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Abstract
Obesity hypoventilation syndrome (OHS) is defined as daytime hypercapnia in obese individuals in the absence of 
other underlying causes. In the United States, OHS is present in 10%–20% of obese patients with obstructive sleep 
apnea and is linked to hypoventilation during sleep. OHS leads to high cardiorespiratory morbidity and mortality, and 
there is no effective pharmacotherapy. The depressed hypercapnic ventilatory response plays a key role in OHS. The 
pathogenesis of OHS has been linked to resistance to an adipocyte-produced hormone, leptin, a major regulator of 
metabolism and control of breathing. Mechanisms by which leptin modulates the control of breathing are potential 
targets for novel therapeutic strategies in OHS. Recent advances shed light on the molecular pathways related 
to the central chemoreceptor function in health and disease. Leptin signaling in the nucleus of the solitary tract, 
retrotrapezoid nucleus, hypoglossal nucleus, and dorsomedial hypothalamus, and anatomical projections from these 
nuclei to the respiratory control centers, may contribute to OHS. In this review, we describe current views on leptin-
mediated mechanisms that regulate breathing and CO2 homeostasis with a focus on potential therapeutics for the 
treatment of OHS.
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Statement of Significance
Obesity hypoventilation syndrome (OHS) leads to high cardiorespiratory morbidity and mortality. There is no pharmaco-
therapy for OHS. Leptin resistance is implicated in the pathogenesis of OHS. Leptin stimulates control of breathing and 
relieves OHS in obese rodents. In this review, we discuss the respiratory neurobiology of leptin and the relevance of leptin 
signaling in specific brain areas to the pathogenesis of OHS.
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Introduction

Obesity causes significant respiratory morbidity, including 
sleep-disordered breathing (SDB) [1]. Obstructive sleep apnea 
(OSA) is the most common type of SDB [2–6]. OSA is defined as 
an intermittent upper airway collapse caused by impaired upper 
airway anatomy and reduced upper airway dilator muscle tone 
during sleep [7, 8]. OSA is manifested by recurrent inspiratory 
flow limitation, obstructive apneas, and hypopneas that cause 
intermittent hypoxemia and hypercapnia, multiple arousals, 
and sleep fragmentation. The prevalence of OSA varies based 
on the threshold of the apnea-hypopnea index, defined as a 
number of apneas and hypopneas per hour of sleep. Using an 
apnea-hypopnea index ≥ 5 events/hour, approximately 54 mil-
lion Americans (33.2% of the adult US population) have OSA [9]. 
Moderate-severe OSA, defined as an apnea-hypopnea index ≥ 15 
events/hour, is present in 23.7 million Americans (14.5% of the 
adult US population). The global burden of OSA has been esti-
mated between 425 million to 936 million people [9]. Obesity is 
by far the most common risk factor for OSA. The prevalence of 
OSA in obese individuals exceeds 50% [2, 4, 5, 10, 11].

Another obesity-induced type of SDB is obesity hypoventi-
lation syndrome (OHS). OHS is defined as daytime hypercapnia 
(arterial carbon dioxide partial pressure, PaCO2 ≥ 45 mmHg at 
sea level) in obese patients (body mass index ≥ 30  kg/m2) in 
the absence of an alternative explanation for hypoventila-
tion [12]. OHS is present in 10%–20% of obese OSA patients 
[13]. Although the prevalence of OHS in the community is 
unknown, it can be estimated. According to the Centers for 
Disease Control and Prevention, 8% of the US adult popu-
lation has severe obesity (body mass index ≥ 40  kg/m2) [14]. 
According to the most conservative estimates, 50% of adults 
with severe obesity have OSA and approximately 10% of the 
patients with severe obesity and OSA have OHS, the preva-
lence of OHS in the general adult population would be ap-
proximately 0.4% (one out of 260). Approximately 70% of OHS 
patients have severe OSA [15], defined by an apnea-hypopnea 
index ≥ 30 events/hour. Continuous positive airway pressure 
can be effective in reversing hypercapnia in patients with 
OHS and concomitant severe OSA [16]. Noninvasive ventila-
tion, typically delivered as bilevel positive airway pressure or 
volume-targeted pressure support, is the treatment of choice 
for patients with OHS with mild OSA or no OSA. Noninvasive 
ventilation is also widely used in OHS patients recovering 
from acute hypercapnic respiratory failure, and in those with 
residual hypercapnia despite adequate continuous positive 
airway pressure treatment [17]. Although patients with OHS 
have better adherence to positive airway pressure therapy 
(continuous positive airway pressure or noninvasive venti-
lation) compared to eucapnic OSA, adherence in many pa-
tients remains suboptimal leading to persistent hypercapnia 
[18]. Untreated or suboptimally treated OHS leads to high 
morbidity and mortality [19] with an all-cause mortality of 
24% after 18  months of follow-up [15], 18% at 1  year, and 
31.3% at 3 years [20, 21]. While some of these patients were 
treated with positive airway pressure therapy after hospital 
discharge, such high mortality rates should be an impetus 
to explore alternative or complementary effective therapies. 
A thorough understanding of the mechanisms of disease will 
be critical in accelerating the discovery of effective and safe 
pharmacotherapeutic approaches to OHS and OSA.

Leptin and Leptin Resistance
Several mechanisms have been implicated in the pathogen-
esis of OHS including respiratory muscle weakness, small lung 
volumes, and disbalance between CO2 production and elimin-
ation [19]. Nevertheless, impaired control of breathing plays 
a key role. Research in respiratory neurobiology of leptin and 
leptin resistance has been facilitated by the development of 
animal models of OHS [22–25]. Effects of leptin on the con-
trol of breathing were discovered in the 1990s using animal 
models of leptin-deficient and leptin-resistant obesity [22, 26]. 
Clinical data suggest that OSA may increase leptin levels and 
aggravate leptin resistance [27].

Resistance to respiratory effects of leptin, an adipocyte-
produced hormone regulating metabolism and control of 
breathing, is implicated in the OSA and OHS [19, 28, 29]. 
Major development occurred in respiratory neurobiology 
over the last two decades [30], but the novel fundamental 
findings have not been translated into clinical advances. In 
this review, we attempt to connect physiology literature on 
respiratory effects of leptin and state-of-the-art respiratory 
neurobiology.

Leptin is a 16-kDa protein encoded by the ob gene, which 
was discovered by Dr. Jeffrey Friedman’s laboratory in 1994 [31]. 
Leptin is predominantly produced by adipocytes and plays a 
role as a pleiotropic hormone suppressing appetite, increasing 
metabolic rate [32–34], stimulating control of breathing [22, 
26, 35], and improving upper airway patency during sleep [24]. 
Leptin-deficient ob/ob mice are severely obese, hyperphagic, 
hypometabolic, and their obesity is treatable by leptin. Ob/
ob mice hypoventilate during sleep and wakefulness, have a 
higher PaCO2 and lower hypercapnic ventilatory sensitivity, recurrent 
hypopneas during REM sleep treatable by leptin [23, 26, 36]. Leptin 
deficiency in humans also leads to severe obesity treatable by 
leptin, but it is exceedingly rare [37].

There are six isoforms of leptin receptors, but all cen-
tral metabolic and respiratory effects of leptin in the brain 
occur via its action on the long isoforms Ob-Rb or LEPRb [22, 
35, 38–41]. After binding to this receptor, leptin activates 
receptor-associated Janus kinase 2 and phosphorylates signal 
transducer and activator of transcription 3 (STAT3). pSTAT3 
dimerizes and translocates to the nucleus where it activates 
proopiomelanocortin gene transcription [28, 42]. Leptin al-
ters neuronal excitability in several cell types due to a myriad 
of cellular mechanisms. Leptin hyperpolarizes neuropeptide 
Y-expressing neurons in the hypothalamic arcuate nucleus 
via activation of ATP-sensitive potassium channels [43]. Leptin 
depolarizes hippocampal neurons by activating transient re-
ceptor potential-canonical channels [44]. Despite the growing 
evidence of the role of leptin in the control of breathing, the 
cellular mechanisms are not fully understood.

In the most common form of human obesity caused by posi-
tive energy balance, leptin levels are increased in proportion 
to the adipose mass [45, 46]. Obese people and mice with diet-
induced obesity remain hyperphagic, despite high leptin levels, 
and are resistant to the beneficial respiratory and metabolic ef-
fects of leptin. A previous study suggests that leptin may play 
a role in linking ventilation to metabolism [47]. Obese patients 
and rodents develop SDB and are resistant to the respiratory ef-
fects of the hormone. The resistance to leptin in obesity may 
contribute to a variety of respiratory diseases, including OHS 
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[19]. Resistance to central effects of leptin is attributed to limited 
permeability of the blood-brain barrier to leptin and impaired 
LEPRb signaling [46–51]. LEPRb dysfunction is mediated by several 
mechanisms including upregulation of the suppressor of cyto-
kine signaling 3 and protein tyrosine phosphatase 1B [52–54]. 
Our study in diet-induced obese mice suggests that resistance 
to central respiratory effects of leptin on hypercapnic sensitivity 
occurs at the blood-brain barrier level [25]. Leptin-deficient ob/
ob and leptin-resistant mice with diet-induced obesity have in-
creased upper airway collapsibility, inspiratory airflow limita-
tion, and OSA as well as OHS [23, 24]. Systemic (subcutaneous 
or intraperitoneal) leptin abolished OSA and OHS in ob/ob mice 
[23], but had no effect in diet-induced obese mice [55]. In con-
trast, intranasal leptin, which delivers leptin to the brain [56], 
circumvented the blood-brain barrier and abolished OSA and 
OHS in obese mice [55]. Therefore, LEPRb in the brain is an im-
portant therapeutic target in OSA and OHS, but the localiza-
tion of leptin-sensitive respiratory neurons remains uncertain 
(Figure 1).

Leptin in Experimental Models of Obesity 
Hypoventilation Syndrome
Studies in animal models of obesity showed that perturbation of 
leptin pathways compromises the control of breathing. Leptin-
deficient obesity is very uncommon in humans, but studies in 
the only rodent model of leptin-deficient obesity, ob/ob mice, 
provided significant insight in the physiology of OHS and SDB 
in general [26, 36]. Ob/ob mice have a recessive mutation in the 
ob gene, which prevents leptin biosynthesis [31]. Ob/ob mice 
weigh on average 58.2 ± 3.6g at 16 weeks of age. Exogenous 
leptin administration reversed the effects of the ob gene mu-
tation resulting in decreased food intake, increased energy ex-
penditure, and weight loss [57–59]. Ob/ob mice hypoventilate 
during sleep [26, 36] and leptin infusion increased minute ventila-
tion in wakefulness, NREM, and specifically in REM sleep, which was 
independent of the food intake, body weight, and CO2 production 
[26]. Intracerebroventricular administration of leptin markedly 
improved baseline ventilation and hypercapnic ventilatory re-
sponses in ob/ob mice and this effect was attributed to leptin 

Figure 1.  Schematic representation of leptin-mediated neural targets in obesity hypoventilation syndrome (OHS). The experimental models of OHS allowed the study of 

the effects of leptin on the control of breathing acting in leptin receptor (LEPRb) positive cells. Brain blood barrier (BBB). Central nervous system (CNS). Nucleus tractus 

solitarii (NTS). Retrotrapezoid nucleus (RTN). Hypoglossal nucleus (12 N). Dorsomedial hypothalamus (DMH). pre-Bötzinger complex (pre-BötC). Bötzinger complex 

(BötC). Caudal ventral respiratory group (cVRG). Rostral ventral respiratory group (vVRG).
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deficiency rather than obesity [60]. Microinjection of leptin into 
the ventrolateral medulla of ob/ob mice increased minute ventila-
tion, tidal volume, and respiratory response to hypercapnia [22]. 
Subcutaneous administration of leptin in ob/ob mice increased 
inspiratory airflow and minute ventilation in flow-limited and 
nonflow limited breaths in REM as well as NREM sleep as a re-
sult of increased tidal volume [23]. Intracerebroventricular ad-
ministration of leptin to the lateral versus fourth ventricle of 
ob/ob mice showed that both routes of leptin administration 
increased minute ventilation during nonflow-limited breathing 
during sleep, while inspiratory flow limitation and obstructive 
hypopneas were attenuated by leptin administration to the 
lateral but not to the fourth cerebral ventricle. Given that the 
cerebrospinal fluid flow is rostrocaudal, these findings indicate 
that leptin relieves upper airway obstruction in sleep apnea by 
activating the forebrain and leptin upregulates ventilatory con-
trol through sites of action located in the medulla [24].

In contrast to leptin deficiency, leptin-resistant obesity is 
very common. There are multiple rodent models of leptin-
resistant obesity. LEPRb-deficient, db/db mice have spontan-
eous point mutations in the gene encoding the leptin receptor 
leading to leptin resistance [61, 62]. Db/db mice weigh on average 
54.3 ± 3.8g at 16 weeks of age. In db/db mice, exogenous leptin 
administration caused no significant changes in food intake 
and body weight [63]. Db/db obese mice hypoventilate with de-
creased minute ventilation during sleep and elevated PaCO2 
while awake [35].

Agouti yellow (Ay) mice model moderate obesity. Ay mice have 
a dominant mutation in the Agouti locus [64]. The agouti gene is 
also known to be involved in the inhibition of the melanocortin-
4-receptor (MC4R) which is involved in the downstream pathway 
of leptin that leads to decreased hunger, diminished fat storage 
in adipocytes, and increased energy expenditure [65]. Ay mice 
weigh on average 39 ± 2g at 16 weeks of age. Exogenous leptin 
administration showed little to no changes in food intake and 
body weight [66, 67]. Baseline ventilation of Ay mice was signifi-
cantly lower compared to control mice across all sleep/wake 
stages. The hypoxic ventilatory response was not affected in Ay 
mice, while hypercapnic sensitivity was depressed during NREM 
sleep, but not during wakefulness or REM sleep [68].

New Zealand Obese mice model polygenic-spontaneous 
obesity [69]. New Zealand Obese mice were generated by 
inbreeding from a mixed population with selection for obesity. 
New Zealand Obese mice weigh on average 67 ± 0.4 g at 16 weeks 
of age [70]. New Zealand Obese mice are resistant to the meta-
bolic effects of leptin and they are hyperphagic, obese, and have 
decreased energy expenditure when administered leptin [33, 71, 
72]. New Zealand Obese mice are predisposed to SDB due to al-
tered upper airway anatomy marked by an increased size of the 
tongue, lateral pharyngeal walls, soft palate, and parapharyngeal 
fat pads, which leads to a reduction in the upper airway size 
and flow limitation [73–75]. Systemic leptin receptor blockade 
in New Zealand Obese mice did not affect minute ventilation 
during NREM and REM sleep and hypoxic ventilatory response 
[76].

Diet-induced obese mice are C57BL/6J mice fed with high-fat 
diet to induce obesity. These mice weigh on average 43 ± 0.3 g at 
16 weeks of age. Diet-induced obese mice are leptin resistant due 
to the poor permeability of the blood-brain barrier for leptin [49, 
77–79]. These mice have inspiratory flow limitation and hypo-
ventilate during sleep, which leads to high PaCO2 in wakefulness 

[25]. Diet-induced obese mice do not respond to intraperitoneal 
leptin due to poor permeability of the blood-brain barrier, while 
intranasal leptin increases ventilation in NREM and REM sleep 
[55].

Zucker rats are the most widely used rat model of genetic 
obesity. Zucker rats have a missense mutation in the leptin re-
ceptor leading to leptin sensitivity [80]. Zucker rats weigh on 
average 500 g at 16 weeks of age [81]. Intracerebroventricular in-
jection of leptin in Zucker rats did not reduce food intake and 
body weight [82, 83]. These animals have blunted hypercapnic 
ventilatory response [84]. The data on the hypoxic ventilatory 
response are contradictory with one group of investigators 
reporting no effect [84], whereas others report that hypoxic 
ventilatory response was reduced and this reduction was abol-
ished by carotid body denervation [85]. Diet-induced obese 
Sprague-Dawley and Wistar rats have also been used as a model 
of leptin resistance. When leptin was administered through 
intracerebroventricular injection, obese Sprague-Dawley rats 
decreased food intake [86].

Leptin plays a key role in the pathogenesis of OSA through 
central regulation of upper airway patency [87]. Animal models 
of leptin deficiency and leptin resistance have defects in upper 
airway structural and neuromuscular control leading to in-
creased pharyngeal collapsibility and flow-limited breathing 
[23, 24]. The occurrence of upper airway obstruction in animal 
models of aberrant leptin signaling and the stimulating effects 
of exogenous leptin on the upper airway suggests that the im-
paired leptin axis plays a role in the pathogenesis of OSA [24]. 
However, the involvement of leptin in OHS has not received the 
same attention in the literature.

Multiple mechanisms contribute to the development of OHS, 
including aberrant pulmonary mechanics, upper airway closure 
during sleep, and leptin resistance [88–90]. During hypercapnic 
ventilatory response test, patients with OHS have blunted ven-
tilatory responses compared to obese patients without OHS 
[91], which indicates that they have an attenuation in the cen-
tral respiratory drive responsiveness, particularly during sleep. 
Clinically, OHS patients suffer from poor quality of life, have 
higher healthcare expenses, and are prone to develop pul-
monary hypertension and early mortality [19]. Experimental 
models shed light on mechanisms that cause hypoventilation 
during sleep, higher awake CO2, increased upper airway collaps-
ibility, inspiratory airflow limitation, and a decrease in CO2 cen-
tral chemosensitivity [25]. Novel plethysmographic recording 
methods allow monitoring high-fidelity airflow with the add-
ition of continuous pulse oximetry and respiratory effort sig-
nals measured continuously during sleep in mice [74]. These 
recording methods demonstrated recurrent hypopneas with 
oxyhemoglobin desaturations in leptin-deficient ob/ob mice and 
diet-induced obese mice during sleep, which indicated that the 
mouse models human OSA in addition to OHS [24, 25].

Leptin, Neural Control of Breathing and 
Central Chemoreceptors in OHS
Breathing is generated by neurons located in the ventral me-
dulla. This respiratory network is represented in Figure 1. The 
respiratory network includes a ventral respiratory group (VRG) 
composed of four subdivisions: Bötzinger complex (BötC, ex-
piratory neurons); pre-Bötzinger complex (pre-BötC, inspiratory 
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neurons); the rostral portion of the ventral respiratory group 
(rVRG, bulbospinal inspiratory neurons), and caudal portion 
of the ventral respiratory group (cVRG, bulbospinal expiratory 
neurons). Respiratory neurons located in the brainstem are syn-
aptically connected to other regions of the brain integrating in 
the network that coordinates the contraction and relaxation of 
thoracic and abdominal muscles and generates the eupneic re-
spiratory pattern [92, 93]. PaCO2 and pH, in turn, are precisely 
regulated in a narrow range even in the presence of environ-
mental challenges [94]. PaCO2 is determined by the ratio of CO2 
production and CO2 elimination by the lungs. Central respira-
tory chemoreceptors are specific neuronal and glial cells that 
detect small changes of pH/PaCO2 [95] and are involved in the 
regulation of breathing. The hypercapnia in OHS is entirely 
due to alveolar hypoventilation [19]. The lack of compensatory 
hyperventilation to higher PaCO2 suggests that OHS may lead 
to impaired hypercapnic sensitivity. Next, we will discuss puta-
tive sites at which leptin may act to regulate breathing and CO2 
homeostasis (Fig. 1).

Leptin, the nucleus of the solitary tract and OHS

Neurons with heterogeneous properties and functions are found 
in the nucleus tractus solitarii (NTS). NTS is located in the dorso-
lateral medulla, extending from the level of the caudal portion 
of the facial nucleus to the caudal portion of the pyramidal de-
cussation [96]. NTS is a crucial region of the brainstem that pro-
cesses afferent information from peripheral chemoreceptors 
in the carotid bodies and is also involved in the modulation of 
breathing [97]. LEPRbs have been detected in the NTS neurons 
[98, 99].

A single administration of leptin in the ventrolateral NTS 
increased the activity of the inspiratory muscles [40] as well 
as hypercapnic ventilatory responses in anesthetized rats 
[41]. A  recent study took advantage of the state-of-the-art 
optogenetic approach to activate specifically LEPRb positive NTS 
neurons in anesthetized and mechanically ventilated mice [47]. 
This study documented that the stimulation of LEPRb positive 
NTS neurons transiently increased phrenic nerve burst ampli-
tude and induced a transient depression in phrenic nerve burst 
frequency [47]. The mechanisms by which leptin acts in the NTS 
were thought to be via activation of the sodium leak channel de-
polarizing a subset of glutamatergic (VGluT2) LEPRb positive NTS 
neurons expressing the neuropeptide galanin. This study has 
also demonstrated that VGluT2-expressing LEPRb positive NTS 
neurons project to the brainstem inspiratory premotor region 
(rVRG) and dorsomedial hypothalamus (DMH), which are puta-
tive regions involved in the control of breathing and metabolism 
[47]. Using anesthetized and freely moving mice, Yu et al [100]. 
have shown that chemogenetic (designer receptor exclusively 
activated by designer drugs, DREADD) and optogenetic stimu-
lation of LEPRb positive NTS neurons also activate breathing. 
The authors suggested that leptin augments breathing via the 
NTS–lateral parabrachial nuclei–pre-Bötzinger complex circuit. 
The above studies in anesthetized and awake animals showed 
that leptin acts in the NTS to stimulate breathing, but they did 
not examine the duration of the leptin’s effect and relevance of 
these findings for SDB.

Given this evidence, we hypothesized that leptin acts on LEPRb 
positive neurons in the NTS to increase ventilation and main-
tain upper airway patency during sleep. We expressed DREADD 

selectively in LEPRb positive NTS neurons and performed sleep 
recordings in diet-induced obese mice, which demonstrate SDB 
remarkably similar to human OHS and OSA [25, 55]. Activation 
of LEPRb positive NTS neurons throughout sleep failed to stimu-
late control of breathing and upper airway function and did not 
relieve SDB [101] (Table 1). Thus, it appears that although leptin 
signaling in the NTS stimulates breathing, this effect appears to 
be transient and may not be relevant for long-term therapeutic 
action of this hormone in SDB.

Leptin, the retrotrapezoid nucleus (RTN) and OHS

The RTN is very sensitive to hypercapnia and is considered the 
major site through which ventilation is regulated by CO2 and pH. 
RTN neurons are glutamatergic, can be identifiable by the pres-
ence of Neuromedin B mRNA [95] and their intrinsic properties 
are consistent with those expected for specialized central re-
spiratory chemoreceptors. Selective stimulation of RTN neurons 
increased breathing without affecting arousals [104], a critical 
feature in the management of OSA and OHS. Previous studies 
showed that administration of leptin for three consecutive days 
into the rostral ventrolateral medulla, where the RTN is located, 
increased baseline ventilation and the ventilatory response to 
CO2 in ob/ob mice [22] (Table 1). Wei et al., examined if impaired 
leptin signaling in the RTN leads to obesity-related hypoventi-
lation [105]. The authors concluded that obesity-related impair-
ment of HCVR is closely associated with the disordered cellular 
leptin signaling in the RTN, even though breathing during sleep 
was not measured. In contrast, acute exposure to leptin did not 
change the activity of RTN chemosensitive neurons or astro-
cytes in brainstem slices from rats [28]. LEPRbs were not detected 
in the ventral medulla [99], where RTN neurons are located, 
hence it is likely that leptin does not stimulate RTN neurons 
directly. Rather these central respiratory neurons may receive 
inputs from LEPRbs neurons elsewhere. Taken together, current 
evidence indicates that monosynaptic or polysynaptic projec-
tions from LEPRb positive neurons elsewhere in the brain to the 
RTN may be necessary for stimulation of breathing during sleep 
and wakefulness. These RTN-projecting LEPRb neurons have to 
be identified in the future for leptin-targeted approach to OHS 
therapy.

Leptin, the dorsomedial hypothalamus (DMH) and OHS

Initial studies in our laboratory suggested that leptin may regu-
late control of breathing and upper airway function during sleep 
by acting in the DMH [24]. In a follow-up study we demonstrated 
that LEPRb expression in the DMH of db/db mice followed by 
intracerebroventricular leptin administration increased inspira-
tory flow, tidal volume, and minute ventilation during NREM sleep 
[35] (Table 1). DMH neurons are key regulators of metabolism. 
Notably, these neurons project to hypoglossal motoneurons [24] 
and may also be involved in maintaining upper airway patency. 
Altogether, our findings are consistent with the hypothesis that 
leptin stimulates control of breathing and CO2 sensitivity, and im-
proves upper airway patency during sleep by acting on LEPRb posi-
tive DMH neurons and their projections to respiratory neurons in 
the brainstem. Whether or not stimulation of DMH neurons in 
obese animals and, eventually in humans, may lead to relieving 
OHS, is an important area for future investigation.
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Table 1.   Targets of respiratory effects of leptin in animal models of OHS

Region References 
Animal model of 
OHS Methods Evidences 

Fourth ven-
tricle

Bassi et al., 2012 
[60]

Leptin-deficient 
(ob/ob) mice

Mice received leptin into the fourth 
ventricle for four consecutive 
days. Baseline ventilation and 
ventilatory responses to CO2 were 
measured using plethysmography.

Central leptin increased ventilation and 
ventilatory response to hypercapnia 
Subcutaneous leptin administration did 
not change ventilation and ventilatory 
response to hypercapnia. lean pair-
weighted ob/ob mice have impaired venti-
latory response.

Ventrolateral 
medulla

Bassi et al., 2014 
[22]

ob/ob mice Mice received microinjections of 
leptin for 3 days in the Ventro-
lateral medulla. Ventilatory 
responses to CO2 were measured 
using plethysmography.

Increased minute ventilation, tidal volume, 
and ventilatory response to hypercapnia

Fourth ven-
tricle and 
lateral 
ventricles

Yao et al., 2016 
[24]

ob/ob mice ICV administration of leptin fol-
lowed by polysomnographic 
recording

Leptin administration in the fourth ventricle 
and lateral ventricles increased minute 
ventilation during nonflow-limited 
breathing in sleep. Inspiratory flow limi-
tation were relieved by leptin adminis-
tration to the lateral but not to the fourth 
cerebral ventricle

Carotid 
bodies

Ribeiro et al., 
2018 [102]

Diet-induced 
obese Wistar 
rats

Intravenous leptin administration 
on ventilatory parameters in vivo. 
Leptin aplication on carotid sinus 
nerve activity ex vivo.

Leptin increases minute ventilation at the 
baseline and during hypoxia in control 
rats. In high-fat model, the effect of leptin 
in ventilation is blunted. High-fat rats 
presented an increased frequency of ca-
rotid cinus nerve at tha baseline, which is 
not affected by leptin.

Carotid 
bodies

Yuan et al.,  
2018 [85]

Obese Zucker 
rats

Ventilation was assessed  
in conscious obese Zucker rats or 

lean littermates that received an 
injection of leptin at the baseline 
and during hypoxia in control 
animais and rats with carotid 
body denervation.  

The expression of pSTAT3, as well as 
K + channel TASK-1 was evaluated 
in the carotid bodies.

Leptin signaling increases hypoxic ventila-
tory responses.Leptin administration is 
associated with changes in expression of 
pSTAT3 and TASK channels in the carotid 
bodies.

(?) Berger et al., 
2019 [55]

Diet-induced 
obese mice

A single dose of leptin or vehicle 
were administered intranasally 
or intraperitoneally, followed by 
sleep studies

Intranasal, but not intraperitoneal, leptin 
decreased the number of oxygen desatur-
ation events in REM sleep, and increased 
ventilation in non-REM and REM sleep.

Carotid 
bodies

Caballero‐Eraso 
et al., 2019 
[103]

C57BL/6J mice 
and LEPRb‐de-
ficient db/db 
mice

Subcutaneous leptin infusion 
followed by baseline minute ven-
tilation and the hypoxic venti-
latory response (HVR) to 10% O2 
measurementens in C57BL/6J mice 
before and after carotid bodies 
denervation. Expression of LEPRb 
in the carotid bodies of db/db mice 
followed by recording of breathing 
during sleep and wakefulness and 
on HVR

Leptin acts on LEPRb in the carotid bodies to 
stimulate breathing and HVR.

DMH Pho et al., 2021 
[35]

db/db mice Mice were infected with Ad-LepRb 
or control Ad-mCherry virus 
into the DMH. Ventilation was 
measured during sleep as 
well as CO2 production after 
intracerebroventricular (ICV) of 
leptin or vehicle

After leptin receptor expression in DMH of 
db/db mice, ICV leptin increased inspira-
tory flow, tidal volume, and minute venti-
lation during NREM sleep

NTS Amorim et al., 
2021 [101]

LEPRb-Cre diet-
induced obese 
mice

Designer receptors exclusively ac-
tivated by designer drugs were 
selectively expressed in the LEPRb 
positive neurons of the NTS The 
effect of DREADD ligand, J60, 
on tongue muscle activity and 
breathing during sleep was meas-
ured.

Activation of LEPRb positive NTS neurons 
did not stimulate breathing or upper 
airway muscles during NREM and REM 
sleep
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One potential pathway by which leptin may regulate 
breathing and metabolism in the DMH is via the melanocortin-4-
receptor (MC4R) [106]. MC4R is a G protein-coupled receptor that 
binds α-melanocyte-stimulating hormone and is downstream of 
the leptin pathway [107]. The majority of MC4Rs are localized in 
the paraventricular nuclei and the DMH [108]. Mutations in the 
MC4R gene are the most frequent cause of monogenic obesity 
[109]. We found that LEPRb positive DMH neurons express MC4R 
[35]. Thus, the MC4R is a highly relevant therapeutic target given 
that MC4R deficiency predisposes to SDB [110]; MC4R agonists 
have been effective in the treatment of obesity not limited to 
MC4R deficiency [111, 112], and the MC3/4 competitive antag-
onist SHU9119 [113] blocked effects of leptin on hypercapnic 
chemoreflex [114]. Altogether, these findings are consistent with 
the hypothesis the LEPRb positive DMH neurons that express 
MC4R are a possible therapeutic target stimulating breathing in 
OHS.

Leptin, the hypoglossal nucleus and OSA

Leptin replacement significantly increases ventilation during 
flow-limited breathing in ob/ob mice, indicating that leptin treat-
ment improves upper airway patency with a potential to treat 
OSA [23]. Genioglossus muscle is the principal upper airway 
dilator, which plays a major role in the maintenance of upper 
airway patency during sleep. This muscle is innervated by the 
hypoglossal nerve originating from the hypoglossal nucleus in 
the medulla. Hypoglossal motoneurons are a major drug target 
in OSA [115]. We have performed histological and in vitro elec-
trophysiological studies of hypoglossal motoneurons in Leprb-Cre 
mice. The application of the μ-opioid receptor agonist DAMGO 
significantly reduced excitatory postsynaptic currents (EPSC) 
frequency in hypoglossal motoneurons, but the focal application 
of leptin was restored EPSC frequency in these neurons [116]. 
Confocal microscopy showed that hypoglossal motoneurons 
did not express LEPRb, but were synaptically connected to LEPRb 
positive neurons [55]. These findings suggest that leptin acts on 
hypoglossal motoneurons presynaptically. Taken together with 
our in vivo sleep recording after intranasal leptin administration 
in mice, our findings imply that the LEPRb positive neurons pro-
jecting to the hypoglossal nucleus may promote upper airway 
patency and serve as a drug target in OSA. Precise localization 
and molecular characteristics of this population of LEPRb posi-
tive neurons in the brainstem remain unknown and is a partici-
pant of ongoing investigation in our laboratory.

Leptin and Peripheral Chemoreception 
in OHS
Carotid bodies are the main peripheral chemoreceptors located 
in the bifurcation of the carotid arteries. Carotid bodies are com-
prised of the oxygen-sensing glomus cells or type I  cells and 
glia-like type II cells [117]. The peripheral chemoreceptors are 
cells highly specialized in sensing not only O2 but also glucose, 
hormones, osmolarity, proinflammatory cytokines, and leptin. 
The chemoreceptor mechanism of carotid bodies in response to 
hypoxia is related to the closure of K + channels of glomus cells 
and increased intracellular Ca + 2. The first synaptic contact of ca-
rotid bodies afferents in the brain is located in the NTS, which 
in turn leads to a stimulation of breathing. LEPRb receptors are 

abundantly expressed in the carotid bodies type I  and type II 
cells [103]. Our publication has shown that leptin signals via 
LEPRb in carotid body type I cells increases carotid sinus nerve 
activity, augments the hypoxic ventilatory response, and in-
creases blood pressure. The effects of leptin on minute venti-
lation and HVR were abolished when the carotid bodies were 
denervated [103]. Expression of LEPRb in the carotid bodies of 
db/db mice stimulated minute ventilation at baseline and hyp-
oxic conditions while awake and augmented ventilation during 
REM and NREM sleep [103]. We have also shown that cardiovas-
cular effects of leptin are mediated via carotid bodies LEPRb and 
downstream transient receptor potential melastatin 7 (TRPM7) 
channels [118]. However, the role of leptin signaling in the ca-
rotid body in OHS in diet-induced obesity remains unclear [85, 
102].

Is Leptin the Only Respiratory Hormone?
Leptin stimulates breathing and is a promising therapeutic 
target for OSA and OHS. However, other hormones are impli-
cated in the control of breathing and upper airway function. 
Orexin, an excitatory neuropeptide released from neurons in 
the hypothalamus, functions in a wide array of biological regula-
tions of sleep, energy balance, and breathing [119, 120]. Previous 
studies documented that orexin plays a critical role in CO2 sen-
sitivity [121]. Upper airway obstruction increased hypothalamic 
orexin levels in rats suggesting that this peptide is critical for 
respiratory homeostasis [122]. In addition, intranasal oxytocin, 
a peptide implicated in the control of autonomic function, de-
creased the duration of obstructive events and oxygen desat-
urations in patients with OSA [123]. Upper airway obstruction 
decreases growth hormone, which may stunt growth in chil-
dren and adolescents [124]. Ghrelin, a hormone secreted by the 
stomach, induces hunger and plays a role in meal initiation. In 
obese humans, ghrelin levels are increased [125]. Interestingly, 
nonobese patients with OSA appear to have higher levels of 
ghrelin than obese OSA patients, but continuous positive airway 
pressure treatment does not seem to affect ghrelin levels in both 
populations [126]. Ghrelin administration increased the acute 
hypoxic ventilatory response in rats exposed to chronic hypoxia 
[127]. Thyrotropin-releasing hormone and its analogs increase 
genioglossus electromyography activity, which may improve 
upper airway patency during sleep [128]. Taken together, cur-
rent literature suggests that hormones other than leptin have a 
therapeutic potential for OHS and OSA.

Clinical Implications and Perspectives
Animal data strongly suggest that leptin and the LEPRb signaling 
pathway in respsry gasrydfdsfsdfdfdsfsrsdkljjskdbvksjcbvjfbvh
kfbvkjfvbljfsvbljfbvkjfvjfviratory neurons is a promising target 
for future drug development in OHS. Recombinant human leptin 
(Metreleptin) in subcutaneous injections has been approved by 
US Food and Drug Administration to treat metabolic compli-
cations of leptin deficiency in patients with congenital or ac-
quired generalized lipodystrophy [129]. Intranasal formulations 
of leptin should be tested in proof-of-concepts clinical trials. 
Leptin receptor agonists freely penetrating the blood-brain bar-
rier have been developed and shown to be effective in rodent 
diet-induced obesity. These agonists may have a therapeutic 
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potential in OHS [130, 131]. Additional preclinical studies are 
also needed (1) to characterize leptin signaling in respiratory 
neurons in more detail; (2) to characterize the long-term efficacy 
and safety of LEPRb modulations in preclinical models.
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