q2, Q3 and (Q3 + 1.5×IQR), respectively. Q1—25th
quartile; Q2—50th quartile or themedian value; Q3—75th quartile. The interquartile
range (IQR) is distance between Q1 and Q3 (Q3 −Q1). e Survival comparison
between different mutational loads in both early-stage (stage I or II) and late-stage
(stage III or IV) patients. All the patients with available stage information were
involved in this comparison. The log-rank method was used to estimate the sig-
nificance. Source data are provided as a Source Data file.
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further detected potential explanatory variables to a load of non-
synonymousmutations bymultivariate regression analysis. The results
indicated that, apart from one dataset that might be influenced by
stochastic sampling error in a small sample size (PMID30012096,
n = 9), the sources of genomes did not significantly influence muta-
tional load (Supplementary Fig. 1a). The median number of non-
synonymous mutations in the ESCC-META was 81 (52 of 25th
percentiles and 117 of 75th percentiles). Both the multivariate regres-
sion analysis and the comparative test indicated stage I patients had
significantly lower mutational loads than higher stage (Supplementary
Fig. 1a and Fig. 1b). However, in either early or late stage, patients with
varied mutational loads did not suggest different prognosis (Fig. 1e).

The WGS and WES sequence types did not significantly influence
the detected mutational load, but the heterogeneity among capture
platforms of included WES studies deserved further evaluation. The
WES sequence platforms were designed to capture total coding
regions but would significantly change with the updated genomic
annotations21,22, which might bring bias in mutations located in varied
capture ranges. We used 642 WGS sequenced genomes as the test set
to estimate the percentage of uncaptured nonsilent mutations in dif-
ferent capture platforms. Nomore than 1% of nonsynonymous SNVs in
the test set would be dropped in varied WES capture platforms, sug-
gesting few biases brought by the heterogeneous capture platforms.
Most of the influenced nonsilent SNVs were rare mutations or muta-
tions annotated in splicing sites, while the total coding regions of
several genes with potential research values were not fully covered in
some platforms, including MUC4, OR2L8, and AP3S1. We listed these
genes (Supplementary Fig. 2b and Supplementary Data 3) and
reminded readers that their mutational frequencies might be
underestimated.

Due to the heterogeneity in the sequence methods of our inclu-
ded studies, we did not provide the estimation of tumor mutational
burden (TMB), whichwas greatly influenced by total capture length (as
the denominator in its calculation) and would be misleading in direct
comparisons between different platforms23.

Based on the above analyses, we thought this integrated genomic
cohort could be jointly used for further analyses. This integrated
dataset was named as ESCC-META cohort, which was aimed to provide
a systematic, open-source, and updating genomic resource for
researchers in this field.

Integrated mutational signature analysis
Although some previous ESCC mutational signature analyses were
based on WES data, the WGS could provide much more mutational
records to estimate mutagenesis. We, therefore, used mutational
results from WGS (n = 1084) as a discovery set to perform de novo
mutational signature analysis, which included 532 genomes in ESCC-
META dataset (from PMID32398863, SRP034680_WGS, and
SRP072858_WGS) and a newly published SBS96 matrix of 552 ESCC
patients24(Supplementary Data 4). The median number of total base
substitutions was 10,658 in the discovery set without data-source-
related divergence (Fig. 2a), and the t-SNE analysis of the matrix of the
96mutational types also indicated no obvious batch effect among the
four studies (Fig. 2b). Notably, the batch effects were obvious in terms
of extracted 83 features of small insertions and deletions (ID83, Sup-
plementary Fig. 3a, b). We do not have effective approaches to sup-
press these batch effects and thus exclude them from the current
analysis.

We applied non-negative matrix factorization algorithm (NMF)
to identify prominent mutational signatures in the discovery set. The
optimal number of separations (K = 11) was selected both considering
cophenetic correlations and residual sum of squares (Fig. 2c, see
Methods)25, and the 11 extracted signatures were named from sig1 to
sig11 (Supplementary Data 5). We then deconvolved the contribu-
tions of the 11 signatures in both the WGS cohort (Fig. 2d) and total

ESCC-META patients (Fig. 2f). We could see that the top 5 signatures
(sig1, sig2, sig4, sig6, and sig8) dominated 91.8% of all patients
(Fig. 2e). In the WGS cohort, the contributions were significantly
related to the source of ESCC genomes in sig5 and sig6, but not in
sig1 or sig2(Fig. 2d). The sig5 were similar to SBS17b (cosine simi-
larity = 0.92, Fig. 2e, Supplementary Data 6) and the sig6 was mat-
ched to SBS18 (similarity = 0.98), both of whom were related to
damage by reactive oxygen species.

This sig1 featured by evaluated T >C mutations (Fig. 2f) and was
similar to SBS16 (similarity = 0.88) or SBS5 (similarity = 0.82), whose
aetiologies were unclear. Given that the contributions of sig1 were
significantly higher in patients with a smoking or drinking history
(Fig. 2i), we speculated this type of mutagenesis might be related to
alcohol or tobacco exposure. The sig1-dominated patients (cluster1)
presented a significantly worse prognosis compared with other sig-
natures in single variable comparison (Fig. 2j) or multivariable-
adjusted Cox regression (hazard ratio = 1.37, p-value = 0.016, Supple-
mentary Fig. 3e).

The sig2 was a major mutational contributor in 44.7% ESCC gen-
omes and well matched to SBS1 (similarity = 0.92), which was caused
by spontaneous deamination of 5-methylcytosine. In consistent with
the age-related accumulations of the mutational process, we observed
a significant association between the diagnostic age of ESCC and the
contribution of sig2 (Fig. 2h).

The sig7 was similar to SBS2 (similarity = 0.99), and the sig8 was
similar to SBS13 (similarity = 0.92), which could be attributed to the
activity of APOBEC enzymes (apolipoprotein BmRNA editing enzyme,
catalytic polypeptide-like)26. The APOBEC-related signatures explained
major mutagenesis in 16.8% ESCC genomes, and their contributions
were significantly positively correlated with mutational load (Supple-
mentary Fig. 3c, d).

The sig4 presented a nearly even distribution of the 96 types of
base substitutions and was similar to SBS3 (similarity = 0.90), which
SBS3 was thought to be associated with failure of DNA double-strand
break repair. However, in the ESCC-META cohort, the percentage of
sig4 presented a negative correlation with mutational load (Supple-
mentary Fig. 3d) andwas also unrelated to somatic BRCA1/2mutations
(Supplementary Fig. 3e). The sig3 was to SBS15 (similarity = 0.96) and
the sig11 (dominated in 1.2% patients) was similar to SBS44 (similar-
ity = 0.88) and SBS20 (similarity = 0.79), all of whom were associated
with DNA mismatch repair.

There were 1.2% patients (n = 24) who presented a prevalent
mutational pattern of sig9 or SBS22 (similarity = 0.98), which was
associated with aristolochic acid exposure and thus suggested the
specific carcinogenesis in this subgroup patients27,28.

Functional summary of mutational profiles
We summarized the mutated genes by their related oncogenic path-
ways (Fig. 3a) and found that 38.1% ESCC patients had at least one
mutation in Hippo pathway (including FAT1, FAT2, and FAT3), 38.6% in
histone modification, 33.8% in NOCTH pathway (KMT2D, KMT2C,
EP300, and CREBBP), 19.8% in RTK-RAS pathway (ERBB4 and ROS1),
17.6% in cell cycle pathway (CDKN2A, RB1), 15.3% in PI3K pathway
(PIK3CA), and 12.6% in Nrf2 pathway (NFE2L2, KEAP1). While the
majority of total nonsilent mutations belonged to missense mutations
(84.8%), some genes presented a high chance of truncating mutations
(nonsense mutations or frameshift INDELs), including cell-cycle-
related genes of CDKN2A (located in 9p21, 73.0% mutations were
truncating) and RB1 (in 13q14, 83.9% truncating), Notch pathway-
relatedgenesofNOTCH1, FBXW7, andNOTCH3, Hippopathway-related
gene of FAT1 and PTCH1, and the histone-modifying gene of KMT2D
(Fig. 3a). The genomic regions of the loss-of-functionmutational genes
were also frequently loss of copy number in previous ESCC CNV
analyses10,15, which indicated their tumor-suppressing functions in
ESCC.We also collected 14 genes whosemutations had recommended
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target drugs at present (Supplementary Table 2), and conceptually
defined the nonsilent mutations among the 14 genes as druggable
mutations.We could see that 14.7% patients carried somaticmutations
in at least one druggable gene, such as BRCA1/2 (5%) ROS1(2%), EGFR
(2%), and KRAS (1%) (Fig. 3a).

More than 27% ESCC patients had somatic mutations in DNA-
repair pathway genes, including BRCA2 (3%), TDG (3%), FANCM (3%),
RIF (3%), andATM (3%). Tumors with one ormore somaticmutations in
thesegenes present significantly highermutational load (Fig. 3b, c) and

higher mutational signature contributions of sig7 and sig8 (APOBEC-
related process, Supplementary Fig. 4) compared with wild-type
tumors. These findings suggested interaction or synergy between
APOBEC-associated mutagenesis and somatic altered DNA-repair
pathway.

Significantly mutated genes and mutational hotspots
In the ESCC-META cohort, total 1888 genes mutated in more than 1%
patients (Supplementary Data 7), and the top 100 common geneswere
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Fig. 2 | Mutational signature analysis. a The distribution of total somatic SNVs in
theWGS genomes from four datasets.bThe results of the t-SNE analysis. The count
matrix of 96 mutational types in WGS samples (n = 1084) was used in the t-SNE
analysis, and the dots were colored by the source of dataset. cTheNMF rank survey
to choose the best separation. The cophenetic correlation coefficient (upper) and
the residual sumof squares (lower)were plotted against factorization ranks (from2
to 15). d The contributions of 11 identified signatures in WGS genomes (discovery
set, 1084 patients). e The contributions of the identified 11 signatures in all ESCC-
META genome. In the left panel, the patients were ranked according to their major
signatures and grouped to 11 clusters. The right panel laid the heatmap of cosine
similarity of the 11 signatures to the COSMIC database. f The 96 mutational type
features of the sig1, sig2, sig4, sig6, and sig8, which aremajormutational signatures
in ESCC. g The heatmap of the significance (−log10pvalue) of association between
signature contributions and the clinical variables in ESCC-META cohort. The two-
side Krustal–Wallis testwasused to test thedifferenceamongclinical groups.hThe

contribution of sig2 against the age of diagnosis in ESCC-META cohort. The Pear-
son’s correlation coefficient and its significance test were used to measure the
correlation. The blue line and the gray band represent the fitted regression line and
95% confidence intervals. i In the patients of ESCC-META cohort with available
smoking or drinking record, the contributions of major signatures among smoking
(upper, n = 1578) or drinking (lower, n = 1484) status. j The overall survival curve of
the major clusters in early (n = 607) or late-stage patients (n = 639). The labeled p-
values were calculated by log-rank test. In d, g, h, and i, * indicates p <0.05,
**p <0.01, ***p <0.001, ****p <0.0001. In boxplots ofd and i, the lower extreme line,
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represent the value of (Q1 − 1.5×IQR), Q1, Q2, Q3 and (Q3 + 1.5×IQR), respectively.
Q1—25th quartile; Q2—50th quartile or the median value; Q3—75th quartile. The
interquartile range (IQR) is distance between Q1 and Q3 (Q3 −Q1). Source data are
provided as a Source Data file.
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summarized in Fig. 3a. To identify the most important mutated genes
in tumorigenesis, we applied combined methods to evaluate the sig-
nificance of the 1888 genes. This strategy selected the most important
mutational genes by four aspects to avoid the limitation of a single
approach (see Methods for detail) and identified 22 significant genes
(Fig. 4b, Supplementary Table 3). Apart from previously reported
genes, the PPFIA2, TGFBR2, ZBBX, ATP13A5, and IRF2BPL were firstly
identified as significantly mutated genes in ESCC.

On the other side, the ESCC-METAdataset totally included 179,531
unique nonsilent mutational sites distributed in 18097 genes, and only
6917 of them (3.9%) could be detected in two or more patients. We
visualized the genome-wide mutational hotspots in Fig. 4c, which

indicated prominent mutational hotspots in chromosome 1q (OR2L8),
2(REG3A, NFE2L2), 3q (PIK3CA), 4q(FBXW7), 8q(EPPK1), 9p(CDKN2A),
17p(TP53), 19(RPS15, LILRB3, ZNF814), and 22q (EP300).

As expected, we could detect many mutational hotspots in TP53,
among which many were located in methylated CpG sites and origin-
ally encoded conserved arginine residues29, such as R175H, R213X,
R273H, R248Q, R282W, and R342X. Other previously identified hot-
spots in ESCC, including the silent mutations of R80X, R58X, and
W110X in CDKN2A, E545K, and H1047R in PIK3CA30, and the mutations
in KEAP1 binding motifs of NFE2L231, were also confirmed in ESCC-
META dataset (Fig. 5a). We detected recurrent frameshift deletions in
TGFBR2 (c.374delA) and IRF2BPL (c.224_305del and c.225_303del) in
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ESCC, which were verified in different studies located near the
N-terminal of the coding region, indicated their tumor-suppressing
functions in ESCC. The TGFBR2 gene played an important role in TGF-
beta pathway, andhadbeenwell studied in colon cancer32. The IRF2BPL
encoded an E3 ubiquitin protein ligase and could regulate Wnt sig-
naling pathway in gastric cancer33. The two genes were also among the
22 most significant mutated genes identified by multiple approa-
ches (Fig. 4b).

Some coding regions of EPPK1, OR2L8 were not covered in some
WES platforms; their total mutational frequencies in the integrated
dataset might be slightly underestimated. Nevertheless, we could still
find the mutational preference in their coding region. The EPPK1
encoding protein of Epiplakin contained 13 tandem plakin repeat
domains (PRD) and participated in the organization of the cytoskele-
ton and adhesion complexes34. Interestingly, all of the identified non-
silent SNVs in EPPK1 were only located within the first half coding
region (from first to the eighth PRD), among which 48.3% mutations
occurred in the eighth PRD, including the hotspot site of R2239H
(Fig. 5a). This mutational pattern was also observed in other tumor
types according to the COSMIC Cancer Gene Census database, but
could not be well explained currently.

The histone modification gene of EP300 and its paralogous gene
of CREBBP both presented enriched mutational points in the KAT11
domain, which was required for histone acetylation. The mutations in
KAT11 of EP300were more common in smoking and drinking patients
(Fig. 5b), and associated with worse prognosis in late-stage ESCC
patients compared with mutations in other EP300 regions or wild
types (Fig. 5c). The mutational interaction analysis indicated mutually
exclusive patterns in EP300 to CDKN2A (OR =0.58) and EP300 to
NFE2L2 (OR =0.34), which was unusual in view of the dominant co-
occurring patterns for most gene-pairs (the inner part of Fig. 4c,
Supplementary Fig. 5 and Supplementary Data 8), which collectively
suggested its specific oncogenic functions in ESCC.

Mutations related to clinical characteristics
In the previous analysis ofmutational signatures, we had identified the
age-related (sig2 or SBS1) and drinking or smoking-related signature
(Fig. 2e). In the ESCC-META cohort, the majority of patients were
diagnosed during the age from 50 to 70, whereas 210 patients (11.4%)
were younger than 50 years (as a young group) and other 242 patients
(12.5%) were older than 70 years (as old group). The mutational fre-
quencies of NOTCH1, XIRP2, and NOTCH3 were significantly higher in
old group. Notably, the percentage ofNOTCH1 alterations was steadily
accumulated with increased diagnostic age of ESCC (6.2%, 10.8%,
12.4%, 15.9%, 20.2%, and 27.3% in groups of ≤40 years, 41–50 years,
51–60 years, 61–70 years, 71–80 years, and a 80 years, respectively,
p <0.001 Fig. 6b). The young patients presented more common
mutated PKHD1L1 and RB1 (Fig. 6a, Supplementary Data 9).

Whereas the esophagus is a long narrow tubular organ from the
cervical part to cardia, the tumors from different longitudinal origins
might present different genomic profiles. The tumors from the upper
thoracic part presented a higher mutational load compared to the
middle or lower thoracic part (Supplementary Fig. 6a), while the upper
tumor did not have more contribution of APOBEC-related signatures
(sig7 and sig8) that were strongly related to the mutational load
(Supplementary Fig. 6b). Compare with tumors of the upper ormiddle
thoracic part, the lower tumors had less contribution of sig6 (match to
SBS18) that related to damage by reactive oxygen species, and corre-
spondingly, the upper tumor compared to the lower tumor had a
significantly higher mutational frequency of NFE2L2, which was
responsible for antioxidant response and always had gain-of-function
mutations (Fig. 6c, Supplementary Fig. 6b).

We noticed that ESCC tumors of the upper or lower thoracic part
presented different mutational proneness in other genes. The muta-
tional frequencies of TEP1, DMXL1, and NOS1 were higher in the upper

thoracic part, while the mutations of MUC16, NOTCH1 were more
common in the lower thoracic part (Fig. 6c, Supplementary Data 9).
The enrichment analysis of the top different genes showed that the
upper part prone genes were enriched to the cytoskeleton organiza-
tion pathway, while the lower-part prone genes were related to Notch
signaling pathway (Fig. 6d).

We next systematically identify prognostic genes by log-rank test
and multivariable-adjusted Cox analysis. We distinguished early-stage
(stage I or II) patients and late-stage (stage III or IV) patients in sub-
sequent survival analysis because of the significantly differed prog-
nosis and divergent mutational load (as previously indicated) in
different tumor stages. We detected some genes whose mutational
status was associatedwithworse prognosis in both early and late-stage
patients, such as PRUNE2, TMEM132C, and NRXN1(Supplemen-
tary Fig. 6c).

However, some genes presented inconsistent prognostic effects
between early and late-stage tumors (Fig. 6e), including the mutations
in KAT11 domain of EP300 that suggested a bad prognosis only in late-
stage patients (Fig. 6c). The mutations in CDKN2A, LAMA3, and NALCN
were associated with better survival in early patients, but not in late
patients, whilemutations inNFE2L2, FBN2,RNF213, andATP10D related
to bad prognosis in late-stage patients, but not in early-stage patients.
Themutational status of PIK3CA related toworseprognosis in the early
stage butwith better prognosis in the late-stage, although therewasno
significant varied frequency or distributions of mutational sites
between tumor stages. The prognostic effect of PIK3CAmutations was
controversial in previous reports35–39, and our results of the tumor
stage-related prognostic effect might be a possible reason for the
discrepant reports. The different influence of mutational status in
these genes might be caused by the varied importance of their role in
different tumor stages. For example, the mutations of NFE2L2 were
mainly gain-of-function and had been proved to increase the drug or
radiation resistance in ESCC40,41. This alteration could bring a sig-
nificantly bad impact on late-stage patients whose major anti-tumor
therapies were chemoradiotherapy, but less influence on early-stage
patients, for whom the radical surgery played more an important
therapeutic role.

The mutational score could predict the prognosis
Although we identified many independent prognostic genes in the
ESCC-META cohort, most of them mutated in less than 5% ESCC
patients, which limited the direct application because of the low
positive rate. Herewe proposed the concept of themutational score as
a combined prognostic model for ESCC. Briefly, based on a large
genomic cohort as a discovery set, we firstly selected the candidate
prognostic genes by multivariable-adjusted Cox regression, and then
combined the top genes as a panel to predict survival outcome (see
Methods for details). Themutational score was defined as the count of
total somatic nonsynonymous mutated genes in the panel. We set our
own sequence dataset of ECRT (n = 42) as a testing set, and the rest of
ESCC-META cohort with valid survival information (n = 1476) as a dis-
covery set for gene selection.

We balanced the positive rate and the complexity of the model to
decide the optimal number of genes (see Methods). The final selected
eight genes were NFE2L2, CSMD1, CREBBP, KALRN, PRUNE2, NRXN1,
AKAP9, and FREM2 (Fig. 7a), among which five genes (NFE2L242,
CSMD143, CREBBP44, PRUNE245, and AKAP946) had been reported as
tumor-suppressing gene orwith dominant gain-of-functionmutational
hotspots in tumors. The sum of nonsilent mutations in the eight-gene
panel was defined as themutational score of ESCC. Unsurprisingly, the
mutational score showed a positive correlation with total mutational
load in ESCC (Fig. 7b). In the discovery set, 29.1% of early-stage patients
and 27.8% of late-stage patients could detect at least one nonsilent
mutation in eight-gene panels (Fig. 7c). In early-stage patients, one
positive gene in mutational score panel implied 1.78 of HR compared
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to negative patients, and two ormore positive genes suggested 2.26 of
HR value. For late-stage patients, the one gene mutation and two or
more mutations indicated 1.49 and 2.28 HR, respectively (Fig. 7d). We
further evaluated its prognostic value in separated datasets by stage-
adjustedHR inCox regression. In the 13 singledatasets that included at
least 30 patients with survival information, the adjusted HR values
indicated a similar trend of worse survival in positive patients (HR > 1,
Fig. 7e), which suggested its prognostic valuewas generally effective in
the discovery set without systematic bias of data sources.

We next verified the mutational score in an independent testing
set of ECRT, which involved patients from a phase III ESCC clinical trial
(Fig. 7f, see Methods for details). In the testing set, one mutated gene
presented 2.99HR, and two allmoremutations indicated 4.93 HR (log-
rank p-value = 0.028, Fig. 7g), which verified themutational score as an
effective predictor of bad prognosis in ESCC. We also performed
multivariable Cox regression to recognize potential confounding of
clinical variables or mutational signatures, which proved mutational

score as an independent prognostic predictor. Compared with 0 value
of the score, one mutation and two or more mutations implied
multivariable-adjusted HR [95% CI] values of 1.53 [1.29–1.8] and 2.17
[1.63–2.9] (Supplementary Fig. 7). Collectively, the eight-gene muta-
tional score was validated as a robust prognostic model in ESCC for
clinical application.

Discussion
Based on publicly available datasets and our own sequencing results,
we presented the ESCC mutational landscape of the ESCC-META. The
integrated work combining dozens of studies could well utilize pre-
viously published genomic resources, provide updated results, and
obtain more trustworthy evidence in this field.

We had made many efforts to evaluate and reduce the hetero-
geneity among data sources. As we had proved in the results, using a
set of quality control and integration processes, we could obtain well-
homogenized SNV records in the coding region. However, the batch
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Fig. 6 | Clinical characteristics related to genomic features. a Comparative bar
plot of most significantly varied genes between old patients and young patients.
The two-side Fisher’s exact test was used to indicate the significance, and * indi-
cating p <0.05, **p <0.01, ***p <0.001. b The proportion of NOTCH1 mutated
patients in different groups of diagnostic age. c The mutational frequencies in
tumors from different thoracic part. The upper panel indicated genes more com-
monly mutated in upper part, while the lower panel presented lower-part prone

mutations. The two-side Fisher’s exact test was used to indicate the significance,
and * indicating p <0.05, **p <0.01, ***p <0.001. d The top 15 enriched pathways
fromGOanalysis of upper part prone genes (upper part) or lower-part prone genes
(lower part). The labeled * represents for p (adjusted) <0.05, ** for p (adjusted)
<0.01. e Survival plots of some significant genes in early or late-stage patients. The
two-side log-rank test was used to indicate the significance. Source data are pro-
vided as a Source Data file.
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effects could not be ignored in copy number variants (CNV) and
structure variants (SV). Unlike the accuracy and reproducibility in
point mutations, the detection of large-scale variants might be less
robust in the current NGS platform, which was more sensitive to the
capture platform, sequence mode and data quality, the coverage
regions, filter parameters, and calling algorithms. We excluded these
records from the current ESCC-META dataset to avoid unreliable
analyses.

The ESCC mutational profiles featured moderate or low muta-
tional burdens and high heterogeneity among patients. Although
previous studies have reported the prognostic significance of higher

mutational load in ESCC15,47, in the ESCC-META cohort, we found the
mutational load significantly related to tumor stage but did not influ-
ence overall survival in stage-adjusted analysis. Our results showed
that the activity of APOBEC enzymes (sig8, SBS13) partly explained the
mutational load in ESCC, and the somatic mutations in DNA repair
related could significantly increase the mutational load. Another
identified mutational signature (sig4) presented similarity to SBS3,
which was associated with homologous recombination deficiency
(HRD)48 and its prevalence was also reported in other ESCC studies24,
but we could not identify its positive relationship with the total
mutational load. The lack of reliable large-scale genomic variants, such

Fig. 7 | Building of eight-gene mutational score. a The formula definition of the
eight-gene mutational score. WT wide type, MT mutation. b The comparison of
mutational load among different mutation score in all ESCC-META genomes, the
two-side Krustal–Wallis test was used to estimate the significance among the
groups. In the boxplots, the lower extreme line, lower end of box, inner line of box,
upper end of box, and upper extreme line represent the value of (Q1 − 1.5×IQR), Q1,
Q2, Q3 and (Q3+ 1.5×IQR), respectively. Q1—25th quartile; Q2—50th quartile or the
median value; Q3—75th quartile. The interquartile range (IQR) is distance between
Q1 and Q3 (Q3 −Q1). c Oncoplots of the eight genes in mutational score within
early-stage patients (upper) or late-stage patients (lower) of discovery set. d The

survival comparison between different mutational scores within early-stage
patients (upper,n = 607) or late-stagepatients (lower,n = 640)ofdiscovery set. The
two-side log-rank test was used to indicate the significance. e The prognostic value
of mutational score within separated dataset. The left panel indicates the stage-
adjustedHRofmutational scorewith the 95%confidence interval (thedot and error
bar). The left panel indicates the total and positive number in each dataset. f The
oncoplot of the eight genes in mutational score within test set of ECRT (n = 42).
g The survival comparison between differentmutational scores within test set. The
two-side log-rank test was used to indicate the significance. Source data are pro-
vided as a Source Data file.
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as LOH and large insertions and deletions that were more important
features of HRD, limited our assessment of the accurate contribution
of somatic HRD in ESCC genome.

The development of ESCC was thought to be the result of long-
term accumulation of somatic mutation in normal esophageal
epithelia49,50. We revealed the mutational difference between upper
thoracic ESCC and lower thoracic tumors, which indicated the pro-
found influence of tissue microenvironment on oncogenesis. Addi-
tionally, our results indicated the age-related alterations in mutational
signatureandmutational frequencyprofiles, including the significantly
increasing mutational frequency of NOTCH1. Our results provided
oncogenic evidence on the previously reported findings of age-related
somatic mutations in normal tissues, including the prominent marker
of NOTCH151,52.

The initial purpose of building the integrated ESCC-META
dataset was to provide supporting data for NGS panel design. Com-
pared with tests of other omics (such as transcriptome), the muta-
tional panel test had advantages in sensitivity, accuracy, and fewer
restrictions in sample preparation (not requiring fresh tissue).
However, the ESCC genome often presented high heterogeneity and
low mutational load. These inherent genomic features implied that
most of the significantly mutated genes could only be detected in a
small proportion of ESCC patients, and made it difficult to design an
effective NGS test panel. We proposed the concept of mutational
score that combined multiple significant genes as a test panel to
increase the positive proportion in a clinical test. This model was
specifically designed for ESCC, and its building was based on a large
integrated cohort. Compared with previously reported prediction
models, which were often theoretical or platform-dependent, our
work had the advantages of robustness and practicality. Owing to the
limited involved genes and simplicity of its algorithm, the capture
probes for the eight-gene mutational score were also applicable for
low abundance DNA libraries, such as circulating tumor DNA (ctDNA)
sequence in ESCC. Since the mutational score could distinguish the
patients with worse prognosis, its dynamic monitoring in ctDNA
would be helpful in individualized treatment.

Our study had other limitations. The ESCC-META dataset did not
include germline mutations at present, which also contributed to the
tumorigenesis in some ESCC patients53,54. The present dataset lacks
more details of treatment-related information, which limited more
specific discoveries. The application of new treatment regimens such
as immunotherapy in ESCC might change the prognostic effects of
some mutations. Our team will keep tracing the latest available data
and update the integrated dataset to facilitate research in this field.

Methods
Data selection
The study was approved by the ethics committee of Shandong Cancer
Hospital and Institute, and written informed consent was obtained
from all our patients (the ECRT cohort). We hope to collect all public
whole-genome sequence (WGS) or whole-exome sequence (WES) data
of ESCC. The genomic data were collected from the following three
sources.

Firstly, the genomic databases were searched, including NCBI-
SRA, EBI-ENA, and NGDC-GSA, for all publicly available raw sequence
data. Second, the mutational records in the published article. We
search all potential articles in PubMed, and the references of relevant
articles were also scanned. The available mutational list should at least
include all somatic nonsilent SNVs records for each individual. If the
raw sequence data were also available, we directly included and rea-
nalysis their raw sequence data, ignoring their published results. Third,
the public cancer genome databases, including TCGA, ICGC-Esopha-
gus, and COSMIC Mutation database. If the cohort was both involved
in the published articles and genome databases, we compared them
and used the one with more detailed records.

Target sequences other thanWES and the low coverageWGS data
(mean coverage < 10) for CNV analysis were not included in ESCC-
META. If the multiple tumor samples were collected from different
time points, only the earliest tumor sample (at diagnosis or before any
treatment) was used. We excluded patients with multiple primary
tumors or esophageal tumors of unclear pathological diagnosis. The
samples apart fromprimary tumor tissue, such as frommetastatic sites
were also excluded.

The patient ID was renamed by pasting their source and original
sample name. We also processed and checked the available clinical
information of each individual, including age, sex, drinking and
smoking history, tumor stage, tumor location, and tumor grade. All
misleading or vague records were regarded as not available (N.A.).

In our work, we separated the dataset of SRP034680 into
SRP072858_WGS (data ofWGS part) and SRP072858_WES (data ofWES
part), the SRP072858 into SRP072858_WGS (data of WGS part) and
SRP072858_WES (data ofWES part), the SRP099292 into SRP099292_S
(single tumor sample per patient), and SRP099292_M (multiple tumor
samples per patient).

Sequencing of ECRT dataset
The ECRT dataset was sequenced from patients involved in a multi-
center, randomized phase III clinical trial of ChiCTR-IPR-15007172,
which was started in 2015 and approved by the ethics committee of
Shandong Cancer Hospital and Institute. Briefly, the patients were all
diagnosed with locally advanced ESCC tumors and received radical
concurrent chemoradiotherapy as the first tumor treatment. Written
informed consent was obtained from all patients of the ECRT cohort.
Total 42 patients were included in this ECRT cohort, and the rest
patients in the clinical trial were excluded mainly because of no
available FFPE tumor tissues or no sufficient DNA extracted for WES
sequence.

The formalin fixation and paraffin embedding (FFPE) endoscopic
biopsy tumor samples before any treatment were collected. The sui-
table FFPE samples for sequence must contain more than 50% tumor
region under the microscope and have 100ng available DNA after
extraction. The peripheral blood cells of each patient were used as
normal control. The genomic DNA was extracted from FFPE by Gene-
Read DNA FFPE Kit (QIAGEN) and from peripheral blood cells by
PureLink™ Genomic DNA Mini Kit (ThermoFisher). The genomic DNA
was fragmented and capturedbyAgilent SureSelectHumanAll ExonV6
Kit (Agilent Technologies). The sequencing in PE150 mode was per-
formed in Illumina Novaseq 6000 platform. The least mean coverage
of captured regionmust bemore than 100× for the control sample and
more than 200× for the tumor sample.

Processing raw sequence data
If the readsdatawereNCBI-SRA format, itwas converted to fastqfile by
SRA-Tools (v2.11). The fastq files were firstly performed quality control
by fastp (v0.23)55 with default parameters. The files of different
sequence lanes from the same library or the different SRA reads files
from the same sample were combined before mapping. The mapping
process was performed by BWA (v0.7.1) to hg38.p13 genome. The bam
files were then deduplicated and applied base quality score recalibra-
tion by GATK (v4.1) according to the recommended practice. The
pairwise relationships between tumor and normal samples were
examined by BAM-matcher56, and the mismatched samples were
removed. The single nucleotide variants (SNVs) and insertion or
deletion mutations (INDELs) were called by Mutect2 in GATK (v4.1).
The filter criteria varied within the following three situations.

Firstly, for WES sequence of one tumor sample with normal con-
trol, the coverage shouldbeat least 30 in the tumor sample and at least
20 in the normal sample, at least three alternative reads in the tumor
sample to support the variant call, and mutation frequency at least
0.05. Second, for WGS sequence of one tumor sample with normal
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control, the coverage should be at least 20 in the tumor sample and at
least 20 in the normal sample; the rest is the same as above. Third, for
WES sequence of multiple tumor samples with one normal control
from the same patient, the included variant should be detected in at
least one tumor sample meeting the above criteria, additionally, the
variant base should be identified (at least two alternative support
reads) in another tumor sample.

Preparation of mutational records
Formutational records from the reported lists (such as inMAF format)
or databases without raw reads data, the authenticity was firstly
checked by base comparison. For example, if the raw mutational
record is chr19:63554635, G > T in hg18, the reference base in hg18 of
chr19:63554635 should be G, if not, this record was suspicious and
must be re-examined. The verified records from each dataset were
then prepared to VCF format (Version 4.2) and transformed to hg38 by
CrossMap (v0.2.6)57, which will also remove a few records because of
failure to convert. The converted mutational lists were recheck with
hg38 as thefirst step. Thenumberof rawandverifiedSNVswas listed in
Supplementary Data 1.

Integration and annotation
The involved patients and their genomes were firstly renamed by
pasting their source dataset and their original names. The duplicated
samples were carefully identified by checking their source information
andpairwise comparisons of themutational profiles.Weonly keepone
original sample and exclude all duplicated data in the final integration.

The quality-controlled results were then combined into a single
VCF file and annotated by ANNOVAR (December 2019 version)58. This
combined VCF file including all filtered mutational records (including
mutations in noncoding regions) and was used in the mutational sig-
nature analysis, while we only used the nonsilent mutational records
according to the annotation results for the rest analysis.

Comparison between capture platforms
The integrated dataset included genomes from WES of different cap-
ture platforms (Supplementary Data 1 and Supplementary Table 1).
Two studies used Agilent SureSelect V4, eight studies used Agilent
SureSelect V5, four studies used Agilent SureSelect V6, two used
NimbleGen SeqCap EZ Exome, one used Agilent SureSelect Clinical,
and one used Agilent TruSeq Exome. The capture platforms of the rest
7 WES studies were unable to be identified. The capture region files of
Agilent SureSelect V4, V5, V6, and Agilent SureSelect Clinical were
downloaded from the website of Agilent Technologies, and the rest
two platforms were downloaded from UCSC database. All the region
files were transformed to hg38 by CrossMap.

The ESCC WGS genomes from four studies (PMID28548104,
PMID32398863, SRP072858_WGS, and SRP034680_WGS) totally
included 55,980 nonsynonymous SNVs and were set as a test set. The
genomes sequenced by the capture platform were also examined as a
reference set to estimate background distribution. For each SNVs, we
calculated the distance between its locus to the nearest capture
boundary. The positive value represented of capture range of the
mutational site, and the negative value represented the capture range.

The distribution of the distance was shown in Supplementary
Fig. 2a. We could see that some SNVs were detected within the flank
regions in both the reference set and the test set.We noticed that even
in the reference set, there did exist reported SNVs far away from the
capture region, especially for Agilent SureSelect V4 platform. It was
partly because some regions in the original capture files of hg19 failed
to convert into hg38. Consequently, we thought that the percentage of
SNVs located more than 200bp distance in the test set subtracted
from the percentage in the reference should be a reasonable estima-
tion of the influence of the capture platform. The detailed results were
visualized in Supplementary Fig. 2. Although the different capture

platforms led to less than 1% nonsilent detected SNVs in ESCC, the
uncovered coding regions of some genes could induce bias in inte-
grated analysis. The genes were labeled in Supplementary Fig. 2b and
the regions were listed in Supplementary Data 3.

Identification of significantly mutated genes
Genomes from three studies (PMID22877736, n = 12; PMID32929369,
n = 14; PMID28608921, n = 41) were excluded in this part of the analysis
because these records only contained nonsilent mutations and with-
out available synonymous mutations, which might increase the false-
positive rate in integrated analysis. The remaining 1863 ESCC genomes
were included. Besides mutational frequency, we used the following
four approaches to identify the most important genes.

Firstly, we applied MutSigCV to calculate the Q value, which was
designed to identify genes that were mutated more often than
expectedby chance, given backgroundmutationprocesses59. TheMAF
file and other input files (coverage table, covariates table, and muta-
tion type dictionary file) were prepared to comply with its require-
ments. Note that the MutSigCV may not produce reliable results on
cancers with low mutation frequencies like ESCC due to its internal
assumptions59, thus this part of the results should be interpreted with
caution. Second, we applied oncodriveCLUST to calculate the cluster
score with default parameters. The oncodriveCLUST was designed to
find driver genes with enriched mutational hotspots60. Third, we cal-
culated the ratio of nonsynonymous mutation to synonymous sub-
stitution (dN/dS) in the coding region (CDS) for each gene. The high
dN/dS values suggested positive selection in cancer evolution61.
Fourthly, we calculated the coding length adjusted mutational fre-
quency for each gene as Eq. (1) and defined it as mutational density in
this article.

Mutational density =
Nof synonymousmutations=Nof total patients

lengthof CDSðMbÞ
ð1Þ

In the calculations of 2,3,4 approaches, the most common tran-
script was specified based on the SNVs annotation results for each
gene. We applied the following five criteria to obtain the most sig-
nificant genes: 1, mutational frequency ≥ 2%; 2, MutSigCV Q value ≤
0.01; 3, OncodriveCLUST clusterScores ≥0.2; 4, mutational density ≥
50; and 5, dN/dS ≥ 5.

Mutational signature analysis
The mutational signature analysis was performed based on the matrix
of 96 types of base substitutions, including the six substitution classes
(C >A, C >G, C > T, T > A, T >C, T >G) combined with substitutions in
the context of left and right flanking bases. The non-negative matrix
factorization (NMF) algorithm62 was employed to decompose the
major kmutational signatures and their contributions to eachgenome.
The optimal number of separations (k) was selected both considering
the cophenetic correlations and the residual sum of squares (RSS)25.
We chose 11 as the best number of separation because the cophenetic
correlations presented a maximum decrease between k = 11 and k = 12,
and the declines of RSS were obviously slower in higher k
value (Fig. 2c).

In the discovery set of WGS sample, the scaled basis components
from the NMF model were extracted as the identified mutational sig-
natures. The contribution of these signatures in all ESCC-META sam-
ples was subsequently predicted. The COSMIC Mutational Signatures
database (v3) was used as a reference for comparison (measured by
cosine similarities) and interpretation.

Building mutational score
The intention of the proposed mutational score is to overcome the
applied limitation of prognostic genes whose mutational frequencies
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were low. We want to establish a gene model that could be applicable
and robust in the real world. It requires a large genomic cohort as a
training set, and a simple but reliable algorithm to avoid the risk of
overfitting. The genes thatwere located in incomplete covered regions
by one or some capture platforms (Supplementary Fig. 2b, such as
MUC4, AP3S1, and OR2L8) were excluded from the process to avoid
potential artifacts in survival analysis. Based on the ESCC-META
cohort, we use the following four steps to establish the score.

Firstly, we select the patients with overall survival information
(survival time and status) as the training set. The multivariable-
adjusted Cox analysis was performed for each gene to obtain the
hazard ratio (HR) of mutational status (mutated to wild-type, MT to
WT). The adjusted variables include age, sex, and tumor stage. Second,
the adjusted Cox analyses were also performed in the subgroup of
early-stage and late-stage patients of the training set to obtain the
stage-specific HR value. These results were presented in Supplemen-
tary Data 10. Third, the candidate genes were selected with the fol-
lowing two criteria: (a) the mutational state of the gene was
significantly associated with worse survival in the overall training set
(adjusted HR overall > 1 and p < 0.05), and (b) the trend of association
remained in early-stage and late-stage subgroup (adjusted HR > 1 in
both early and late stage). Fourth, the candidate genes were ranked by
theirmutational frequencies, and the top ngenes (Xn) were included to
build the mutational score. The mutational score is defined as the
simple sum of the somatic nonsynonymous mutations in this panel of
genes (Eq. 2).

Mutational score= ∑
x2Xn

Ix ; Ix =
1,if x isMutated

0,if x isWild type

�
ð2Þ

In ESCC, we used the top eight genes (n = 8) to build the muta-
tional score under two considerations. Firstly, we hope this model
could distinguish around one-third of patients with a worse prognosis,
thus the least number of genes must be included to avoid the low
positive rate in the application. Second, due to the high heterogeneity
of the ESCC genome, the marginal effect of the increased number of
genes above a certain value would be significantly decreased. We
noticed that, except for the top eight genes, the mutational fre-
quencies of the rest genes were much lower (no more than 3%) and
would contribute little to the total positive rate. Additionally, themore
genes selected, the more complexity of the model and the more
challenge in its application, therefore we selected the top eight genes
and excluded other genes in the panel.

Statistical analysis
Linear regression was used to estimate the potential systematic batch
effects within datasets. The random effect model in the meta-analysis
was employed to estimate the inverse variance weighted pooled
mutational frequencies63. The dimensionality reduction method of
t-SNE was used to indicate the potential batch effects in mutational
genesmatrix ormutational typesmatrix. Themutually exclusive or co-
occurring genes were evaluated by the odd ratio of their co-mutation
in the whole dataset, and tested by the two-sided Fisher’s Exact test.
The Fisher exact test was also used in other category variable com-
parisons among groups. The Wilcox test (within two groups) and
Kruskal–Wallis test (within multiple groups) were used in grouped
continuous variable comparisons. The Kaplan–Meier curves and log-
rank tests were performed in survival analyses. Multivariable Cox
proportional hazards regression was employed to calculate the
adjusted hazard ratio (HR).

The statistical analysis and visualizations were all performed in R
(4.1.0) with the help of packages of survival (3.2), survminer (0.4.9),
meta (4.9), maftools (2.8), Rtsne (0.15), NMF (0.23.0), mutSignatures
(2.1.1), dplyr (1.0.6), and ggplot2 (3.3.5).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The rawWES data of the ECRT cohort generated in this study have been
deposited in National Genomics Data Center (NGDC) of China National
Center for Bioinformation under the accession code of HRA002596.
The raw sequence data are available under controlled access to avoid
misuse of the human genomic data. Requests for academic purposes
only will be processed by the Data Access Committee (DAC) via the GSA
platformwithin ~2 weeks. Once access has been granted, the data will be
available to download for 3 months. The public raw sequencing data
used in this study are available in the SRA database under accession
codes SRP099292, SRP033394, SRP059537, SRP150544, SRP072112,
SRP179388, SRP072858, SRP127593, SRP327447, SRP034680, and
SRP116657. The public level 3 mutational records are available from the
TCGA and ICGC-Esophagus databases, and the public knownmutational
signature profiles are available from the COSMIC database. The muta-
tional records in coding region of the integrated ESCC-META datasets
are public available at synapse under the accession code of
syn27304838. The SNVs in the noncoding regions and the full clinical
information, including the basic characteristic of patients, the diagnosis
of tumors, and the survival information, would be provided on request.
The remaining data are available within the Article, Supplementary
Information, or Source Data file. Source data are provided in this paper.

Code availability
The customcodeweused to establish the ESCC-METAdataset is public
available in https://github.com/liminghao663/ESCC-META and the
corresponding DOI is as follows doi:10.5281/zenodo.690400264.
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