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Abstract

Lexicase selection is a parent selection method that considers training cases individually, rather 

than in aggregate, when performing parent selection. Whereas previous work has demonstrated 

the ability of lexicase selection to solve difficult problems in program synthesis and symbolic 

regression, the central goal of this paper is to develop the theoretical underpinnings that explain 

its performance. To this end, we derive an analytical formula that gives the expected probabilities 

of selection under lexicase selection, given a population and its behavior. In addition, we expand 

upon the relation of lexicase selection to many-objective optimization methods to describe the 

behavior of lexicase selection, which is to select individuals on the boundaries of Pareto fronts 

in high-dimensional space. We show analytically why lexicase selection performs more poorly 

for certain sizes of population and training cases, and show why it has been shown to perform 

more poorly in continuous error spaces. To address this last concern, we propose new variants 

of ϵ-lexicase selection, a method that modifies the pass condition in lexicase selection to allow 

near-elite individuals to pass cases, thereby improving selection performance with continuous 

errors. We show that ϵ-lexicase outperforms several diversity-maintenance strategies on a number 

of real-world and synthetic regression problems.

1 Introduction

Evolutionary computation (EC) traditionally assigns scalar fitness values to candidate 

solutions to determine how to guide search. In the case of genetic programming (GP), this 

fitness value summarizes how closely, on average, the behavior of the candidate programs 

match the desired behavior. Take for example the task of symbolic regression, in which 

we attempt to find a model using a set of training examples, i.e. cases. A typical fitness 

measure is the mean squared error (MSE), which averages the squared differences between 
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the model’s outputs, ŷ, and the target outputs, y. The effect of this averaging is to reduce 

a rich set of information comparing the model’s output and the desired output to a single 

scalar value. As noted by Krawiec (2016), the relationship of ŷ to y can only be represented 

crudely by this fitness value. The fitness score thereby restricts the information conveyed 

to the search process about candidate programs relative to the description of their behavior 

available in the raw comparisons of the output to the target, information which could 

help guide the search (Krawiec and O’Reilly, 2014; Krawiec and Liskowski, 2015). This 

observation has led to increased interest in the development of methods that can leverage the 

program outputs directly to drive search more effectively (Vanneschi et al., 2014).

In addition to reducing information, averaging test performance assumes all tests are equally 

informative, leading to the potential loss of individuals who perform poorly on average 
even if they are the best on a training case that is difficult for most of the population to 

solve. This is particularly relevant for problems that require different modes of behavior to 

produce an adequate solution to the problem (Spector, 2012). The underlying assumption of 

traditional selection methods is that selection pressure should be applied evenly with respect 

to training cases. In practice, cases that comprise the problem are unlikely to be uniformly 

difficult. In GP, the difficulty of a training case can be thought of as the probability of an 

arbitrary program solving it. Under the assumption that arbitrary programs do not uniformly 

solve training instances, it is unlikely that training instances will be uniformly difficult for 

a population of GP programs. As a result, the search is likely to benefit if it can take into 

account the difficulty of specific cases by recognizing individuals that perform well on 

harder parts of the problem. Underlying this last point is the assumption that GP solves 

problems by identifying, propagating and recombining partial solutions (i.e. building blocks) 

to the task at hand (Poli and Langdon, 1998). As a result, a program that performs well on 

unique subsets of the problem may contain a partial solution to our task.

Several methods have been proposed to reward individuals with uniquely good training 

performance, such as implicit fitness sharing (IFS) (McKay, 2001), historically assessed 

hardness (Klein and Spector, 2008), and co-solvability (Krawiec and Lichocki, 2010), all 

of which assign greater weight to fitness cases that are judged to be more difficult in view 

of the population performance. Perhaps the most effective parent selection method designed 

to account for case hardness is lexicase selection (Spector, 2012). In particular, “global 

pool, uniform random sequence, elitist lexicase selection” (Spector, 2012), which we refer to 

simply as lexicase selection, has outperformed other similarly-motivated methods in recent 

studies (Helmuth et al., 2014; Helmuth and Spector, 2015; Liskowski et al., 2015). Despite 

these gains, it fails to produce such benefits when applied to continuous symbolic regression 

problems, due to its method of selecting individuals based on training case elitism. For this 

reason we recently proposed (La Cava et al., 2016) modulating the case pass conditions 

in lexicase selection using an automatically defined ϵ threshold, allowing the benefits of 

lexicase selection to be achieved in continuous domains.

To date, lexicase selection and ϵ-lexicase selection have mostly been analyzed via empirical 

studies, rather than algorithmic analysis. In particular, previous work has not explicitly 

described the probabilities of selection under lexicase selection compared to other selection 

methods, nor how lexicase selection relates to the multi-objective literature. Therefore, 
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the foremost purpose of this paper is to describe analytically how lexicase selection and 

ϵ-lexicase selection operate on a given population compared to other approaches. With this 

in mind, in §3.1 we derive an equation that describes the expected probability of selection 

for individuals in a given population based on their behavior on the training cases, for 

all variants of lexicase selection described here. Then in §3.2, we analyze lexicase and 

ϵ-lexicase selection from a multi-objective viewpoint, in which we consider each training 

case to be an objective. We prove that individuals selected by lexicase selection exist at 

the boundaries of the Pareto front defined by the program error vectors. We show via 

an illustrative example population in §4.1 how the probabilities of selection differ under 

tournament, lexicase, and ϵ-lexicase selection.

The second purpose of this paper is to empirically assess the use of ϵ-lexicase selection 

in the task of symbolic regression. In §2.3, we define two new variants of ϵ-lexicase 

selection: semi-dynamic and dynamic, which are shown to improve the method compared 

to the original static implementation. A set of experiments compares variants of ϵ-lexicase 

selection to several existing selection techniques on a set of real world benchmark problems. 

The results show the ability of ϵ-lexicase selection to improve the predictive accuracy of 

models on these problems. We examine in detail the diversity of programs during these 

runs, as well as the number of cases used in selection events to validate our hypothesis that 

ϵ-lexicase selection allows for more cases to be used when selecting individuals compared 

to lexicase selection. Lastly, the time complexity of lexicase selection is experimentally 

analyzed as a function of population size.

2 Methods

2.1 Preliminaries

In symbolic regression, we attempt to find a model y(x):ℝd ℝ that maps variables to 

a target output using a set of T training examples T = ti = yi, xi i = 1
T , where x is a 

d-dimensional vector of variables, i.e. features, and y is the desired output. We refer to 

elements of  as “cases”. GP poses the problem as

 minimize f(n, T) subject to n ∈ N (1)

where N is the space of possible programs n and f denotes a minimized fitness function. 

GP attempts to solve the symbolic regression task by optimizing a population of N programs 

N = ni i = 1
N , each of which encodes a model of the process and produces an estimate ŷt(n, 

xt) : ℝd → ℝ when evaluated on case t. We refer to ŷ(n) as the semantics of program 

n, omitting x for brevity. We denote the squared differences between ŷ and y (i.e., the 

errors) as et(n) = (yt − ŷt(n))2. We use et ∈ ℝN to refer to the errors of all programs in the 

population on training case t. The lowest error in et is referred to as et*.

A typical fitness measure (f) is the mean squared error, MSE(n, T) = 1
N ∑t ∈ Tet(n), which 

we use to compare our results in §4.2.1. For the purposes of our discussion, it is irrelevant 

whether the MSE or the mean absolute error, i.e. MAE(n, T) = 1
N ∑t ∈ T yt − yt(n) , is used, 
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and so we use MAE to simplify a few examples throughout the paper. With lexicase 

selection and its variants, e(n) is used directly during selection rather than averaging over 

cases. Nevertheless, in keeping with the problem statement in Eqn. 1, the final program 

returned in our experiments is that which minimizes the MSE.

2.2 Lexicase Selection

Lexicase selection is a parent selection technique based on lexicographic ordering of training 

(i.e. fitness) cases. The lexicase selection algorithm for a single selection event is presented 

in Algorithm 1.

Algorithm 1 consists of just a few steps: 1) choosing a case, 2) filtering the selection pool 

based on that case, and 3) repeating until the cases are exhausted or the selection pool is 

reduced to one individual. If the selection pool is not reduced by the time each case has been 

considered, an individual is chosen randomly from the remaining pool, .

Under lexicase selection, cases in  can be thought of as filters that reduce the selection 

pool to the individuals in the pool that are best on that case. Each parent selection event 

constructs a new path through these filters. We refer to individuals as “passing” a case if 

they remain in the selection pool when the case is considered. The filtering strength of a 

case is affected by two main factors: its difficulty as defined by the number of individuals 

that the case filters from the selection pool, and its order in the selection event, which varies 

from selection to selection. These two factors are interwoven in lexicase selection because a 

case performs its filtering on a subset of the population created by a randomized sequence 

of cases that come before it. In other words, the difficulty of a case depends not only on 

the problem definition, but on the ordering of the case in the selection event, which is 

randomized for each selection.

The randomized case order and filtering mechanisms allow selective pressure to continually 

shift to individuals that are elite on cases that are rarely solved in . Because cases appear 

in various orderings during selection, there is selective pressure for individuals to solve 

unique subsets of cases. Lexicase selection thereby accounts for the difficulty of individual 

cases as well as the difficulty of solving arbitrarily-sized subsets of cases. This selection 

pressure leads to the preservation of high behavioral diversity during evolution (Helmuth et 

al., 2016a; La Cava et al., 2016).

The worst-case complexity of selecting N parents per generation with | | = T test cases is 

O(TN2). This running time stems from the fact that to select a single individual, lexicase 

selection may have to consider the error value of every individual on every test case. 

La Cava et al. Page 4

Evol Comput. Author manuscript; available in PMC 2022 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In contrast, tournament selection only needs to consider the precomputed fitnesses of a 

constant tournament size number of individuals; thus selecting a single parent can be done 

in constant time. Since errors need to be calculated and summed for every test case on every 

individual, tournament selection requires O(TN) time to select N parents. Normally, due 

to differential performance across the population and due to lexicase selection’s tendency 

to promote diversity, a lexicase selection event will use many fewer test cases than T; the 

selection pool typically winnows below N as well, meaning the actual running time tends to 

be better than the worst-case complexity (Helmuth et al., 2014; La Cava et al., 2016).

We use an example population originally presented in (Spector, 2012) to illustrate some 

aspects of standard lexicase selection in the following sections. The population, shown in 

Table 1, consists of five individuals and four training cases with discrete errors. A graphical 

example of the filtering mechanism of selection is presented for this example in Figure 1. 

Each lexicase selection event can be visualized as a randomized depth-first pass through 

the training cases. Figure 1 shows three example selection events resulting in the selection 

of different individuals. The population is winnowed at each case to the elites until single 

individuals, shown with diamond-shaped nodes, are selected.

2.3 ϵ-Lexicase Selection

Lexicase selection has been shown to be effective in discrete error spaces, both for multi-

modal problems (Spector, 2012) and for problems for which every case must be solved 

exactly to be considered a solution (Helmuth et al., 2014; Helmuth and Spector, 2015). In 

continuous error spaces, however, the requirement for individuals to be exactly equal to the 

elite error in the selection pool to pass a case turns out to be overly stringent (La Cava 

et al., 2016). In continuous error spaces and especially for symbolic regression with noisy 

datasets, it is unlikely for two individuals to have exactly the same error on any training case 

unless they are (or reduce to) equivalent models. As a result, lexicase selection is prone to 

conducting selection based on single cases, for which the selected individual satisfies et ≡ et*, 

the minimum error on t among . Selecting on single cases limits the ability of lexicase 

to leverage case information on subsets of test cases effectively, and can lead to poorer 

performance than traditional selection methods (La Cava et al., 2016).

These observations led to the development of ϵ-lexicase selection (La Cava et al., 2016), 

which modulates case filtering by calculating an ϵ threshold criteria for each training case. 

Hand-tuned and automatic variants of ϵ were proposed and tested. The best performance 

was achieved by a ‘parameter-less’ version that defines ϵ according to the dispersion of 

errors in the population on each training case using the median absolute deviation statistic:

ϵt = λ et = median et − median et (2)

Defining ϵ according to Eqn. 2 allows the threshold to conform to the performance of the 

population on each training case. As the performance on each training case improves across 

the population, ϵ shrinks, thereby modulating the selectivity of a case based on how difficult 

it is. We choose the median absolute deviation in lieu of the standard deviation statistic for 

calculating ϵ because it is more robust to outliers (Pham-Gia and Hung, 2001).
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We study three implementations of ϵ-lexicase selection in this paper: static, which is the 

version originally proposed (La Cava et al., 2016); semi-dynamic, in which the elite error is 

defined relative to the current selection pool; and dynamic, in which both the elite error and 

ϵ are defined relative to the current selection pool.

Static ϵ-lexicase selection can be viewed as a preprocessing step added to lexicase selection 

in which the program errors are converted to pass/fail based on an ϵ threshold. This 

threshold is defined relative to et*, the lowest error on test case t over the entire population. 

We call this static ϵ-lexicase selection because the elite error et* and ϵ are only calculated 

once per generation, instead of relative to the current selection pool, as described in 

Algorithm 2.

Semi-dynamic ϵ-lexicase selection differs from static ϵ-lexicase selection in that the pass 

condition is defined relative to the best error among the pool rather than among the 

entire population . In this way it behaves more similarly to standard lexicase selection 

(Algorithm 1), except that individuals are filtered out only if they have error more than 

et* + ϵt. It is defined in Algorithm 3.

The final variant of ϵ-lexicase selection is dynamic ϵ-lexicase selection, in which both the 

error and ϵ are defined among the current selection pool. In this case, ϵ is defined as

ϵt(S) = median et(S) − median et(S) = λ et(S) (3)

where et( ) is the vector of errors for case t among the current selection pool . The 

dynamic ϵ-lexicase selection algorithm is presented in Algorithm 4.

Since calculating ϵ according to Eqn. 2 is O(N) for a single test case, the three ϵ-lexicase 

selection algorithms share a worst-case complexity with lexicase selection of O(TN2) to 
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select N parents. As discussed in §2.2, these worst-case time complexities are rare, and 

empirical results have confirmed ϵ-lexicase to run within the same time frame as tournament 

selection (La Cava et al., 2016). We assess the affect of population size on wall-clock times 

in §4.2.

2.4 Related Work

Lexicase selection belongs to a class of search drivers that incorporate a program’s full 

semantics directly into the search process, and as such shares a general motivation with 

semantic GP methods. Geometric Semantic GP (Moraglio et al., 2012) uses a program’s 

semantics in the variation step by defining mutation and crossover operators that make 

steps in semantic space. Intermediate program semantics can also be leveraged, as shown 

by Behavioral GP (Krawiec and O’Reilly, 2014), which uses a program’s execution trace 

to build an archive of program building blocks and learn intermediate concepts. Unlike 

lexicase selection, Behavioral GP generally exploits intermediate program semantics, rather 

than intermediate fitness cases, to guide search. These related semantic GP methods tend to 

use established selection methods while leveraging program semantics at other steps in the 

search process.

Instead of incorporating the full semantics, another option is to alter the fitness metric by 

weighting training cases based on population performance (McKay, 2001). In non-binary 

Implicit Fitness Sharing (IFS) (Krawiec and Nawrocki, 2013), for example, the fitness 

proportion of a case is scaled by the performance of other individuals on that case. Similarly, 

historically assessed hardness scales error on each training case by the success rate of the 

population (Klein and Spector, 2008). These methods are able to capture a univariate notion 

of fitness case difficulty, but unlike lexicase selection, interactions between cases are not 

considered in estimating difficulty.

Discovery of objectives by clustering (DOC) (Krawiec and Liskowski, 2015) clusters 

training cases by population performance, and thereby reduces training cases into a set 

of objectives used in multi-objective optimization. Both IFS and DOC were outperformed by 

lexicase selection on program synthesis and boolean problems in previous studies (Helmuth 

and Spector, 2015; Liskowski et al., 2015). More recently, Liskowski and Krawiec (2017) 

proposed hybrid techniques that combine DOC and related objective derivation methods 

with ϵ-lexicase selection, and found that this combination performed well on symbolic 

regression problems.

Other methods attempt to sample a subset of  to reduce computation time or improve 

performance, such as dynamic subset selection (Gathercole and Ross, 1994), interleaved 
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sampling (Gonçalves and Silva, 2013), and co-evolved fitness predictors (Schmidt and 

Lipson, 2008). Unlike these methods, lexicase selection begins each selection with the 

full set of training cases, and allows selection to adapt to program performance on them. 

Another approach to adjusting selection pressure based on population performance is to 

automatically tune tournament selection, a method which was investigated by Xie and 

Zhang (2013). In that work, tournament selection pressure was tuned to correspond to the 

distribution of fitness ranks in the population.

Although to an extent the ideas of multiobjective optimization apply to multiple training 

cases, they are qualitatively different and commonly operate at different scales. Symbolic 

regression often involves one or two objectives (e.g. accuracy and model conciseness) and 

hundreds or thousands of training cases. One example of using training cases explicitly 

as objectives occurs in Langdon (1995) in which small numbers of training cases (in this 

case 6) are used as multiple objectives in a Pareto selection scheme. Other multi-objective 

approaches such as NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al., 2001) and ParetoGP 

(Smits and Kotanchek, 2005) are commonly used with a small set of objectives in symbolic 

regression. The “curse of dimensionality” makes the use of objectives at the scale of typical 

training case sizes problematic, since most individuals become nondominated. Scaling issues 

in many-objective optimization are reviewed by Ishibuchi et al. (2008) and surveyed in Li 

et al. (2015). Several methods have been proposed to deal with large numbers of objectives, 

including hypervolume-based methods such as HypE, reference point methods like NSGA-

III, and problem decomposition methods like ϵ-MOEA and MOEA/D (Chand and Wagner, 

2015). Li et al. (2017) benchmarked several reference point methods on problems of up 

to 100 objectives, further shrinking the scalability gap. The connection between lexicase 

selection and multi-objective methods is explored in depth in §3.2.

The conversion of a model’s real-valued fitness into discrete values based on an ϵ threshold 

has been explored in other research; for example, Novelty Search GP (Martínez et al., 

2013) uses a reduced error vector to define behavioral representation of individuals in the 

population. La Cava et al. (2016) used it for the first time as a solution to applying lexicase 

selection effectively to regression, with static ϵ-lexicase selection (Algorithm 2).

Recent work has empirically studied and extended lexicase selection. Helmuth et al. 

(2016b) found that extreme selection events in lexicase selection were not central to 

its performance improvements and that lexicase selection could re-diversify less-diverse 

populations unlike tournament selection (Helmuth et al., 2016a). A survival-based version of 

ϵ-lexicase selection has also been proposed (La Cava and Moore, 2017a,b) for maintaining 

uncorrelated populations in an ensemble learning context.

3 Theoretical Analysis

In the first half of this section ((§3.1), we examine the probabilities of selection under 

lexicase selection. Our aims are to answer the following questions: First, what is the 

probability of an individual being selected by lexicase selection, given its performance in 

a population on a set of training cases? Second, how is this probability influenced by the 

sizes of the population and training set? In the second half (§3.2), we establish relations 
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between lexicase selection and multi-objective optimization. Our aim is to define precisely 

how parents selected by lexicase variants are positioned in semantic space.

3.1 Expected Probabilities of Selection

The probability of n being selected by lexicase selection is the probability that a case n 
passes is selected and: 1) n is the only individual that passes the case; or 2) no more cases 

remain and n is selected among the set of individuals that pass the selected case; or 3) n is 

selected via the selection of another case that n passes (repeating the process).

Formally, let Plex(n| ,  be the probability n ∈  being selected by lexicase selection. 

Let Kn(T, N) = ki i = 1
K ⊆ T be the training cases from  for which individual n is elite 

among . We will use n for brevity. Then the probability of selection under lexicase can 

be represented as a piece-wise recursive function:

Plex (n ∣ N, T) =

1  if  N = 1;
1/ N  if  T = 0;

1
T ∑ks ∈ KnPlex n ∣ N m ∣ ks ∈ Km , T\ ks  otherwise 

(4)

The first two elements of Plex follow from the lexicase algorithm: if there is one individual 

in , then it is selected; otherwise if there no more cases in in , then n has a probability 

of selection split among the individuals in , i.e., 1/| |. If neither of these conditions 

are met, the remaining probability of selection is 1/| | times the summation of Plex over 

n’s elite cases. Each case in n has a probability of 1/| | of being selected. For each 

potential selection ks, the probability of n being selected as a result of this case being chosen 

is dependent on the number of individuals that are also elite on this case, represented by 

(m|ks ∈ m), and the cases that are left to be traversed, represented by  \ {ks}.

Eqn. 4 also describes the probability of selection under ϵ-lexicase selection, with the 

condition that elitism on a case is defined as being within ϵ of the best error on that case, 

where the best error is defined among the whole population (static) or among the current 

selection pool (semi-dynamic and dynamic) and ϵ is defined according to Eqn. 2 or Eqn. 3.

According to Eqn. 4, when fitness values across the population are unique, selection 

probability is Plex(n) = 1
|T| ∑ks ∈ Kn1 =

Kn
|T| , since filtering the population according to 

any case for which n is elite will result in n being selected. Conversely, if the population 

semantics are completely homogeneous such that every individual is elite on every case, 

the selection will be uniformly random, giving the selection probability Plex (n) = 1
N . This 

property of uniformity in selection for identical performance holds true each time a case 

is considered; a case only impacts selection if there is differential performance on it in the 

selection pool. The same conclusion can be gleaned from Algorithm 1: any case that every 

individual passes provides no selective pressure because the selection pool does not change 

when that case is considered.
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Although it is tempting to pair Eqn. 4 with roulette wheel selection as an alternative to 

lexicase selection, an analysis of its complexity discourages such use. Eqn. 4 has a worst-

case complexity of O(TN), which is exhibited when all individuals are elite on .

3.1.1 Effect of Population and Training Set Size—Previous studies have suggested 

that the performance of lexicase selection is sensitive to the number of training cases 

(Liskowski et al., 2015). In this section we develop the relation of population size and 

number of training cases to the performance of lexicase selection as a search driver. In part, 

this behavior is inherent to the design of the algorithm. However, this behavior is also linked 

to the fidelity with which lexicase selection samples the expected probabilities of selection 

for each individual in the population.

The effectiveness of lexicase selection is expected to suffer when there are few training 

cases. When T is small, there are very few ways in which individuals can be selected. In an 

extreme case, if T = 2, an individual must be elite on one of these two cases to be selected. 

In fact, in this case individuals with at most 2 different error vectors will be selected. For 

continuous errors in which few individuals are elite, this means that very few individuals are 

likely to produce all of the children for the subsequent generation, leading to hyperselection 

(Helmuth et al., 2016b) and diversity loss. On the other hand, if many individuals solve both 

cases, selection becomes increasingly random.

The population size is tied to selection behavior because it determines the number of 

selection events (ns in Algorithms 2.1–3.3). In our implementation, ns = N, whereas in other 

implementations, N ≤ ns ≤ 2N. This implies that the value of N determines the fidelity with 

which Plex is approximated via the sampling of the population by parent selection. Smaller 

populations will therefore produce poorer approximations of Plex. Of course, this problem 

is not unique to lexicase selection; tournament selection also samples from an expected 

distribution and is affected by the number of tournaments (Xie et al., 2007).

Both N and T affect how well the expected probabilities of selection derived from Eqn. 4 

are approximated by lexicase selection. Consider the probability of a case being in at least 

one selection event in a generation, which is one minus the probability of it not appearing, 

yielding

Pr = 1 − ∏
i = 1

N (T − 1)!
T ! T − 1 − di !

Here, the case depth di is the number of cases used to select a parent for selection event 

i. Because the case depth varies from selection to selection based on population semantics, 

this case probability is difficult to analyze. However, it can be simplified to consider the 

scenario in which a case appears first in selection. In fact, Eqn. 4 implies that a case in n 

influences the probability of selection of n most heavily when it occurs first in a selection 

event. There are two reasons: first, the case has the potential to filter N − 1 individuals, 

which is the strongest selection pressure it can apply. Second, a case’s effect size is highest 

when selected first because it is not conditioned on the probability of selection of any other 
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cases. Each subsequent case selection has a reduced effect on Plex of ∏i = 1
d 1

T − i , where d 

is the case depth. These observations also highlight the importance of the relative sizes of N 
and T because they affect the probability that a case will be observed at the top of a selection 

event in a given generation, which affects how closely Eqn. 4 is approximated. Let Pfirst be 

the probability that a case will come first in a selection event at least once in a generation. 

Then

Pfirst  = 1 − (T − 1)
T

N
(5)

assuming N selection events. This function is plotted for various values of N and T in Figure 

2, and illustrates that the probability of a case appearing first in selection drops as T grows 

and as N shrinks. For example, Pfirst ≈ 0.5 when N = 1000 and T = 1433. We therefore 

expect the observed probabilities of selection for n ∈  to differ from Plex(n) when T >> 

N, due to insufficient sampling of the cases. In the case of N >> T, we expect most cases to 

appear first and therefore the probability predictions made by Eqn. 4 to be more accurate to 

the actual selections.

3.1.2 Probabilities under tournament selection—We compare the probability of 

selection under lexicase selection to that using tournament selection with an identical 

population and fitness structure. To do so we must first formulate the probability of selection 

for an individual undergoing tournament selection with size r tournaments. The fitness ranks 

of  can be calculated, for example using MAE as fitness, with lower rank indicating better 

fitness. Let Si be the individuals in  with a fitness rank of i, and let Q be the number of 

unique fitness ranks. Xie et al. (2007) showed that the probability of selecting an individual 

with rank j in a single tournament is

Pt = 1
Sj

∑i = j
Q Si

N

r
−

∑i = j + 1
Q Si

N

r
(6)

In Table 1, the selection probabilities for the example population are shown according to 

lexicase selection (Eqn. 4) and tournament selection (Eqn. 6). Note that the tournament 

probabilities are proportional to the aggregate fitness, whereas lexicase probabilities reflect 

more subtle but intuitive performance differences as discussed by Spector (2012). In 

§4.1 we present a more detailed population example with continuous errors and compare 

probabilities of selection using lexicase, ϵ-lexicase and tournament selection.

3.2 Multi-objective Interpretation of Lexicase Selection

Objectives and training cases are fundamentally different entities: objectives define the goals 

of the task being learned, whereas cases are the units by which progress towards those 

objectives is measured. By this criteria, lexicase selection and multi-objective optimization 

have historically been differentiated (Helmuth, 2015), although there is clearly a “multi-

objective” interpretation of the behavior of lexicase selection with respect to the training 

cases. Let us assume for the remainder of this section that individual fitness cases are 
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objectives to solve. The symbolic regression task then becomes a high-dimensional, many-

objective optimization problem. At this scale, the most popular multi-objective methods 

(e.g. NSGA-II and SPEA-2) tend to perform poorly, a behavior that has been explained in 

literature (Wagner et al., 2007; Farina and Amato, 2002). Farina and Amato (2002) point out 

two short-comings of these multi-objective methods when many objectives are considered:

the Pareto definition of optimality in a multi-criteria decision making problem can 

be unsatisfactory due to essentially two reasons: the number of improved or equal 

objective values is not taken into account, the (normalized) size of improvements is 

not taken into account.

As we describe in §3.1, lexicase selection takes into account the number of improved or 

equal objectives (i.e. cases) by increasing the probability of selection for individuals who 

solve more cases (consider the summation in the third part of Eqn. 4). The increase per case 

is proportional to the difficulty of that case, as defined by the selection pool’s performance. 

Regarding Farina and Amato’s second point, the size of the improvements are taken into 

account by ϵ-lexicase selection. They are taken into account by the automated thresholding 

performed by ϵ which rewards individuals for being within an acceptable range of the best 

performance on the case. We develop the relationship between lexicase selection and Pareto 

optimization in the remainder of this section.

It has been noted that lexicase selection guarantees the return of individuals that are on 

the Pareto front with respect to the fitness cases (La Cava et al., 2016). However, this is a 

necessary but not sufficient condition for selection. As we show below, lexicase selection 

only selects those individuals in the “corners” or boundaries of the Pareto front, meaning 

they are on the front and elite, globally, with respect to at least one fitness case. Below, we 

define these Pareto relations with respect to the training cases.

Definition 3.1. n1 dominates n2, i.e., n1 ≺ n2, if ej(n1) ≤ ej(n2) ∀j ∈ {1, …, T} and ∃j ∈ {1, 
…, T} for which ej(n1) < ej(n2).

Definition 3.2. The Pareto set of  is the subset of  that is non-dominated with respect to 
; i.e., n ∈  is in the Pareto set if m ⊀ n ∀ m ∈ .

Definition 3.3. n ∈  is a Pareto set boundary if n ∈ Pareto set of  and ∃j ∈ {1, …, T} for 
which ej(n) ≤ ej(m) ∀ m ∈ .

With these definitions in mind, we show that individuals selected by lexicase are Pareto set 

boundaries.

Theorem 3.4. If individuals from a population  are selected by lexicase selection, those 
individuals are Pareto set boundaries of  with respect to .

Proof. Let n1 ∈  be any individual and let n2 ∈  be an individual selected from  by 

lexicase selection. Suppose n1 ≺ n2 Then ej(n1) ≤ ej(n2) ∀j ∈ {1, …, T} and ∃j ∈ {1, …, 
T} for which ej(n1) < ej(n2). Therefore n1 remains in the selection pool for every case that 

n2 does, yet ∃t ∈  for which n2 is removed from every selection event due to n1. Hence, n 
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cannot be selected by lexicase selection and the supposition is false. Therefore n2 must be in 

the Pareto set of .

Next, Algorithm 1 shows that n2 must be elite on at least one test case; therefore ∃j ∈ {1, …, 
T} for which ej(n2) ≤ ej(m) ∀ m ∈ . Therefore, since n2 is in Pareto set of , according to 

Definition 3.3, n2 is a Pareto set boundary of . □

Extension to ϵ-lexicase selection—We can extend our multi-objective analysis to 

ϵ-lexicase selection for conditions in which ϵ is pre-defined for each fitness case (Eqn. 

2), which is true for static and semi-dynamic ϵ-lexicase selection. However when ϵ is 

recalculated for each selection pool, the theorem is not as easily extended due to the need 

to account for the dependency of ϵ on the current selection pool. We first define ϵ elitism 

in terms of a relaxed dominance relation and a relaxed Pareto set. We define the dominance 

relation with respect to ϵ as follows:

Definition 3.5. n1 ϵ-dominates n2, i.e., n1 ≺ϵ n2, if ej(n1) + ϵj ≤ ej(n2) ∀j ∈ {1, …, T} and ∃j 
∈ {1, …, T} for which ej(n1) + ϵj < ej(n2), where ϵj > 0 is defined according to Eqn. 2.

This definition of ϵ-dominance differs from a previous ϵ-dominance definition used by 

Laumanns et al. (2002) (cf. Eqn. (6)) in which n1 ≺ϵ n2 if

ej n1 + ϵj ≤ ej n2 ∀j ∈ 1, …, T

Definition 3.5 is more strict, requiring ej(n1)+ϵj < ej(n2) for at least one j in analagous 

fashion to Definition 3.1. In order to extend Theorem 3.4, this definition must be more strict 

since a useful ϵ-dominance relation needs to capture the ability of an individual to preclude 

the selection of another individual under ϵ-lexicase selection.

Definition 3.6. The ϵ-Pareto set of  is the subset of  that is non-ϵ-dominated with 
respect to ; i.e., n ∈  is in the ϵ-Pareto set if m ⊀ϵ n ∀ m ∈ .

Definition 3.7. n ∈  is an ϵ-Pareto set boundary if n is in the ϵ-Pareto set of  and ∃j ∈ 
{1, …, T} for which ej(n1) ≤ ej(m) + ϵj ∀ m ∈ , where ϵ defined is according to Eqn 2.

Theorem 3.8. If ϵ is defined according to Eqn. 2, and if individuals are selected from a 
population  by ϵ-lexicase selection, then those individuals are ϵ-Pareto set boundaries of 

.

Proof. Let n1 ∈  be any individual and let n2 ∈  be an individual selected from 

by static or semi-dynamic ϵ-lexicase selection. Suppose n1 ≺ϵ n2. Therefore n1 remains in 

the selection pool for every case that n2 does, yet ∃t ∈  for which n2 is removed from 

every selection event due to n1. Hence, n2 cannot be selected by lexicase selection and the 

supposition n1 ≺ϵ n2 is false. Therefore n1 and n2 must be in the ϵ-Pareto set of  to be 

selected.
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Next, by definition of Algorithm 2 or 3.2, n2 must be within ϵj of elite on at least one test 

case; i.e. ∃j ∈ {1, …, T} for which ej(n2) ≤ ej(m) + ϵj ∀ m ∈ . Therefore, since n2 is in the 

ϵ-Pareto set of , according to Definition 3.7, n2 must be a ϵ-Pareto set boundary of . □

To illustrate how lexicase selection only selects Pareto set boundaries, we plot an example 

selection from a population evaluated on two test cases in the left plot of Figure 3. Each 

point in the plot represents an individual, and the squares are the Pareto set. Under a lexicase 

selection event with case sequence {t1, t2}, individuals would first be filtered to the two 

left-most individuals that are elite on e1, and then to the individual among those two that is 

best on e2, i.e. the selected square individual. Note that the selected individual is a Pareto set 

boundary. The individual on the other end of the Pareto set shown as a black square would 

be selected using the opposite order of cases.

Consider the analogous case for semi-dynamic ϵ-lexicase selection illustrated in the right 

plot of Figure 3. In this case the squares are the ϵ-Pareto set. Under a semi-dynamic 

ϵ-lexicase selection event with case order {t1, t2}, the population would first be filtered 

to the four left-most individuals that are within ϵ1 of the elite error on case t1, and then 

the indicated square would be selected by being the only individual within ϵ2 of the elite 

error on t2 among the current pool. Note that although the selected individual is an ϵ-Pareto 

set boundary by Definition 3.7, it is not a boundary of the Pareto set. Theorem 3.8 only 

guarantees that the selected individual is within ϵ of the best error for at least one case, 

which in this scenario is t1. Thus Figure 3 illustrates an important aspect of introducing ϵ: 

it reduces the selectivity of each case, ultimately resulting in the selection of individuals 

that are not as extremely positioned in objective space. This parallels the behavior of 

ϵ-dominance methods proposed by Laumanns et al. (2002) that can lose extreme points. 

In light of this potential limitation, Hernández-Díaz et al. (2007) proposed an adaptive 

ϵ-dominance method to preserve such boundary points.

Regarding the position of solutions in this space, it’s worth noting the significance 

of boundary solutions (and near boundary solutions) in the context of multi-objective 

optimization. The performance of algorithms in many-objective optimization is assessed 

by convergence, uniformity, and spread (Li and Zheng, 2009), the last of which deals 

directly with the extent of boundary solutions. Indicator-based methods such as IBEA and 

SMS-EMOA use a measure of the hypervolume in objective space to evaluate algorithm 

performance (Wagner et al., 2007), where the hypervolume is a measure of how well the 

objective space is covered by the current set of solutions. Boundary solutions have been 

shown empirically to contribute significantly to hypervolume measures (Deb et al., 2005). 

The boundary solutions have an infinite score according to NSGA-II’s crowding measure 

(Deb et al., 2002), with higher being better, meaning they are the first non-dominated 

solutions to be preserved by selection when the population size is reduced. However, Auger 

et al. (2009) showed mathematically that the position of solutions near the boundary is less 

important than the angle they form with other solutions when evaluating the hypervolume. 

Auger et al. (2009) concluded that “Extreme points are not generally preferred as claimed in 

(Deb et al., 2005), since the density of points does not depend on the position on the front 

but only on the gradient at the respective point”.
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Multi- and many-objective literature is therefore divided on how these boundary solutions 

drive search when the goal of the algorithm is to approximate the optimal Pareto front 

(Wagner et al., 2007). The goal of GP, in contrast, is to preserve points in the search space 

that, when combined and varied, yield a single best solution. So while the descriptions above 

lend insight to the function of lexicase and ϵ-lexicase selection, the different goals of search 

and the high dimensionality of training cases must be remembered when drawing parallels 

between these approaches.

As a last note, when considered as objectives, the worst-case complexity of lexicase 

selection matches that of NSGA-II: O(TN2). Interestingly, the worst case complexity of 

the crowding distance assignment portion of NSGA-II, O(TN log(N)), occurs when all 

individuals are non-dominated, which is expected in high dimensions (Farina and Amato, 

2002; Wagner et al., 2007). Under lexicase selection, a non-dominated population that is 
semantically unique will have a worst-case complexity of O(N2).

4 Experimental Analysis

We begin our experimental analysis of lexicase selection by considering an illustrative 

example in §4.1. We then test several parent selection strategies on a set of regression 

benchmarks in §4.2. Finally, we quantify wall-clock runtimes for various selection methods 

as the population size is increased.1

4.1 Illustrative Example

Here we apply the concepts from §3.1 to consider the probabilities of selection under 

different methods on an example population. The goal of this section is to interweave the 

analyses of §3.1 and §3.2 to give an intuitive explanation of the differences between lexicase 

selection and the ϵ-lexicase selection variants.

An example population is presented in Table 2 featuring floating point errors, in contrast to 

Table 1. In this case, the population semantics are completely unique, although they result in 

the same mean error across the training cases, as shown in the “Mean” column. As a result, 

tournament selection picks uniformly from among these individuals, resulting in equivalent 

probabilities of selection. As mentioned in §3.1, with unique populations, lexicase selection 

is proportional to the number of cases for which an individual is elite. This leads lexicase 

selection to pick from among the four individuals that are elite on cases, i.e. n1, n4, n5, and 

n9, with respective probabilities 0.2, 0.2, 0.2, and 0.4, according to Eqn. 4. Note these four 

individuals are Pareto set boundaries.

Due to its strict definition of elitism, lexicase selection does not account for the fact that 

other individuals are very close to being elite on these cases as well; for example n2 and 

n3 are close to the elite error on case t1. The ϵ-lexicase variants address this as noted by 

the smoother distribution of selection probabilities among this population. We focus first 

on static ϵ-lexicase selection. Applying the ϵ threshold to the errors yields the following 

discrete fitnesses:

1Code for these experiments: http://github.com/lacava/epsilon_lexicase

La Cava et al. Page 15

Evol Comput. Author manuscript; available in PMC 2022 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/lacava/epsilon_lexicase


e1 e2 e3 e4 e5
n1 0 1 1 1 1
n2 0 1 1 0 1
n3 0 1 1 0 1
n4 1 1 0 0 1
n5 1 1 0 1 1
n6 1 1 0 1 1
n7 1 0 1 1 0
n8 1 0 1 1 0
n9 1 0 1 1 0

The selection probabilities for static ϵ-lexicase selection are equivalent to the selection 

probabilities of lexicase selection on this converted error matrix. Note that n1 and n5 have 

selection probabilities of zero because they are dominated in the converted error space. 

Despite elitism on case t1, n1 is not selected since n2 and n3 are ϵ-elite on this case in 
addition to t4. The same effect makes n5 un-selectable due to n4. Consider n4, which has a 

higher probability of selection under static ϵ-lexicase selection than lexicase selection. This 

is due to n4 being ϵ-elite on a unique combination of cases: t3 and t4. Lastly, n9 is selected 

in equal proportions to n7 and n8 because all three are within ϵ of the elite error on the same 

cases.

Semi-dynamic ϵ-lexicase selection allows for all nine individuals to be selected with 

varying proportions that are similar to those derived for static ϵ-lexicase selection. Selection 

probabilities for n1 illustrate the differences in the static and semi-dynamic variants: n1 has 

a chance for selection in the semi-dynamic case because when t1 is selected as the first case, 

n1 is within ϵ of the best case errors among the pool, i.e. {n1, n2, n3}, for any subsequent 

order of cases. The probability of selection for n5 and n6 follow the same pattern.

Dynamic ϵ-lexicase selection produces the most differentiated selection pressure for this 

example. Consider individual n8 which is the most likely to be selected for this example. 

It is selected more often than n7 or n9 due to the adaptations to ϵ as the selection pool is 

winnowed. For example, n8 is selected by case sequence {t2, t1, t3}, for which the selection 

pool takes the following form after each case: { n7, n8, n9}, {n7, n8}, {n8}. Conversely, 

under semi-dynamic ϵ-lexicase selection, n7 and n9 would not be removed by these cases 

because ϵ is fixed for that variant.

4.2 Regression Experiments

In this section we empirically test the variants of ϵ-lexicase selection introduced in §2.3. The 

problems studied in this section are listed in Table 3. We benchmark nine methods using 

eight different datasets. Six of the problems are available from the UCI repository (Lichman, 

2013). The UBall5D problem is a simulated equation2 which has the form

2UBall5D is also known as Vladislavleva-4.
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y = 10
5 + ∑i = 1

5 xi − 3 2

The Tower problem and UBall5D were chosen from the benchmark suite suggested by 

White et al. (2012).

We compare eight different selection methods: random selection, tournament selection, 

lexicase selection, age-fitness pareto optimization (Schmidt and Lipson, 2011), deterministic 

crowding (Mahfoud, 1995), and the three ϵ-lexicase selection methods presented in §2.3. 

In addition to the selection methods that are benchmarked, we include a comparison to 

regularized linear regression using Lasso (Tibshirani, 1996). These methods are described 

briefly below, along with their abbreviations used in the results.

• Random Selection (rand): selection for parents is uniform random.

• Tournament Selection (tourn): size two tournaments are conducted for choosing 

parents.

• Lexicase Selection (lex): see Algorithm 1.

• Age-fitness Pareto optimization (afp): this method introduces a new individual 

each generation with an age of 0. Each generation, individuals are assigned an 

age equal to the number of generations since their oldest ancestor entered the 

population. Parents are selected randomly to create N children. The children and 

parents then compete in survival tournaments of size two, in which an individual 

is culled from the population if it is dominated in terms of age and fitness by its 

competitor.

• Deterministic crowding (dc): A generational form of this niching method is used 

in which parents are selected randomly for variation and the child competes to 

replace the parent with which it is most similar. Similarity is determined based 

on the Levenshtein distance of the parent’s equation forms, using a universal 

symbol for coefficients. A child replaces its parent in the population only if it has 

a better fitness.

• Static ϵ-lexicase selection (ep-lex-s): See Algorithm 2.

• Semi-dynamic ϵ-lexicase selection (ep-lex-sd): See Algorithm 3.

• Dynamic ϵ-lexicase selection (ep-lex-d): See Algorithm 4.

• Lasso (lasso): this method incorporates a regularization penalty into least squares 

regression using an ℓ1 measure of the model coefficients and uses a tuning 

parameter, λ, to specify the weight of this regularization. We use a least 

angle regression (Efron et al., 2004) implementation of Lasso that automatically 

chooses λ using cross validation.

The settings for the GP system3 are shown in Table 4. We conduct 50 trials of each method 

by training on a random partition of 70% of the dataset and comparing the prediction 

error of the best model from each method on the other 30% of the dataset. In addition 
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to test error, we compare the training convergence of the GP-based methods, the semantic 

diversity of the populations during the run, and the number of cases used for selection for the 

lexicase methods. We calculate population diversity as the fraction of unique semantics in 

the population. To compare the number of cases used in selection for the lexicase methods, 

we save the median number of cases used in selection events, i.e. the case depth, each 

generation.

4.2.1 Regression Results—The boxplots in Figure 4 show the test set MSE for each 

method on each problem. In the final subplot, we summarize the mean rankings of the 

methods on each trial of each problem to give a general comparison of performance. Ranks 

are calculated for each trial, and then averaged over all trials and problems to give an overall 

ranking comparison. In general we find that the ϵ-lexicase methods produce models with 

the best generalization performance across the tested problems. Random selection and Lasso 

tend to perform the worst on these problems. It is interesting to note the performance of 

Lasso on the Tower problem, which is better than on other datasets; ep-lex-sd and ep-lex-d 

are the only GP variants to significantly outperform it. For every problem, a variant of 

ϵ-lexicase selection performs the best, and the three variants of it tend to perform similarly. 

In accordance with previous results (La Cava et al., 2016), lexicase selection performs worse 

than tournament selection for these continuous valued problems. In contrast with previous 

findings (Schmidt and Lipson, 2011), dc tends to outperform afp, although both methods 

perform better than tournament selection.

The ϵ-lexicase methods show a marked advantage in converging on a low training error in 

fewer generations compared to all other methods, as evidenced in Figure 5. Note Figure 

5 reports the normalized MSE values on the training set for the best individual in the 

population each generation. Again we observe very little difference between the ϵ-lexicase 

variants.

We analyze the statistical significance of the test MSE results in Tables 5 and 6. Table 

5 shows pair-wise Wilcoxon ranksum tests for each method in comparison to ep-lex-sd. 

There are significant differences in performance for all problems between ep-lex-sd and all 

non-ϵ-lexicase methods, with the exception of the comparison to dc on the housing and 

tower datasets. Analysis of variance of the method rankings across all problems indicates 

significant differences (p < 2e-16). A post-hoc statistical analysis shown in Table 6 indicates 

that this difference is due to significant differences in rankings across all problems for 

ep-lex-sd and ep-lex-d in pairwise comparison to all other non-ϵ-lexicase methods. The three 

variants of ϵ-lexicase do not differ significantly from each other according to this test.

Figure 6 shows the semantic diversity of the populations for each generation using 

different selection methods. ϵ-lexicase variants, dc, and lexicase selection all produce 

the highest population diversity, as expected due to their diversity maintenance design. 

Interestingly, they all produce more diverse semantics than random selection, suggesting 

that the preservation of useful diversity is an important feature of the observed performance 

improvements. Surprisingly, afp is found to produce low semantic diversity, despite its 

3available from https://epistasislab.github.io/ellyn/
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incorporation of age and random restarts each generation. Given that afp has no explicit 

semantic diversity mechanism, it’s possible that age is not an adequate surrogate for 

behavioral diversity on these problems.

One of the motivations for introducing an ϵ threshold into lexicase selection is to allow 

selection to make use of more cases in continuous domains when selecting parents. Figure 

7 demonstrates that ϵ-lexicase methods achieve this goal. As we noted at the beginning of 

§2.3, lexicase selection likely only uses one case per selection event in continuous domains, 

leading to poor performance. We observe this phenonemon in the median case depth 

measurements. Among the ϵ-lexicase variants, ep-lex-sd uses the most cases in general, 

followed by ep-lex-s and ep-lex-d. Intuitively this result makes sense: ϵ is likely to be largest 

when computed across the population, and because ep-lex-sd uses the global ϵ (Eqn. 2) and 

a local error threshold, it is likely to keep the most individuals at each case filtering. These 

results also suggest that ϵ shrinks substantially when calculated among the pool after each 

case (Eqn. 3) in ep-lex-d.

4.3 Scaling Experiment

In order to get an empirical sense of the time scaling of ϵ-lexicase selection in comparison to 

other selection methods, we run a set of experiments in which the population size is varied 

between 50 and 2000 while using a fixed training set of 100 samples from the UBall5D 

problem. We run 10 trials of each population size setting and compare the eight GP methods 

listed above. We use the results to estimate the time complexity of the ϵ-lexicase selection 

variants as a function of population size.

4.3.1 Scaling Results—The results of the time complexity experiment are shown in 

Figure 8 as a log-log plot with wall-clock times on the y-axis and the population size on the 

x-axis. We estimate the time scaling as a function of population size by fitting a linear model 

to the log-transformed results, as log(Runtime(N)) = a + b log(N), which gives Runtime(N) 

= aNb. The linear models are shown in Figure 8 for the ϵ-lexicase selection methods, which 

estimate the exponent of the complexity model, b, to be between 0.935 and 0.944. Therefore 

on average over these settings, the runtime of ϵ-lexicase selection as a function of N is 

approximately Runtime(N) = 0.45N0.939. This suggests a much lower time complexity with 

respect to N in practice than the worst-case complexity of N2 (see §2.2). In general, the 

lexicase methods fall between deterministic crowding and tournament selection in terms of 

wall clock times, with afp achieving the lowest times at higher population sizes. All runtime 

differences between methods are well within an order of magnitude.

5 Discussion

The experimental results show that ϵ-lexicase selection performs well on the symbolic 

regression problems compared to other GP methods and Lasso. ϵ-lexicase leads to quicker 

learning on the training set (Figure 5) and better test set performance (Figure 4) than 

other GP methods. The improvement in performance compared to traditional selection 

methods appears to be tied to the high semantic diversity that ϵ-lexicase selection maintains 

throughout training (Figure 6), and its preservation of individuals that perform well on 

unique portions of the training cases. ϵ-lexicase selection shows a categorical improvement 
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over lexicase selection for these continuous valued problems. Although lexicase selection 

also maintains diverse semantics, its inferior performance can be explained by its under-

utilization of training cases for selection (Figure 7) and its property of selecting only among 

strictly elite individuals (see the example from §4.1), a property that is relaxed through the 

introduction of ϵ thresholds in ϵ-lexicase selection.

Two new variants of ϵ-lexicase selection, semi-dynamic and dynamic, perform the best 

overall in our experiments. However, the variants of ϵ-lexicase do not differ significantly 

across all tested problems, which suggests that the foundations of the method are robust 

to different definitions of ϵ as long as they result in higher leverage of case information 

during selection compared to normal lexicase selection, which underperforms on regression 

problems. In view of the results, we suggest semi-dynamic ϵ-lexicase (ep-lex-sd, Algorithm 

3) as the default implementation of ϵ-lexicase selection since it has the lowest mean test 

ranking and appears to utilize the most case information according to Figure 7.

ϵ-lexicase selection is a global pool, uniform random sequence, non-elitist version of 

lexicase selection (Spector, 2012). Compared to traditional lexicase selection, which is 

elitist, ϵ-lexicase selection represents a relaxed version of lexicase selection; other potential 

relaxations could show similar benefits. “Global pool” means that each selection event 

begins with the entire population; however it is possible that smaller pools, perhaps 

defined geographically (Spector and Klein, 2006), could improve performance on certain 

problems that respond well to relaxed selection pressure. Future work could also consider 

alternative orderings of test cases that may perform better than “uniform random sequence” 

ordering that has been the focus of work thus far. Liskowski et al. (2015) attempted to 

use derived objective clusters as cases in lexicase selection, but found that this actually 

decreased performance, possibly due to the small number of resultant objectives. Burks and 

Punch (2016) found biasing case orderings in terms of performance yielded mixed results. 

Nevertheless, there may be a form of ordering or case reduction that improves lexicase 

selection’s performance over random shuffling.

The ordering of the training cases that produce a given parent also contains potentially 

useful information about the parent that could be used by the search operators in GP. 

Helmuth and Spector (2015) observed that lexicase selection creates large numbers of 

distinct behavioral clusters in the population (an observation supported by Figure 6). In that 

regard, it may be advantageous, for instance, to perform crossover on individuals selected 

by differing orders of cases such that their offspring are more likely to inherit subprograms 

with unique partial solutions to a given task. Recent work has highlighted the usefulness 

of semantically diverse parents when conducting geometric semantic crossover in geometic 

semantic GP (Chen et al., 2017).

Based on the observations in §3.1, when the training set is much larger than the population 

size, some cases are likely to go unused. In these scenarios it may be advantageous to reduce 

program evaluations by lazily evaluating programs on cases as they appear in selection 

events. Indeed, Eqn. 5 could be used as a guide for determining when a lazy evaluation 

strategy would lead to significant computational savings.
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Limitations of the current experimental analysis should be noted. First, we have not 

considered hyperparameter tuning of the GP system, which we intend to pursue in future 

work. In addition, the non-GP regression comparisons are limited to Lasso. In future work, 

we intend to compare to a broader class of learning algorithms. Finally, we have considered 

lexicase and ϵ-lexicase selection only in the context of GP applied to symbolic regression. 

Future work should consider the application of these selection methods to other areas of EC, 

and the use of these algorithms for other learning tasks.

6 Conclusions

In this paper we present a probabilistic and multi-objective analysis of lexicase selection 

and ϵ-lexicase selection. We develop the expected probabilities of selection under lexicase 

selection variants, and show the impact of population size and training set size on 

probabilities of selection. For the first time, the connection between lexicase selection 

and multi-objective optimization is analyzed, showing that individuals selected by lexicase 

selection occupy the boundaries or near boundaries of the Pareto front in the high-

dimensional space spanned by the population errors.

In addition, we experimentally validate ϵ-lexicase selection, including the new semi-

dynamic and dynamic variants, on a set of real-world and synthetic symbolic regression 

problems. The results suggest that ϵ-lexicase selection strongly improves the ability of GP 

to find accurate models. Further analysis of these runs show that lexicase variants maintain 

exceptionally high diversity during evolution, and that ϵ-lexicase variants consider more 

cases per selection event than standard lexicase selection. The results validate our motivation 

for creating this variant of lexicase for continuous domains, and suggest the adoption of 

lexicase selection and variants of it in similar domains.
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Figure 1: 
A graphical representation of three parent selections using lexicase selection on the 

population in Table 1. The arrows indicate different selection paths through the training 

cases in circles. The boxes indicate the selection pool after the case performs its filtering. 

The diamonds show the individual selected by each selection event. Training cases in gray 

indicate that they have already been traversed by the current parent selection process.
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Figure 2: 
The probability of a case occuring first in a selection event given T training cases and N 
selections.
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Figure 3: 
An illustration of the performance of lexicase selection (left) and semi-dynamic ϵ-lexicase 

selection (right) in a scenario involving two cases. Each point represents and individual 

in the population. The squares in the left figure are individuals in the Pareto set, and the 

squares on the right are individuals in the ϵ-Pareto set. A selection event for case sequence 

{t1, t2} is shown by the gray rectangles. The black points are individuals that could be 

selected by any case ordering.
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Figure 4: 
Boxplots of the mean squared error on the test set for 50 randomized trials of each algorithm 

on the regression benchmark datasets.
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Figure 5: 
Training error for the best individual using different selection methods. The results are 

averaged over 50 trials with 95% confidence intervals.
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Figure 6: 
Behavioral diversity of the population using different selection methods. The results are 

averaged over 50 trials with 95% confidence intervals.
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Figure 7: 
Median case depths of selection each generation for the lexicase selection variants on the 

regression problems. The results are averaged over 50 trials with 95% confidence intervals.
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Figure 8: 
Scaling of wall-clock runtimes as a function of population size.
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Table 1:

Example population from original lexicase paper (Spector, 2012). Plex and Pt are the probabilities of selection 

under lexicase selection (Eqn. 4) and tournament selection with tournament size 2 (Eqn. 6), respectively.

Program Case Error Elite Cases MAE p lex P t 

e 1 e 2 e 3 e 4

n 1 2 2 4 2 {t2,t4} 2.5 0.25 0.28

n 2 1 2 4 3 {t2} 2.5 0.00 0.28

n 3 2 2 3 4 {t2,t3} 2.75 0.33 0.12

n 4 0 2 5 5 {t1,t2} 3.0 0.21 0.04

n 5 0 3 5 2 {t1,t4} 2.5 0.21 0.28
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Table 2:

Example population with training case performances and selection probabilities according to the different 

algorithms.

Cases Probability of Selection

e 1 e 2 e 3 e 4 e 5 Mean tourn lex ϵ lex static ϵ lex semi ϵ lex dyn

n 1 0.0 1.1 2.2 3.0 5.0 2.26 0.111 0.200 0.000 0.067 0.033

n 2 0.1 1.2 2.0 2.0 6.0 2.26 0.111 0.000 0.150 0.117 0.200

n 3 0.2 1.0 2.1 1.0 7.0 2.26 0.111 0.000 0.150 0.117 0.117

n 4 1.0 2.1 0.2 0.0 8.0 2.26 0.111 0.200 0.300 0.200 0.167

n 5 1.1 2.2 0.0 4.0 4.0 2.26 0.111 0.200 0.000 0.050 0.050

n 6 1.2 2.0 0.1 5.0 3.0 2.26 0.111 0.000 0.000 0.050 0.033

n 7 2.0 0.1 1.2 6.0 2.0 2.26 0.111 0.000 0.133 0.133 0.133

n 8 2.1 0.2 1.0 7.0 1.0 2.26 0.111 0.000 0.133 0.133 0.217

n 9 2.2 0.0 1.1 8.0 0.0 2.26 0.111 0.400 0.133 0.133 0.050

ϵ 0.9 0.9 0.9 2.0 2.0
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Table 3:

Regression problems used for method comparisons.

Problem Dimension Samples

Airfoil 5 1503

Concrete 8 1030

ENC 8 768

ENH 8 768

Housing 14 506

Tower 25 3135

UBall5D 5 6024

Yacht 6 309
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Table 4.:

GP settings.

Setting Value

Population size 1000

Crossover / mutation 60/40%

Program length limits [3, 50]

ERC range [−1,1]

Generation limit 1000

Trials 50

Terminal Set {x, ERC, +, −, *, /, sin, cos, exp, log}

Elitism keep best

Fitness (non-lexicase methods) MSE
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Table 5:

Significance test p-values comparing test MSE using the pair-wise Wilcoxon rank-sum test with Holm 

correction for multiple comparisons. All significance tests are conducted relative to semi-dynamic ϵ-lexicase 

(ep-lex-sd). Bold indicates p < 0.05.

lasso rand tourn lex afp dc ep-lex-s ep-lex-d

airfoil 2.54e-16 2.54e-16 2.54e-16 2.54e-16 2.55e-15 1.59e-14 0.57 0.57

concrete 2.54e-16 2.54e-16 6.24e-13 4.25e-16 2.74e-08 1.66e-04 0.1 0.057

enc 5.15e-16 2.54e-16 4.12e-14 2.57e-15 1.67e-12 1.61e-03 1 0.49

enh 2.54e-16 2.54e-16 2.67e-16 2.54e-16 1.41e-15 2.00e-14 1.21e-04 1.28e-02

housing 1.51e-05 6.20e-13 8.12e-04 3.40e-07 1.57e-02 0.22 1 1

tower 6.38e-03 2.54e-16 1.57e-15 6.39e-15 7.63e-15 3.67e-14 6.38e-03 0.066

uball5d 2.54e-16 2.54e-16 4.80e-15 1.04e-13 6.96e-16 1.55e-11 1 1

yacht 2.54e-16 5.46e-16 1.52e-07 7.86e-07 4.93e-06 1 1 0.053
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Table 6:

Post-hoc pairwise statistical tests of rankings across problems according to Tukey’s Honest Significant 

Difference test. Bold values indicate p < 0.05 with adjustment for multiple comparisons.

lasso rand tourn lex afp dc ep-lex-s ep-lex-sd

ep-lex-s 1.55e-11 1.53e-11 1.36e-09 6.19e-11 6.32e-07 0.066

ep-lex-sd 1.54e-11 1.53e-11 4.00e-11 1.63e-11 1.17e-08 3.59e-03 0.98

ep-lex-d 1.54e-11 1.53e-11 1.05e-10 1.86e-11 4.32e-08 1.00e-02 1 1
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