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ALDH+ H1975 lung adenocarcinoma stem cells (LSCs) are a rare cell population identified in lung adenocarcinoma (LUAD).
LSCs can self-renew, drive tumor initiation, growth, metastasis, and recurrence and are also the predominant cause of poor
prognosis due to their intrinsic resistance to drugs and chemotherapy. Consequently, LSCs are a promising target for LUAD
therapy. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (IncRNAs), and circular RNAs
(circRNAs), exert many significant regulatory functions in the pathogenesis of human cancers, showing the necessity for a
comprehensive understanding of the mechanisms that underlie lung carcinogenesis. Nonetheless, research on many known
transcripts and messenger RNAs (mRNAs) has already generated new information. Unknown biomarkers in ncRNAs and
systematic and comprehensive interrelation with unknown ncRNAs and mRNAs may provide further insights into the biology
of LUAD. Herein, a set of novel ncRNAs that include miRNAs, IncRNAs, and circRNAs were identified, and differentially
expressed patterns of ncRNAs and mRNAs in LSCs and ALDH-H1975 LUAD tumor cells (LTCs) were obtained using
stringent bioinformatics pipelines. Through a meta-analysis of the identified landscapes, novel competitive endogenous RNA
(ceRNA) networks were constructed to reveal the potential molecular mechanisms that regulate the hallmarks of LSCs and
LTCs. This study presents a summary of novel ncRNAs and the fundamental roles of differentially expressed ncRNAs
implicated in the activity of LSCs and LTCs. In addition, the study also provides a comprehensive resource for the future
identification of diagnostic, therapeutic, and prognostic biomarkers in LUAD.

1. Introduction

Lung cancer is the most common respiratory tumor and is
the leading cause of cancer deaths worldwide, with ~18%
mortality rate and ~22.4% incident ratio among all cancer
deaths [2, 3]. Non-small cell lung cancer (NSCLC) is the
most common form of lung cancer, accounting for ~90%
of all cases, and lung adenocarcinoma (LUAD) is its most

common histological subtype [4], with a dismal prognosis
and 15% of patients surviving 5 years after diagnosis [5].
Cancer stem cells (CSCs), a subset of cancer cells with
stem-like characteristics, play a critical role in tumor hetero-
geneity and are involved in tumor initiation, growth, metas-
tasis, recurrence, and drug resistance [6]. Increasing research
has demonstrated that the leading cause of poor prognosis
for LUAD [7] is the presence of LUAD stem cells [8], which
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could initiate and sustain primary and metastatic cancer
relapse and growth [9]. Previous evidence [10] and our most
recent studies [11, 12] showed that ALDH+ H1975 LUAD
cells (LSCs) display strong CSC-like properties [13] and act
as LSCs to influence the formation of a tumor niche, tumor
initiation, and recurrence [7]. Our most recent study
revealed that LSCs have the capacity for self-renewal and dif-
ferentiation, which facilitates the generation of tumor cells
and promotes tumor growth [11], recurrence, and metasta-
sis. Therefore, LSCs are a promising target for interfering
with the therapeutic mechanism of LUAD formation and
LUAD therapy [7]. Elucidation of the differences and under-
lying molecular pathways that characterize LSCs [14] is
important to identify and evaluate potential diagnostic, ther-
apeutic, and prognostic biomarkers of LUAD [12].

LncRNAs, circRNAs, and miRNAs are three subtypes
of non-coding RNAs, which account for a huge proportion
of the human transcriptome [15]. The diverse types of
these ncRNAs are marked by sequence length, spatial archi-
tecture, and regulatory functions in various pathophysiologi-
cal processes in cancer. Separately, miRNAs [16] are the most
studied single-stranded ncRNAs, with a length of ~20 nucle-
otides [17]. Through binding to specific 3'-untranslated
regions (UTRs) of their target mRNAs or RNA, miRNAs
could silence the expression of multiple targeted mRNAs
and RNA simultaneously [18]. Regulatory modulation of
one-to-many miRNAs influences multiple oncogenic and
tumor repressive pathways [19, 20]; for example, overexpres-
sion of has-miR-17-92 in lung cancer enhances cell prolifer-
ation [21], while has-let-7 in lung cancer is associated with
the overall survival of patients [22]. LncRNAs are over 200
nucleotides in length [23] and have the ability to regulate
gene expression rather than having protein-encoding capa-
bility [24]. Extensive studies have shown that IncRNAs may
influence cancer progression by regulating mRNAs and miR-
NAs [25]. CircRNAs are a novel subtype of non-coding
RNAs. Although circRNAs function as IncRNAs [26], their
uniquely circular structure provides them with greater sta-
bility compared with linear IncRNAs [27]. CircRNAs play
a vital role in various types of cancer [28]. Furthermore,
there is evidence that mRNA transcripts are regulated or
repressed by IncRNAs/circRNAs and miRNAs, individually
or in combination [29]. A novel mechanism in the regula-
tory network [30] is the identification of the interaction
between mRNAs, IncRNAs/circRNAs, and miRNAs, which
has been defined as the ceRNA network. More impor-
tantly, IncRNAs/circRNAs upregulate transcript expression
by binding miRNA sites, for example, IncRNA HRCR acts
as a miR-233 sponge to prevent cardiac hypertrophy [31],
IncRNA CHRF functions as an endogenous sponge of
miR-489 to limit miR-489 expression [32], and IncRNA
APF works as a sponge of miR-188-3p to prevent decom-
position of ATG7 [33].

Previous research focused on the differences between
LUAD cells and the adjacent normal cells based on known
transcripts and genes to explore the cause and treatment
options of tumorigenesis, tumor metastasis, relapse, and
drug resistance. However, identification of unknown ncRNA
sets and the associated molecular mechanism between LSCs
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and LUAD tumor cells (LTCs) is necessary to provide
insight into the biological properties of LUAD.

In this study, the identification of unknown biomarkers
and a meta-analysis of unknown ncRNAs and mRNAs
between LSCs and LTCs were conducted to facilitate in the
elucidation of the molecular events associated with tumori-
genesis, metastasis, relapse, and drug resistance from the
perspective of LSCs.

2. Materials and Methods

2.1. RNA Isolation and miRNA Sequencing. Two ALDH +
LSC and two ALDH- LTC samples were obtained from our
previous study [11]. A total of ~3-5x 10° cells were used
for the isolation of RNA. Total RNA of cellular samples
was extracted using TRIzol™ reagent (Invitrogen, Carlsbad,
CA, USA) based on the manufacturer’s protocols. At least
3 ug RNA per sample was used as a substrate for the subse-
quent analyses. Sequencing libraries were generated using
the NEBNext® Multiplex Small RNA Library Prep Set for
IMlumina® (NEB, USA), according to the manufacturer’s rec-
ommendations. Index codes were added to the attribute
sequences of each sample. Briefly, the NEB 3’ sequence rep-
lication (SR) adaptor was directly and specifically linked to
the 3’ end of miRNA, small interfering RNA (siRNA), and
piwi-interacting (piRNA). After the 3’ ligation reaction, the
SR random primer (RT) was hybridized to the excess of
the 3" SR adaptor, which was transformed from a single-
stranded DNA adaptor into a double-stranded DNA mole-
cule. This important step prevented adaptor-dimer forma-
tion. Thus, dsDNAs were not ligation-mediated substrates
for T4 RNA Ligase 1 and therefore did not ligate to the 5'
SR adaptor in the subsequent ligation step. The 5 end
adapters were ligated to the 5’ ends of miRNA, siRNA, and
piRNA. First-strand cDNA was then synthesized using M-
MulLV reverse transcriptase (RNase H-). PCR amplification
was performed using LongAmp® Taq 2X Master Mix, SR
Primer for Illumina, and index primer (X).

The PCR products were purified on an 8% polyacryl-
amide gel (100V, 80 min). DNA fragments corresponding
to 140-160bp (the length of small non-coding RNA plus
the 3’ and 5' adaptors) were recovered and dissolved in
8 uL elution buffer. Library quality was evaluated on the Agi-
lent Bioanalyzer 2100 system using DNA High Sensitivity
Chips. Clustering of the index-coded samples was performed
on a cBot Cluster Generation System using the TruSeq SR
Cluster Kit v3-cBot-HS (Illumina) according to the manu-
facturer’s instructions. After cluster generation, library prep-
arations were sequenced on an Illumina Hiseq 2500/2000
platform, and 50-bp single-end reads were generated.

2.2. RNA Raw Data Quality Control and Reads Mapping
Statistics. Two LSC samples and two LTC samples were
obtained from our previous study [11]. Raw reads of miR-
NAs and IncRNAs/circRNAs/mRNAs from the Illumina
Hiseq platform were conducted using ReSeqTools [34] to
remove reads with poly-N (ratio of N greater than 10%)/
adapter sequence and low-quality reads (reads with more
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than 50% bases having quality Qvalue <5). Raw reads of
miRNAs were then processed to filter reads containing poly
A/T/G/C regions. Clean reads from each miRNA sample
were mapped to the human reference genome (version
GRCh38) using Bowtie [35], with no mismatches. Clean
reads of IncRNAs/circRNAs/mRNAs were aligned with the
same human reference genome mentioned above using
HISAT?2 with “-rna-standness RF” and other default param-
eters [36]. The mapping results were sorted, analyzed, and
indexed using ReSeqTools [34] and Samtools [37].

2.3. Identification of miRNAs. Based on the aligned small
RNA reads, miRbase 20.0 [38] was used as a reference, and
miRDeep2/srna-tools-cli [39] were used to identify potential
miRNAs and to define the secondary structures. Based on
RepeatMasker [40], the Rfam database [41] mapped reads
originating from protein-coding genes, repeat sequences,
rRNA, tRNA, snRNA, and snoRNA [42] were removed.
Based on the characteristics of the hairpin structure of the
miRNA precursor, the Dicer cleavage site, and the minimum
information of the small RNA reads not annotated in the
above steps, miREvo [43] and miRDeep2 [39] were inte-
grated to predict novel miRNAs, and the base bias was
counted at the first position and at all positions of all identi-
fied miRNAs. For alignment and annotation, the diversity
RNA was counted with the following priority rule: known
miRNA > rRNA > tRNA > snRNA > snoRNA > repeat >
mRNA > novel miRNA, to ensure each unique small RNA
to be matched to only one annotation. miRNA expression
levels were estimated as transcripts per million (TPM) [44]
using StringTie [45], whose equation is normalized to the
expression level:

TPMi = (Ni/Li) * 1,000, 000/sum (Ni/Li+--- --- .. + Nm/Lm).

(1)

In the above formula, Ni indicates the mapped reads in
exon i. Li indicates the length of exon i. Nm indicates the
mapped reads in exon m. Lm indicates the length of exon m.

2.4. Identification and Quantification of IncRNAs/circRNAs
and mRNAs. The total mapped reads for each sample
were assembled by StringTie [45] using a reference-based
approach with an optional de novo assembly step, and a
comprehensive annotation file with full-length transcripts
and potential novel ncRNAs was generated. Transcripts
with low confidence (exonnumbers < 2), length <200nt,
repeat annotations, and low expression (FPKM < 0.05)
were removed by the filtering step in Figure 1(c). Quanti-
fication of known ncRNAs and mRNAs was performed by
StringTie for each sample. Four tools, including CNCI
(coding-noncoding index) [46], CPC (coding potential cal-
culator) [47], Pfam-scan [48], and PhyloCSF (phylogenetic
codon substitution frequency) [49] with default parame-
ters, were used to predict the coding potential of tran-
scripts, which were filtered and became candidate sets
of novel IncRNAs. Cufflinks were used to calculate frag-
ments per kilobase of exon model per million mapped
fragments (FPKM) [50] of both the IncRNAs and the

coding genes in each sample. FPKMs were defined as
the total mapped exon fragments/(mapped reads (mil-
lions)*exon length (KB).

The BAM files mentioned above were used to identify
circRNAs. The detection and identification of circRNAs
was based on our previous studies [11]. TMP was used to
quantify the circle RNAs.

2.5. Differential Expression Analysis. After quantification of
digital transcript expression, a differential expression analy-
sis of IncRNAs and mRNAs between the LSC and LTC
groups was performed using Cuftdift [51], which was based
on the negative binomial distribution model. mRNA gene
transcripts with a Padjust < 0.05 and |log 2 foldchange| > 2
were assigned as differentially expressed (DE) genes.

DE analysis of miRNA and circRNAs between two con-
ditions was performed using the DESeq2 R package [52]. P
values were adjusted using the Benjamini and Hochberg
method to control the false discovery rate [53]. Corrected
Pvalue <0.05 and [log 2 foldchange| >2 were established
as the threshold for significant DE.

2.6. Kyoto Encyclopedia of Genes and Genomes Analysis and
Gene Ontology Analysis on Differentially Expressed mRNAs.
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis of DE mRNA was conducted using
DAVID 6.8 [54] with default parameters to ascertain the
potential functions of genes that participate in cancer pro-
gression of LSCs and LTCs, separately. Gene ontology
(GO) analysis was performed based on Metascape 3.5 web-
sites [55], which organized genes into hierarchical categories
and uncovered the gene regulatory network using the data-
base of the most recent biological processes. The P value
was adjusted using the Benjamini and Hochberg method to
control the false discovery rate and to identify significant
KEGG pathways and GO terms.

2.7. Analysis of the CeRNA Network and Survival Analysis.
LncRNA-mRNA co-location networks were predicted and
performed based on the parameters of the upstream and
downstream 100 kb distance of DE IncRNAs.

Prediction of miRNA target gene was performed on
miRanda [56], PITA [57], and RNAhybrid [58], separately.
The overlapping results of miRNAs and mRNAs pairs using
the three software algorithms provided the final pairings.
Concurrently, miRNA target prediction of IncRNAs/cir-
cRNAs was performed by miRanda.

The ceRNA networks were constructed using Cytoscape
3.9.0 [59], and the hub modules in the ceRNA networks
were identified using MCODE 2.0.0 [60], a Cytoscape 3.9.0
plug-in, with default parameters. Each molecule of those
hub modules was identified using the UALCAN website
and the InCAR website to obtain known hub molecules.

According to the location of the novel molecules and
using the gene symbols of known molecules, survival analy-
sis was performed using the UALCAN website [61] and the
InCAR website [62] with default parameters.
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3. Results

3.1. Identification of Novel and Known miRNAs and
Differentially Expressed miRNAs in LSCs and LTCs. Two
LSC samples (ALDH+ H1975 LUAD tumor cells (LSC1-
m) and ALDH+ H1975 LUAD tumor cells (LSC2-m)) and
two LTC samples (ALDH-H1975 LUAD tumor cell
(LTC1-m) and ALDH-H1975 LUAD tumor cells (LTC2-
m)) were obtained as described in our previous study [11].
Raw miRNA data were obtained using the Illumina Hiseq
2500/2000 platform, and 50-bp single-end reads were gener-
ated. Sequencing reads of small RNA tags (~18-30nt)
extracted from raw reads were 16.62Mb (LTCIl-m),
17.93Mb (LTC2-m), 15.58 Mb (LSCl-m), and 11.82 Mb
(LSC2-m), respectively. The correlation between these four
samples is shown in Figure 2(b). MiRNAs expression land-
scape analysis on sequencing reads was performed to dissect
the distribution of ncRNAs, to predict novel miRNAs, also
known as miRNAs and DE miRNAs. Of these, at least
91.61% of the total small RNA tags were perfectly mapped
to the Hg38.94 genome in the four tumor samples. Interest-
ingly, more than 55.74% of the small RNA tags in LTC2-m
were mapped to known miRNAs, and only 0.01% of those
small RNA tags were predicted to be novel miRNAs. In con-
trast, the percentage of known miRNAs in LSC2-m was only
32.5%, while the percentage of novel miRNAs was only
0.02%. The remaining small RNA tags were assigned to rRNA,
tRNA, snoRNA, and exons (Supplementary Table S1.1). The
most abundant class of small RNA tags was miRNAs,
followed by other (Figure 2(a)). Overall, 100 new miRNAs
and 1379 known miRNAs were obtained (Figure 2(c)). The
base bias at the first position (based on 22nt) and all the
positions of the identified miRNAs (~18-30nt) were similar
in the new miRNAs and the known miRNAs (Figure 2(d);
Figure S1). These predicted novel miRNAs and known
miRNAs (Figure 2(e); Table S1.3) were used for the
subsequent analysis. The overview of the study flow is shown
in Figure 2 and Supplementary Figure S1.

A total of 954 common miRNAs were obtained in the
two groups (LSCs contained LSC1-m/LSC2-m and the
LTC group consisted of LTC1-m/LTC2-m). A total of 208
specific miRNAs were expressed in the LSC group, and 196
specific miRNAs were expressed in the LTC group
(Figure 2(f)). Of these, 53 upregulated miRNAs and 27
downregulated miRNAs were identified (Figure 2(g)).

3.2. Identification of Novel and Known IncRNAs/circRNAs
and DE IncRNAs/circRNAs, mRNA Identified in LSCs and
LTCs. Raw data relative to IncRNAs/circRNAs/mRNAs were
retrieved from our previous study [11]. Reads were sequenced
using the [lumina Hiseq2500 platform as 125bp pair-end
reads. The correlation between the four samples evaluated is
shown in Figure 1(a). Approximately 79.3 Mb pair-end reads
were obtained, 93.45% of which could be matched to the
Hg38.94 genome. Subsequently, the distribution of known
transcripts was identified using HTseq software. Approxi-
mately 79.64% of the reads were in protein-coding genes,
and 4.12% was known IncRNAs for a total of 3091 known
IncRNAs (Figures 1(b) and 1(h)). Meanwhile, 188,945 new
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transcripts were assembled using HISAT2 and StringTie.
Based on the assembled transcripts and known transcripts,
a total of 6487 novel IncRNAs were identified using a specific
bioinformatics pipeline A (Figures 1(c) and 1(h); Methods
2.4). The most abundant size class of known IncRNAs con-
sisted of antisense IncRNAs (37%) and lincRNAs (31%),
and the novel IncRNAs were intronic IncRNAs (77%)
(Figure 1(f)). In addition, from these short reads, 681 known
circRNAs and 173 novel circRNAs (Figure 1(h)) were identi-
fied using the in-silico pipeline B (Figure 1(d); Methods 2.4).
Most of the circRNAs were located in exon regions
(Figure 1(i)). Of these, 630 circRNAs were identified
(Figure 1(j)) in two groups. A total of 155 circRNAs were
only expressed in LTCs, while 68 circRNAs were only
expressed in LSCs.

3.3. Differential Expression Analysis and Annotation
Analysis. Quantitative analysis on mRNAs/IncRNAs was
performed using Cufflinks software (Figures 1(e) and 1(g)),
and Cuftdiff was used for DE analysis on IncRNAs, yielding
16 upregulated IncRNAs, 18 downregulated IncRNAs, 378
upregulated mRNAs, and 364 downregulated mRNAs
(Padj < 0.05 and |log 2 (Fold Change)| = 2). Meanwhile, DE
analysis was conducted on circRNAs using DESeq2 soft-
ware, and 54 upregulated circRNAs and 60 downregulated
circRNAs (Padj < 0.05 and |log 2 (Fold Change)| > 2) were
obtained.

KEGG analysis was performed to identify the potential
molecular pathways that regulate LSCs and LTCs. Upregu-
lated gene sets and downregulated gene sets were analyzed
separately. The results of KEGG analysis identified common
pathways (Figure 3(a)) in LTCs and LSCs, which showed the
commonality between LSCs and LTCs, such as pathways in
cancer, the MAPK signaling pathway, and the PI3K-Akt sig-
naling pathway. KEGG analysis of upregulated gene sets
(Figure 3(c)) included pathways, such as steroid biosynthe-
sis, fatty acid metabolism, antigen processing and presenta-
tion, fatty acid degradation, inflammatory bowel disease
(IBD), biosynthesis of antibiotics, HTLV-I infection [63],
and drug metabolism-other enzymes, which may be related
to immune evasion [64] and poor prognosis [63] in LUAD.
Other pathways (Figure 3(b)), which were enriched by
upregulated gene sets included cell cycle, osteoclast differen-
tiation, progesterone-mediated oocyte maturation [65], and
hippo signaling pathway, and these may be involved in can-
cer proliferation and cancer cell heterogeneity [66].

With screening criteria using the Pvalue<0.01, GO
analysis was conducted on upregulated DE mRNAs and
downregulated DE mRNAs, separately; then, hierarchical
clustering on GO analysis was performed. Nine clusters of
GO terms were found based on downregulated gene sets,
and 12 clusters of GO terms were found based on upregu-
lated gene sets (Figures 3(d) and 3(e)). The nine clusters
included cell fate commitment, positive regulation of pro-
grammed cell death, intrinsic apoptotic signaling pathway,
cell junction organization, actin cytoskeleton organization,
regulation of cell-substrate adhesion [67], positive regulation
of cell migration, and regulation of I-kappaB kinase/NF-
kappaB signaling [68], which may play a vital role in cell
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terms in downregulated gene sets; and (e) clusters of GO terms in downregulated gene sets.

migration, cell apoptosis, and cell communication as
described in previous studies [69]. Clusters of GO terms
based on upregulated gene sets were enriched in the mitotic
cell cycle, DNA replication initiation, telomere maintenance,
regulation of cell morphogenesis, homeostasis of the number
of cells, cell morphogenesis involved in differentiation, cell
junction organization, positive regulation of alpha-beta T
cell activation, and steroid biosynthetic process, which may
be linked to cancer growth, cancer proliferation, metastasis,
and immune evasion.

3.4. Target Prediction and Integrative Analysis of Competitive
Endogenous RNA (ceRNA) Networks. Of the 742 DE mRNAs
and 80 DE miRNAs, the target mRNAs of miRNAs were
predicted using miRana, PITA, and RNAhybrid, separately.
The overlapping results in the three software algorithms rep-
resented the final results. Of the 32 DE IncRNAs, 115 DE cir-
cRNAs, and 80 DE miRNAs, miRanda was used to search
for the target IncRNAs/circRNAs of miRNAs. In addition,
target mRNAs of IncRNAs were searched by scanning cod-
ing genes 10k/100 k upstream and downstream of IncRNAs,
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semicircle, inhibition or degradation, respectively; light green line or arrow, promotion. A large or small shape (green arrow/orange
circle/purple rhombus) indicates upregulation or downregulation, respectively.

and 12 IncRNA-mRNA pairs were obtained. Finally,
ceRNA networks were constructed with 420 pairs, which
consisted of 90 DE mRNAs, 80 DE miRNAs, and 32 DE
IncRNAs/96 DE circRNAs (Table S5.1: ceRNA-pairs;
Table S5.2: ceRNA-node-information). The 80 DE miRNAs
included 78 known miRNAs and 2 novel miRNAs; the 32
DE IncRNAs included 8 known IncRNAs and 24 novel
IncRNAs; and the 96 DE circRNAs included 73 known
circRNAs and 32 novel circRNAs (Table S5.2: ceRNA-
nodes-information). The 420 pairs included 363 pairs
comprising known molecules. The remaining pairs mostly
involved novel molecules. Based on the StarBase v3.0 [70]
website, 280 pairs were identified, which contained most of
the known ncRNAs and mRNAs that have been described
previously. Interestingly, based on the ceRNA networks
constructed using Cytoscape, we determined that the
network could be divided into two subpopulations (Figure 4)
yielding two subnetworks that satisfied the ceRNA theory.
That is, the right subnetwork in Figure 4 included
downregulated miRNAs, upregulated mRNAs, and IncRNA/
circRNAs, while the subnetwork on the left one consisted of
upregulated miRNAs, downregulated mRNAs, and IncRNA/
circRNAs.

To reveal different pathways based on DE mRNAs in the
ceRNA network of LSCs and LTs, GO analysis was per-
formed on 33 upregulated genes and 54 downregulated
genes. The results are shown in Figures 5(a) and 5(b). The

GO terms of downregulated gene sets clustered in cell junc-
tion, localization of cell, cell motility, cell migration, locomo-
tion, intracellular signal transduction, endocytosis, and
extracellular matrix terms. These enriched GO terms were
similar to those of upregulated gene sets, including cell adhe-
sion, positive regulation of signaling transduction, vesicle-
mediated transport, lysosome, regulation of secretion, cell
migration, locomotion, localization of cell, and cell motility.
The remaining GO terms in the upregulated gene sets were
cell growth, cell differentiation, cell junction assembly, cell
morphogenesis, and cell proliferation [71].

Next, the hub modules in ceRNA networks were identi-
fied using the Cytoscape plug-in: MCODE with default
parameters. Four main hub modules were obtained as
shown in Figure 5(c).

A clustering heat map was developed for all 11 mRNAs
in the four modules (Figure 5(d)). Among these genes, two
S100A8 transcripts and one S100A9 transcript were signifi-
cantly upregulated and all were regulated by the same two
novel IncRNAs (LNC_000305 and LNC_000605). We then
listed all genes/RNAs in the four hub subnetworks based
on the results of the Cytoscape plug-in MCODE. According
to the location of the novel molecules and using the gene
symbols of known molecules, a survival analysis was per-
formed including all the molecules obtained in the four
hub modules in lung adenocarcinoma patients using the
UALCAN website and the InCAR website. Then, based on
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and normal tissue.

the survival analysis from the UALCAN website and the
InCAR website, the survival curves of a novel IncRNA and
the mRNAs, LNC_00236, and TUFT1, which belonged to
the same submodule, were constructed (Figures 5(c) and
6(a)-6(c)). The rest of the molecules from the same submo-
dule are unknown, according to the UALCAN website and
the InCAR website. The three curves revealed that expres-
sion of TUFT1 and LNC_00236 was associated with the
overall survival of patients with LUAD. In addition, LNC_
00236 was highly expressed in 40 patients with LUAD and
may represent a potential prognostic biomarker. Further-

more, the remaining novel IncRNAs may represent a poten-
tial resource for future research into prognostic biomarkers
(Figure 6(d)).

4. Conclusions

Our study identified novel miRNAs, IncRNAs, and cir-
cRNAs, which represent an essential and crucial resource
in understanding the underlying biology of LUAD. Specifi-
cally, the study provided a detailed dissection of the constit-
uents and functional properties of differentially expressed
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miRNAs, mRNAs, IncRNAs, and circRNAs between ALDH
+ H1975 LSCs and ALDH- H1975 LTCs. Based on these
data, an interaction network of differentially expressed miR-
NAs, mRNAs, and IncRNAs/circRNAs was constructed to
investigate the potential novel regulatory mechanism. The
findings of this meta-analysis provide comprehensive and
systematic information on the underlying hallmarks distin-
guishing LSCs and LTCs and the pathogenesis of LUAD
from the perspective of lung CSCs. This study also provides
a rationale for further experimental validation of these regu-
latory mechanisms and their role in the prognosis of LUAD
and as therapeutic biomarkers of LUAD.

5. Discussion

CSCs, as a rare cell population of cancers, display a broad
spectrum of functional heterogeneity [12]. They exhibit sim-
ilar properties as normal stem cells, such as self-renewal,
asymmetric cell division, and evasion of apoptosis [14],
which enable them to initiate cancers, promote cancer
growth, metastasis, and relapse [6]. Experimental evidence
from previous studies [10] and our most recent study [11]
indicated that ALDH+ H1975 LSCs are the key CSCs that
proliferate extensively and form new tumors, while the
remaining cancer cells lack this ability. The activities of LSCs
are diverse [15]. For example, exosomes from LSCs are asso-
ciated with cell proliferation, migration, adhesion, and cell-
cell communication [11]. Furthermore, several pathways
are associated with cell cycle kinetics, DNA repair, and
mRNA expression of multidrug-resistance genes in CSCs
that promote oncogenic resistance to chemotherapy and
drugs [72]. In addition, steroid biosynthesis of T cells
induced from the microenvironment in CSCs and resident
cancer cells may lead to immune evasion [64]. The above
functions of LSCs may be broadly regulated by ncRNAs,
such as miRNAs [20], IncRNAs, and circRNAs [26]. Fur-
thermore, identification of known and unknown biomarkers
of ncRNAs and their systematic and comprehensive interre-
lation with unknown ncRNAs and mRNAs may also be nec-
essary to provide insights into the function of LSCs. Herein,
we provide, for the first time, the ncRNA expression profile,
including known and unknown miRNAs, IncRNAs, and cir-
cRNAs of LSCs and LTCs.

The gene expression profile of LSCs reflects the proper-
ties of LSCs that drive tumorigenesis. The regulatory mech-
anisms of mRNAs are associated with ncRNAs [26].
Therefore, a meta-analysis on ncRNAs and their relative reg-
ulated mRNAs is needed to enhance understanding of the
underlying regulatory mechanisms of LSCs. In the current
study, the detailed constituents and functional properties
of LSCs were dissected from ceRNAs, GO enrichment, and
KEGG pathway analyses. GO enrichment based on all DE
mRNAs confirmed that (a) clusters of GO terms based on
upregulated gene sets were closely related to processes such
as DNA repair, the mitotic cell cycle, cell morphogenesis
involved in differentiation, cell junction, positive regulation
of alpha-beta T cell activation, and steroid biosynthesis.
These pathways were highly correlated with the function of
LSCs in oncogenic resistance to chemotherapy and drugs
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[72] and immune evasion [64]. In addition, (b) clusters of
GO terms based on downregulated gene sets were closely
related to the commitment of cell fate, the positive regula-
tion of programmed cell death, and cell adhesion. These
pathways may play a vital role in cell migration and cell apo-
ptosis. Likewise, LSCs and LTCs are cancer cells. Thus, they
have the traits of cancer cells and may share common
cancer-related signaling pathways, which is comparable with
our results in the KEGG pathway analyses based on all DE
mRNAs.

In ceRNAs and relative GO enrichment analysis, two pre-
dominant properties were uncovered. First, the GO terms of
downregulated gene sets are clustered in cell-cell communica-
tion, such as cell junction, localization of the cell, cell motility,
intracellular signal transduction, endocytosis, and the extracel-
lular matrix, which are mechanisms that may be linked to cell
communication, the tumor microenvironment, exosomes, and
cancer metastasis [73]. These GO terms were similar to our pre-
vious study, that is, communication between cells, such as
LSCs-LTCs and LTCs-LTCs, and they may depend on exo-
somes secreted by neighboring cells, which ultimately lead to
altered cell functions, such as cell migration and proliferation
of cancer cells. Second, the GO terms of upregulated gene sets
also clustered in fatty acid-binding, positive regulation of the
defense response, Ras protein signal transduction, the defense
response, and the innate immune response. These GO terms
may influence the immune resistance of LSCs, such as immune
evasion, and may eventually be associated with a poor progno-
sis, as suggested above. The remaining GO terms in the upreg-
ulated gene sets involved pathways such as cell growth, cell
differentiation, cell junction assembly, cell morphogenesis, and
cell proliferation, which are closely related to the stemness of
LSCs [73]. The ncRNAs associated with these terms and path-
ways may play a vital role in regulating the relative expression
of mRNAs. These findings will provide a guide for future exper-
imental verification of key ncRNAs and the identification of
efficient biomarkers for cancer therapy and diagnosis. The three
mRNAs (two S100A8 transcripts and one S100A9 transcript)
from MCODE analysis were associated with several regulatory
functions, such as regulation of defense response, regulation of
NEF-kappaB transcription factor (TF) activity, and the Toll-like
receptor signaling pathway. Furthermore, SI00A9 was corre-
lated with a poor prognosis in LUAD [11].

In summary, the novel ncRNA transcripts and the over-
all profile-based meta-analysis of our study provide a com-
prehensive description of the biological molecular
composition and properties of LUAD CSCs. We have dis-
sected what is known and unknown about LSCs to provide
a therapeutic perspective on these findings.
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