Table 2.
Dataset | Classifier | Sensitivity (%) | Specificity (%) | AUC |
---|---|---|---|---|
Images | CNN | 90 ± 0.21 | 10 ± 0.10 | 0.53 ± 0.09 |
ResNet50 | 81.9 ± 0.06 | 57.7 ± 0.07 | 0.8 ± 0.11 | |
FE + XGB | 80.3 ± 0.12 | 57 ± 0.11 | 0.78 ± 0.13 | |
Radiomics | LR | 77 ± 0.19 | 62.5 ± 0.24 | 0.84 ± 0.12 |
SVM | 75 ± 0.14 | 62.5 ± 0.26 | 0.83 ± 0.43 | |
RF | 84 ± 0.01 | 62.5 ± 0.12 | 0.79 ± 0.65 | |
GB | 72.5 ± 0.05 | 72.5 ± 0.16 | 0.83 ± 0.12 | |
Radiomics with batch correction | LR | 70 ± 0.22 | 77.5 ± 0.31 | 0.86 ± 0.13 |
SVM | 75 ± 0.17 | 70 ± 0.25 | 0.82 ± 0.15 | |
RF | 100 ± 0.18 | 92.5 ± 0.33 | 0.96 ± 0.04 | |
GB | 98 ± 0.20 | 87.5 ± 0.13 | 0.99 ± 0.02 |
AUC area under the curve, CNN convolutional neural networks, FE feature extraction, XGB Xgboost, GB gradient boosting, LR logistic regression, RF random forest, SVM support vector machine