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Abstract
Most whole slide imaging (WSI) systems today rely on the “stop-and-stare” approach, where, at each field of view, the
scanning stage is brought to a complete stop before the camera snaps a picture. This procedure ensures that each
image is free of motion blur, which comes at the expense of long acquisition times. In order to speed up the
acquisition process, especially for large scanning areas, such as pathology slides, we developed an acquisition method
in which the data is acquired continuously while the stage is moving at high speeds. Using generative adversarial
networks (GANs), we demonstrate this ultra-fast imaging approach, referred to as GANscan, which restores sharp
images from motion blurred videos. GANscan allows us to complete image acquisitions at 30x the throughput of stop-
and-stare systems. This method is implemented on a Zeiss Axio Observer Z1 microscope, requires no specialized
hardware, and accomplishes successful reconstructions at stage speeds of up to 5000 μm/s. We validate the proposed
method by imaging H&E stained tissue sections. Our method not only retrieves crisp images from fast, continuous
scans, but also adjusts for defocusing that occurs during scanning within +/− 5 μm. Using a consumer GPU, the
inference runs at <20 ms/ image.

Introduction
Numerous microscopy applications require large fields

of view (FOV), including digital pathology1, micro-mirror
and biosensor assembly2, and in vivo imaging3. Acquisi-
tion time demands are a major bottleneck to fixing
modest or partially filled FOVs in standard microscopy
techniques. Improvements in both hardware and com-
putation are thus actively sought to push the efficiency of
optical measurements beyond traditional boundaries.
Accelerating either image acquisition or analysis can have
drastic benefits in diagnostic assessments and has been
shown to provide critical advantages in cell detection4,
disease screening5, clinical studies6 and histopathology7,8.

In standard microscope systems, the objective lens
dictates the resolution and field-of-view (FOV), forcing a
trade-off between the two parameters. In commercial
whole slide scanners, the FOV is extended through lateral
scanning and image mosaicking. Most forms of micro-
scopy require serial scanning of the sample region, which
slows down measurement acquisitions and diminishes the
temporal resolution.
There are three classes of strategies used in traditional

microscopy for slide-scanning. The first technique uses
the so called “stop-and-stare” style, which entails
sequentially moving the sample across a scanning grid,
pausing the stage, and exposing the camera for discrete
recordings. This tactic generates high-quality images as a
result of long measurement durations, but is not espe-
cially time-efficient9. A second technique involves illu-
minating a moving sample with bursts of light that help
circumvent the motion blur, which would otherwise
compromise the image resolution. As a result of the short
exposure times with this method, the resulting images
have a relatively poor signal-to-noise ratio (SNR)9. Thus,
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there is a cost to optimizing image clarity or acquisition
speed in these approaches. Third, there are line scan-
ning10 and time-delay integration (TDI)11 methods, which
use 1D sensors, where a camera vertically handles con-
tinuous signals line by line to reduce read-out time and
increase SNR. However, even the latest versions of these
instruments require specialized imaging equipment and
readout methods12,13.
Different imaging methods have been proposed to

improve the throughput of scanning-based microscopy
techniques, such as multifocal imaging14 and coded illu-
mination9. Computational methods of microscopy ima-
ging15–19, such as ptychography, which scans and fuses
portions of spatial frequencies, can produce large FOVs
with resolutions that surpass the objective’s diffraction
limit. However, these solutions end up either complicating
the microscopy system configuration, deteriorating the
image quality, or extending the post-processing period.
Additionally, iterative algorithms that are used in Fourier
ptychography to reconstruct an image from a sequence of
diffraction patterns often suffer from convergence issues20.
The mechanical specifications of the scanning stage,

rather than the optical parameters of the microscope,
generally hinder the throughput performance of WSI
systems21. The space-bandwidth product (SBP), which is
the dimensionless product of the spatial coverage (FOV)
and the Fourier coverage (resolution) of a system, can
quantify the information across an imaging system22.
Enhancements to the SBP have been the objective of
various innovations in imaging techniques23–28, but typi-
cally require either specialized hardware or time-
consuming post-processing.
The advent of accessible deep learning tools in recent

years has led to a new host of strategies to address lingering
microscopy challenges27, including super-resolution ima-
ging29, digital labeling of specimens30–37, Fourier ptycho-
graphy microscopy26, and single-shot autofocusing38,
among others39. These methods, which take advantage of
recent breakthroughs in deep learning, need no modifica-
tion to the underlying microscopic gear and produce faster
and more comprehensive imaging results than traditional
image reconstruction and post-processing algorithms.
Generative adversarial networks (GANs), which comprise
two opposing networks competing in a zero-sum dynamic,
have been especially prominent in image-to-image transla-
tion tasks, due in large part to their outstanding execution
of pixel-to-pixel conversions31,40.
In this work, we propose a computational imaging

technique, termed GANscan, which employs a GAN
model to restore the spatial resolution of blurred videos
acquired via continuous stage scanning at high speeds
using a conventional microscopy system. Our method
involves continuously moving the sample at a stage speed
of 5000 μm/s and an acquisition rate of 30 frames

per second (fps). This acquisition speed is on par with the
state-of-the-art TDI technology of 1.7–1.9 gigapixels in
100 s11,13. However, unlike TDI, our approach is using
standard optical instrumentation, which lowers the
threshold for broad adoption in the field.
In contrast to other high-throughput imaging endeavors,

GANscan adds no complexity to the hardware, with single
frame restorations that can be computed in a matter of
milliseconds. The results of this novel technique demon-
strate that basic modifications in measurements, coupled
with artificial intelligence (AI), can provide the framework
for any rapid, high-throughput scanning operation.
This paper is structured as follows: first, we present the

workflow for continuous imaging microscopy in both slow
and fast acquisitions. Second, we describe the theory behind
blur motion artifacts and why deconvolutions are limited in
restoring the spatial bandwidth of control images. Third, we
discuss the imaging procedures and registration of slow-
moving samples with the motion-smeared ones. Fourth, the
parameters of the GANscan network are explained, as well
as the data processing techniques prior to model training.
Lastly, reconstruction performances are evaluated using an
unseen test set, including a test set from different patients,
which is also compared against stop-and-stare controls and
deconvolutions using standard image metrics.

Results
Workflow
Figure 1 depicts the workflow of our approach. To

demonstrate the benefits of this technique, we imaged a
large sample of a pathological slide of a ductal carcinoma
in situ (DCIS) biopsy, covering roughly half a standard
microscopy slide area (~30mm× 15mm), as well as an
unstained blood smear. All slides studied in this work were
divorced from patient statistics, with consent from Carle
and Christie Clinic in Urbana, Il, and their use was
approved by the institute review board at the University of
Illinois at Urbana–Champaign (IRB Protocol Number
13900). Both slides were scanned in a row-major config-
uration, capturing movies across the slide horizontally
(Fig. 1a). There were no modifications to a standard
commercial microscope (Axio Observer Z1, Zeiss), and
the only adjustments in the measurement were the speed
of the stage and the continuous recording of the camera.
In order to obtain ground truth images for training, the
same rows were captured at a slow (50 μm/s) stage speed
and at the same exposure time of 2 ms. Once pairs of sharp
and defocused images were assembled through Pearson
correlations, a GAN network was trained to enable
restoring unseen motion blurred micrographs (Fig. 1b).

Theory
At rest, let the image be Iðx; yÞ During the sample

translation, the translated image, I , has the following time
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dependence:

Iðx; y; tÞ ¼ Iðxþ vt; yÞ ð1Þ

where v is the stage speed. Considering the camera
integration time T, the “blurred” detected frame is then:

Iðx; yÞ ¼ R T=2
�T=2 Iðxþ vt; yÞdt

¼ R1
�1 Iðxþ vt; yÞΠ t

T

� �
dt

ð2Þ

where Π t
T

� �
is the 1D rectangular function of width T.

The integration is the sum of the frames accumulated
during the acquisition time T (Fig. 2a).
Using the central-ordinate theorem:41

Iðx; yÞ ¼ =t Iðxþ vt; yÞ
Y t

T

� �n o��
�
ω¼0

ð3Þ

where ω is the angular frequency. Since Iðxþ vt; yÞ ¼
I½vðt þ x

vÞ; y�; the temporal Fourier transform reads

Iðxþ vt; yÞ ¼ I v t þ x
v

� �� �

$ I ω
v ; y
� �

e�iωxv
ð4Þ

where ↔ indicates the Fourier transformation.
Using the convolution theorem42, Eq. 3 can be rewritten

as:

ð5Þ

In Eq. 5, we recognize a Fourier transform of a product,
which yields the following convolution operation,

ð6Þ

where

indicates the convolution operator over the variable x/v,
which has dimensions of time. This result captures the
physical description of the image spatial blurring as
the result of a temporal convolution operation. Thus, the
smeared image is the sharp image convolved along the
direction of the scan by a rectangular function, which has
a width proportional to the acquisition time. For a
scanning speed of v= 5000 μm/s and T= 2ms, vT= 10
μm. This corresponds to a length roughly twenty times
the diffraction resolution of our imaging system.

Deconvolution
We performed the 1D deconvolution on our acquired

images, thus, inverting the effect of Eq. 5, and used the
results as the standard of comparison for the deep
learning results. These deconvolutions were evaluated by
first establishing the best match through the ‘convolve’
filter in ImageJ, and then using the same line dimension
in MATLAB with the ‘deconvblind’ function. This tool
deconvolves an image via the maximum likelihood
algorithm and a starting estimate of the point-spread
function (PSF), which in our case is a single row of 47
pixels of value 1.
A sample frame of the biopsy and its convolution with

the line of the blur width are shown in Fig. 2b, c, and
deconvolving again produces the original frame but with

a

GAN
50 µm/s

5000 µm/s
5000 µm/s

Machine learning

b

Row-major scanning

ML

Fig. 1 GANscan: setup and concept. a Scanning stage of the AXIO observer Zeiss microscope with an example slide showing the row-major
continuous scanning direction. b Motion blurred reconstruction scheme using a slow-moving stage as the control for GAN training
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compromised high spatial frequencies (Fig. 2d). The
artifacts of lines along both edges of the image are a result
of the filter brushing against the boundaries of the image.
The deconvolution operation succeeds at shrinking fea-
tures horizontally to restore their true width. However,
the image still suffers from poor overall resolution, due in
part to the higher spatial frequencies being permanently
lost through the convolving effect of imaging a rapidly
moving sample. This shortcoming is our principal moti-
vation of employing deep learning techniques to predict
the standard spatial bandwidth.

Image pair registration
In order to prepare pairs of blurred and sharp images

for training, consecutive sharp images in the fast videos
were matched to their motion-smeared counterparts by
evaluating the maximum Pearson correlations in a set of
slightly shifted clear images (Fig. 3, S1). The “ground
truth” images were captured at a stage speed of 50 μm/s,
which, at the acquisition time of 2 ms results in a blur size
of 0.1 μm, i.e., below the diffraction limit of our system. As
a result, there are approximately 100 frames in the sharp
videos for each image in the 5,000 μm/s, motioned blur-
red videos, as shown in Fig. 3a.
Evaluating the Pearson correlation between the input

(smudged) frame and a series of potential ground truth
frames produces values ranging from 0.4 to 0.76. The
frame associated with the highest Pearson correlation
value was selected as the ground truth. It should be
noted that the rapidly captured images expose the
camera to a larger field of view than the slowly-captured
ones by the length of the blur, which is 10 μm for a

scanning speed of 5000 μm/s. This difference is deli-
neated in Fig. 3b.
In order to confirm the reliability of the ground truth

images obtained at 50 μm/s, standard stop-and-stare
images were also acquired for comparison as part of a
test set. This was achieved by serially scanning images
with a lateral shift of 1 μm, mimicking the distribution of
slowly moving images but fully halted. It was necessary
to capture sufficient images in order not only to per-
fectly register the stop-and-stare images with the 50 μm/
s images, again using a Pearson correlation computa-
tion, but also with the blurry images. As shown in Fig.
S2, the stop-and-stare images look identical to the
50 μm/s images, with SSIM values upwards of 0.9.
Variability in values is possibility indicative of noise
inherent in the images. These are further compared with
the moving ground truths against the reconstructed
images, discussed below.

Generative adversarial network (GAN)
Once the registered pairs were assembled, they were

cropped and resized to dimensions of 256 × 256 × 1-3 (3
RGB color channels for brightfield and 1 channel for
phase contrast images) for faster computation, with 1050
images earmarked for training and 50 reserved for testing
for both sample types. The architecture of the model
consists of a generator U-net with eight encoding and
decoding layers, and a four downchannel discriminator,
all displayed in Fig. S3. As shown in Fig. 4, the network
input is the motion-blurred image and the control is the
slowly scanned, sharp image. Since the slide was scanned
in a row-major style, the margin of additional field of view

vT = 10 µma

b c
Convolution Deconvolution

d
Ground truth

t1 t2 t3 t4 t5

Fig. 2 Comparison of ground truth with convolved and deconvolved images. a A few frames from a video taken with a stage speed of 50 μm/s,
with time labels indicating a slow forward movement. b Middle image of the sharp sequence a used as ground truth. c The convolution of b with
the blur function. d The deconvolution of c with the blur function. Scale bar 25 µm
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is always on the same side, which is likely to help the
network to undo the motion distortion. The GAN model
was trained for over 200 epochs (Fig. 4c) until the loss

function plateaued. Our results indicate that running the
model on the training set produces nearly perfect
restorations (Fig. 4d). The spatial power spectrum of the
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Fig. 3 Sharp and blurry image pair registration scheme. a Registration of images through maximum Pearson coefficient between sharp frames at
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coefficient score is listed above each image. The best match is delineated in red, indicating the sharp image bearing the overall highest resemblance to
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input image (Fig. 4e) clearly shows a smaller range of
higher spatial frequencies than that of the restored image
(Fig. 4f). Interestingly, the power spectrum of the input
image has higher spatial frequencies along the vertical axis
as a result of the smearing produced along the x-axis,
whereas the power spectrum of the restored image is
broader and more isotropic.
A separate model for repairing out-of-focus images was

computed using 2420 training image pairs (taken from
two different slides), with nearly half of the blurry set
captured at four different levels of focus: −10 μm, −5 μm,
+5 μm, and +10 μm. The rest of the parameters were the
same as the models described above, with the ground
truth images all being in perfect focus.

Performance testing
Once the training was complete, the model was tested

on 50 unseen images of the same slide of the dataset, and
160 images from slide corresponding to a different
patient, as shown in Figs. 5 and 6, respectively. 50
unseen blood smear images were also reconstructed, a
sample of which is shown in Fig. S4. The network does
an effective job at restoring the high spatial frequencies
of epithelial and stromal (fibrous) areas in biopsy sam-
ples, as compared to the line deconvolutions (Fig. S5).
Since the cellular and fibrous areas are recovered with
such high fidelity, the diagnostic information in the
tissue images is maintained in full. In terms of numerical
assessments, the first biopsy test sets achieved an aver-
age structural similarity index measure (SSIM) of 0.82
and a mean peak signal-to-noise-ratio (PSNR) of 27
when calculated against their controls. For the same
dataset, the deconvolution results gave inferior results of
SSIM and PSRN of 0.71 and 26, respectively. The biopsy
test set corresponding to a different patient achieved a
similar average structural similarity index measure

(SSIM) of 0.83 and a mean peak signal-to-noise-ratio
(PSNR) of 26 when calculated against their controls,
proving that the technique is applicable to samples
entirely separate from of the training data (Fig S6). For
the same dataset, the deconvolution results again gave
inferior results of SSIM and PSRN of 0.77 and 25,
respectively.
The same metrics were also calculated against stop-and-

stare ground truths set. Fig. S7 shows that there is no
statistically significant difference between the values using
the stop-and-stare and the 50 μm/s controls, indicating
that the pairing strategy is valid.
Another way the results were evaluated was using line

sections and plot profiles. Fig. S8 shows a sample biopsy
image in all three modes with their power spectra and line
sections. The brightfield plot profiles show a strong
overlap between the slow and reconstructed images,
whereas the blurry image has a line profile that is smeared
and diminished in intensity. In the frequency domain, the
slow and reconstructed images show broader and higher
frequencies as compared to the power spectrum of the
blurry image, as expected.
The blood smear phase contrast images were recon-

structed with similar success (Figs. S8 and S9). GANscan
does an effective job at replicating a standard phase
contrast image from a highly blurred input. Although
some of the cell edges are not as smooth and round as in
the control data, there is rarely any hallucination of new
cell boundaries. In this case, the test sets achieved a
slightly lower average structural similarity index measure
(SSIM) of 0.73 and a mean peak signal-to-noise-ratio
(PSNR) of 27 when calculated against their controls. For
the same dataset, the deconvolution results gave inferior
results of SSIM and PSRN of 0.66 and 26, respectively. A
possible reason for the lower GANscan values with phase
contrast microscopy may be that only the edges and halo

5000 µm/s 50 µm/s GANscan
a

b

c

d

e

f

5000 µm/s 50 µm/s GANscan

Fig. 5 Examples of test results. a–f Brightfield test set conversion of 5000 µm/s with control of 50 µm/s. Scale bar 5 µm
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of the blood cells contain any signal, causing a more
severe blur in these images. As well, a single grayscale
channel provides less information and context for the
network to deal with.
Large mosaics of the motioned blurred biopsy images

were also reconstructed (Fig. 7) by concatenating the
images horizontally and vertically in their respective
scanning order, producing a 7 × 15 stitch of roughly
3 mm× 1.5 mm in size. The difference in clarity is much
less apparent with such a large FOV, but at a closer look it
is evident there is significant improvement in the overall
distinction of features. Stitches for 4,000 μm/s were also
made for comparison (Fig. S10).

Adjusting out-of-focus images
In order to assess the ability of GANscan to repair

defocused images, the test set from a different patient was
captured at 5000 μm/s at the plane of focus, but also at
−10 μm, −5 μm, +5 μm, and +10 μm. This idea was
inspired by previous work addressing autofocusing
methods using GAN models43. Figure 8a shows a sample
of images in all three modes at various levels of focus.
They are not corresponding FOVs, as it is not possible to
perfectly match different focal scans of blurry images. As
it can be seen, the reconstructed images become pro-
gressively worse with increasing distance from the focal
plane. Figure 8b shows the SSIM and PSNR curves for the

5000 µµm/s 50 µm/s GANscan
a

b

c

d

e

f

5000 µm/s 50 µm/s GANscan

Fig. 6 Examples of test results from unseen pathology slides. a-c, d–f Test set conversion of 5000 µm/s with control of 50 µm/s from two
patients not included in the training dataset. Scale bar 5 µm

5000 µm/s

GANscan

a

b

Fig. 7 Comparison of motion-blurred and reconstructed tissue mosaics. a Stitch of the motion blurred images, b as well as the reconstructed
GANscan, showing a large area of a breast biopsy, with respective zoom-ins. Scale bar 5 µm
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whole test set with standard deviation margins from 30
instances (images) per level of focus. It is clear that the
SSIM and PSNR start dipping as the image loses focus,
from over 0.82 and 25, respectively, dropping to below
0.65 and 22 at the +/−10 μm mark.

Discussion
We presented a high-throughput imaging approach,

GANscan, which employs continuous motion deblurring
using labelled GAN reconstructions. Through both theore-
tical and experimental analysis, we have demonstrated the
applicability of our method to brightfield and phase contrast
microscopy on tissue slides. Our results indicate that GAN
models provide, in combination with greater stage speeds,
up to 30x faster acquisition rates than in conventional
microscopy. This throughput is superior or on par with the
state-of-the-art rapid scanning techniques, which in turn use
nonstandard hardware. GANscan requires no specialized
equipment and generates restored images with successfully
removed motion blur. Of course, should a camera with a
higher frame rate be used, the stage speed can be scaled up
proportionally. Further, our proposed deep learning
deblurring method produces high-quality reconstructions
which restores the high frequency portions of the tissue and
cells, as opposed to deconvolution operations.
Such a methodology will not only provide a drastic benefit

in the clinical setting to pathologists for diagnosis of cancer
in biopsies and cell abnormalities in blood smears, but at the
research level as well, including cell cultures of large
dimensions. Future work should address achieving similar
results with different microscope modalities, such as fluor-
escence and quantitative phase imaging.

Material and methods
Image acquisition
Images were acquired with a commercial microscope

(Axio Observer Z1, Zeiss) in brightfield and phase con-
trast settings and a Point grey color camera, using a Zeiss
EC Plan-Neofluar 40x/0.45 NA objective. The samples
were a ductal carcinoma in situ (DCIS) breast tissue
biopsy and an unstained blood smear of a healthy patient.
The stage speed and coordinates were precisely manipu-
lated using the Zeiss MTB (MicroToolBox) software, and
the camera settings, such as shutter time (2 ms), frame
rate (30 pfs), and gain (8 dB), were selected using the
Grasshopper GRAS- 2054 C software. For stitching ima-
ges, a vertical step size of 200 µm was used, and horizontal
videos were acquired for 1 minute at the slow speed of
50 µm/s to ensure the correspondence of 15 horizontally
adjacent frames in the video captured at 5000 µm/s. The
videos of each row at the accelerated stage speed was
0.6 seconds. After the image acquisition, off-line proces-
sing involved image registration of blurry and sharp
images through MATLAB with Pearson correlation esti-
mates. For the 5000 µm/s datasets, we extracted 256 × 256
crops from paired images to create a training volume of
1050 image pairs.
We performed deconvolutions on each input test image

and compared them with GANscan results, as shown in
Fig. S2. The mean SSIM of the GANscan biopsy images is
0.82, while the deconvolved images had an SSIM of 0.73,
when compared to the same control images. The mean
SSIM of the GANscan phase contrast images is 0.73, while
the deconvolved images had an SSIM of 0.66, when
compared to the same control images. PSNR values were
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also calculated with GANscan outperforming deconvo-
lutions 27 to 26 for both image types. All analysis was
performed in MATLAB.

Machine learning
The conversion of motion blurred micrographs to sharp

images was accomplished using the conditional generative
adversarial network (GAN) pix2pix (Fig. S4)44. The same
parameters and steps were applied for training both the
brightfield and phase contrast images. The only difference
was the number of channels of the images, with three for
the RGB colored images and one for the grayscale phase
contrast blood smear images.
1050 blurry and sharp brightfield image pairs were

passed through the network for the first model, 2420 for
the second with different focus levels. Original dimen-
sions of the micrographs were 600 × 800 pixels. These
were cropped and resized to 256 × 256 pixels before being
trained on. The learning rate of the generator’s optimizer
was 0.0002 and the minibatch size was set to 1. In this
network, a generator (G) is trained to produce outputs
that cannot be distinguished from ground truth images by
a trained adversarial discriminator, D, which is designed
to perform as well as possible at detecting the generator’s
incorrect data44. The GAN loss is one where G works to
minimize the value while an adversarial D attempts to
maximize it:

LcGAN G;Dð Þ ¼ Ex;z logD x; yð Þ½ � þ Ex;z log 1� D x;G x; zð Þð Þð½ � ð7Þ

Where Ex, z is the anticipated value of all real and fake
instances, x is the image, and z is the generated random
noise. An L1 loss is then combined with this to generate
the discriminator’s total loss function.
In order to confirm the accuracy of the translated

images, we tested the model on 50 unseen images and 160
different patient images. Training was performed over 200
epochs, with datasets that were augmented beforehand
through rotations and mirroring. Overall, the training
took 7 h for each model, and the inference required less
than 20ms per image (256 × 256 pixels).
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