Abstract

Dimethyl carbonimidodithioates, 2 derived from various primary aryl amines (1) by reacting with carbon disulfide and methyl iodide in dimethyl formamide in the presence of concentrated sodium hydroxide, are converted to the diaziridine derivatives, 3 by reacting with hydrazine in ethanol. The diaziridines, 3 on oxidation with lead tetraacetate in refluxing xylene, extrudes nitrogen, and intramolecular stabilization, particularly 1,2-carbon migration, takes place to give the product, 5. The reaction may take place through the intermediates, diazirines, 4, which have not been isolated. This work provides a new approach for the conversion of aryl amines having no α-methylene to aryl nitriles.
Introduction
Nitriles are useful organic molecules found in natural products and in synthetic organic chemistry. They are used for the synthesis of a wide variety of biologically active compounds.1 Conventionally, they are prepared from alcohols,2 aldehydes,2a,3 and amines4 by the nucleophilic displacement of substrates. Other traditional methods include dehydration of amides5 and aldoximes,6 conversion of methyl arenes,7 carboxylic acids,8 and amines,4f−4j and the classic Sandmeyer reaction using NaNO2/HCl/CuCN to nitriles. These methods were of low atom economy, produced stoichiometric wastes, required toxic reagents, had limited selectivity, and often required drastic reaction conditions.9
For the transformation of primary amines to nitriles, a number of oxidations using stoichiometric metal oxidants such as KI/I2,2e Cu/nitroxyl,4a Ir,4c nanocatalysts,10 OsO4,11 TiO2,12 nickel peroxide,13 Nb2O5,14 Au–Pd/ZrO2,15 RuO2·xH2O/TiO2,16 and copper reagents in combination with oxygen,17 silver reagents,18 cobalt peroxide,19 lead tetraacetates (LTAs),20 NiSO4/K2S2O8,21 RuCl3/O2,22 RuCl3/K2S2O823 ruthenium complex/O2,24 Ru supported on alumina/O2,25 molecular oxygen in the presence of transition-metal catalysts,26,27 and so forth have been reported. Recently, use of various catalysts for oxidation of primary amines to nitriles is also reported.28−31
Aryl nitriles are useful organic compounds used in synthetic organic chemistry and natural product chemistry. Traditional methods for the preparation of aryl nitriles include Rosenmund–von Braun reactions, Sandmayer reactions, as well as dehydration of amides5 and aldoximes.6,32 Recently, it was reported that aryl nitriles could be obtained by various catalysts.10,33,34 However, these methods involved toxic cyanating reagents, such as metal cyanides, harsh conditions, metal catalysts, and so forth. For the first time, we herein report a new approach for the conversion of primary aryl amines having no α-methylene to the corresponding aryl nitriles. Dimethyl carbonimidothioates 2(35) derived from various primary amines (1) could be converted to the diaziridine derivatives 3 by reacting with hydrazine (Scheme 1). The diaziridine 3 on oxidation with LTA in refluxing xylene extrudes nitrogen, and intramolecular stabilization took place to give product 5.
Scheme 1. Conversion of Primary Aryl Amines to the Corresponding Aryl Nitriles via Carbonimidodithioates.
Results and Discussion
The reaction of primary amines (1) having no α-methylene with carbon disulfide and methyl iodide in the presence of concentrated sodium hydroxide solution gave the corresponding dimethyl carbonimidothioates (2a–o).36 The intermediate diaziridines, 3a–o, were obtained by the reaction with hydrazine hydrate in ethanol. The reactivity of the carbonimidothioates (2) is due to the facility to displace two molecules of HSMe as leaving groups,36 when they react with hydrazine to give the corresponding diaziridines (3a–o) (Table 1). On refluxing the diaziridines (3) with LTA in xylene yielded the corresponding nitriles 5a–o in 68–93% overall yields (Table 1). The reaction may take place through the intermediate, diazirine 4 which has not been isolated (Scheme 1).37,38 The position of the substituent on the aromatic ring (ortho- or para-) did not show any significant effect on the product formation (Scheme 2).
Table 1. Transformation of Diaziridines (3a–o) to Nitriles (5a–o).
Scheme 2. Transformation of Diaziridines (3a–o) to Aryl Nitriles (5a–o).
The probable mechanism for the oxidation of diaziridines 3 by LTA in refluxing xylene to afford the nitriles 5 is shown in Scheme 3. As it is difficult to intercept the carbenes, it is presumed that intramolecular rearrangement, particularly 1,2-carbon migration, takes place. It was reported that the low yields of bimolecular products obtained upon photolysis of diazirine were due to the inefficiency of carbine production from the precursor.32,33 It was proposed that an excited state of diazirine suffers rearrangement, without intervention of carbine.
Scheme 3. Plausible Mechanism for the Conversion of Diaziridines to Nitriles.
Conclusions
In conclusion, we herein report an oxidative conversion of a wide range of primary aryl amines (1), which have no α-methylene to the corresponding nitriles (5). This work provides a new approach to aryl nitriles.
Acknowledgments
The authors acknowledge the IIT, Guwahati and SAIF NEHU, Shillong for spectral data and the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial support.
Supporting Information Available
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.2c03622.
Experimental procedures and spectral data of the compounds (PDF)
The authors declare no competing financial interest.
Supplementary Material
References
- a Srimani D.; Feller M.; Ben-David Y.; Milstein D. Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure. Chem. Commun. 2012, 48, 11853–11855. 10.1039/c2cc36639h. [DOI] [PubMed] [Google Scholar]; b Fleming F. F.; Yao L.; Ravikumar P. C.; Funk L.; Shook B. C. Nitrile containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J. Med. Chem. 2010, 53, 7902–7917. 10.1021/jm100762r. [DOI] [PMC free article] [PubMed] [Google Scholar]
- a Chen F.-E.; Li Y.-Y.; Xu M.; Jia H.-Q. Nitrile synthesis by oxidation, rearrangement, dehydration. Synthesis 2002, 1804–1806. [Google Scholar]; b Iranpoor N.; Firouzabadi H.; Akhlaghinia B.; Nowrouzi N. Conversion of alcohols, thiols and trimethylsilyl ethers to alkyl cyanides using triphenyl phosphine/2,3-dichloro-5,6-dicyanobenzoquinone/n-Bu4NCN. J. Org. Chem. 2004, 69, 2562–2564. 10.1021/jo035238v. [DOI] [PubMed] [Google Scholar]; c Mori N.; Togo H. Direct oxidative conversion of primary alcohols to nitriles using molecular iodine in ammonia water. Synlett 2005, 1456–1458. 10.1055/s-2005-868511. [DOI] [Google Scholar]; d Yin W.; Wang C.; Huang Y. Highly practical synthesis of nitriles and heterocycles from alcohols under mild conditions by aerobic double dehydrogenative catalysis. Org. Lett. 2013, 15, 1850–1853. 10.1021/ol400459y. [DOI] [PubMed] [Google Scholar]; e Reddy K. R.; Maheswari C. U.; Venkateshwar M.; Prashanthi S.; Kantam M. L. Catalytic oxidative conversion of alcohols, aldehydes and amines into nitriles using KI/I2-TBHP system. Tetrahedron Lett. 2009, 50, 2050–2053. 10.1016/j.tetlet.2009.02.057. [DOI] [Google Scholar]; f Iida S.; Togo H. Tetrahedron 2007, 63, 8274–8281. 10.1016/j.tet.2007.05.106. [DOI] [Google Scholar]
- a Toland W. G. The formation of nitriles by reaction of terminal methyl groups with sulfur and anhydrous ammonia. J. Org. Chem. 1962, 27, 869–871. 10.1021/jo01050a043. [DOI] [Google Scholar]; b Gelas-Mialhe Y.; Vessière R. Reaction of S,S-Diphenylsulfilimine with Aldehydes; A New Synthesis of Nitriles. Synthesis 1980, 1980, 1005–1007. 10.1055/s-1980-29299. [DOI] [Google Scholar]; c Das B.; Madhusudan P.; Venkataiah B. An efficient microwave assisted one-pot conversion of aldehydes into nitriles using silica gel supported NaHSO4 catalyst. Synlett 1999, 1569–1570. 10.1055/s-0029-1216866. [DOI] [Google Scholar]; d Karmarkar S. N.; Kelkar S. L.; Wadia M. S. A Simple Unusual One-Step Conversion of Aromatic Aldehydes into Nitriles. Synthesis 1985, 1985, 510–512. 10.1055/s-1985-31253. [DOI] [Google Scholar]; e Miller M. J.; Loudon G. M. Convenient, high-yield conversion of aldehydes to nitriles. J. Org. Chem. 1975, 40, 126–127. 10.1021/jo00889a034. [DOI] [Google Scholar]; f Smith R. F.; Walker L. E. A facile conversion of aldehydes to nitriles. J. Org. Chem. 1962, 27, 4372–4375. 10.1021/jo01059a057. [DOI] [Google Scholar]; g Arote N. D.; Bhalerao D. S.; Akamanchi K. G. Direct oxidative conversion of aldehydes to nitriles using IBX in aqueous ammonia. Tetrahedron Lett. 2007, 48, 3651–3653. 10.1016/j.tetlet.2007.03.137. [DOI] [Google Scholar]; h Sharghi H.; Sarvari M. H. A direct synthesis of nitriles and amides from aldehydes using dry or wet alumina in solvent free conditions. Tetrahedron 2002, 58, 10323–10328. 10.1016/s0040-4020(02)01417-5. [DOI] [Google Scholar]; i Carmeli M.; Shefer N.; Rozen S. From aldeydes to nitriles, a general and high yielding transformation using HOF-CH3CN complex. Tetrahedron Lett. 2006, 47, 8969–8972. 10.1016/j.tetlet.2006.10.014. [DOI] [Google Scholar]; j Movassagh B.; Shokri S. An efficient and convenient KF/Al2O3 mediated synthesis of nitriles from aldehydes. Tetrahedron Lett. 2005, 46, 6923–6925. 10.1016/j.tetlet.2005.08.007. [DOI] [Google Scholar]; k Wang E. C.; Lin G. J. A new one pot method for the conversion of aldehydes into nitriles using hydroxyl amine and phthalic anhydride. Tetrahedron Lett. 1998, 39, 4047–4050. 10.1016/s0040-4039(98)00654-6. [DOI] [Google Scholar]; l Ballini R.; Fiorini D.; Palmieri A. Highly convenient, one-pot synthesis of nitriles from aldehydes using the NH2OH.HCl/NaI/MeCN system. Synlett 2003, 1841–1843. 10.1055/s-2003-41408. [DOI] [Google Scholar]; m Bandgar B. P.; Makone S. S. Organic reactions in water: highly rapid CAN mediated one-pot synthesis of nitriles from aldehydes under mild conditions. Synlett 2003, 0262–0264. 10.1055/s-2003-36779. [DOI] [Google Scholar]; n Hwu J. R.; Wong F. F. Sodium bis(trimethylsilyl)amide in the oxidative conversion of aldehydes to nitriles. Eur. J. Org. Chem. 2006, 2513–2516. 10.1002/chin.200639106. [DOI] [Google Scholar]; o An X. D.; Yu S. Direct Synthesis of Nitriles from Aldehydes Using an O-Benzoyl Hydroxylamine (BHA) as the Nitrogen Source. Org. Lett. 2015, 17, 5064–5067. 10.1021/acs.orglett.5b02547. [DOI] [PubMed] [Google Scholar]; p Nasrollahzadeh M.; Atarod M.; Sajadi S. M. Biosynthesis, characterization and catalytic activity of Cu/RGO/Fe3O4 for direct cyanation of aldehydes with K4[Fe(CN)6]. J. Colloid Interface Sci. 2017, 486, 153–162. 10.1016/j.jcis.2016.09.053. [DOI] [PubMed] [Google Scholar]
- a Kim J.; Stahl S. S. Cu/Nitrosyl-catalyzed aerobic oxidation of amines into nitriles at room temperature. ACS Catal. 2013, 3, 1652–1656. 10.1021/cs400360e. [DOI] [PMC free article] [PubMed] [Google Scholar]; b Kornblum N.; Smiley R. A.; Blackwood R. K.; Iffland D. C. The Mechanism of the Reaction of Silver Nitrite with Alkyl Halides. The Contrasting Reactions of Silver and Alkali Metal Salts with Alkyl Halides. The Alkylation of Ambident Anions1,2. J. Am. Chem. Soc. 1955, 77, 6269–6280. 10.1021/ja01628a064. [DOI] [Google Scholar]; c Dutta I.; Yadav S.; Sarbajna A.; De S.; Hölscher M.; Leitner W.; Bera J. K. Double Dehydrogenation of Primary Amines to Nitriles by a Ruthenium Complex Featuring Pyrazole Functionality. J. Am. Chem. Soc. 2018, 140, 8662–8666. 10.1021/jacs.8b05009. [DOI] [PubMed] [Google Scholar]; d Bernskoetter W. H.; Brookhart M. Kinetics and Mechanism of Iridium-Catalyzed Dehydrogenation of Primary Amines to Nitriles. Organometallics 2008, 27, 2036–2045. 10.1021/om701148t. [DOI] [Google Scholar]; e Mori K.; Yamaguchi K.; Mizugaki T.; Ebitani K.; Kaneda K. Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chem. Commun. 2001, 461–462. 10.1039/b009944i. [DOI] [Google Scholar]; f Chen F. E.; Peng Z. Z.; Fu H.; Liu J. D.; Shao L. Y. Tetrabutylammonium Peroxydisulfate in Organic Synthesis. Part 8. An Efficient and Convenient Nickel-catalyzed Oxidation of Primary Amines to Nitriles with Tetrabutylammonium Peroxydisulfate. J. Chem. Res. 1999, 726–727. 10.1039/a906485k. [DOI] [Google Scholar]; g Iida S.; Togo H. Oxidative Conversion of Primary Alcohols, and Primary, Secondary, and Tertiary Amines into the Corresponding Nitriles with 1,3-Diiodo-5,5-dimethylhydantoin in Aqueous NH3. Synlett 2007, 0407–0410. 10.1055/s-2007-967954. [DOI] [Google Scholar]; h Iida S.; Togo H. Direct and facile oxidative conversion of primary, secondary and tertiary amines to their corresponding nitriles. Synlett 2006, 2633–2635. 10.1055/s-2006-951491. [DOI] [Google Scholar]; i De Luca L.; Giacomelli G. An insight of the reactions of amines with trichloroisocyanuric acid. Synlett 2004, 2180–2184. 10.1055/s-2004-830896. [DOI] [Google Scholar]; j Chen F. E.; Kuang Y. Y.; Dai H. F.; Lu L.; Huo M. A Selective and Mild Oxidation of Primary Amines to Nitriles with Trichloroisocyanuric Acid. Synthesis 2003, 2629–2631. 10.1055/s-2003-42431. [DOI] [Google Scholar]
- a Kuo C. W.; Zhu J. L.; Wu J. D.; Chu C. M.; Yao C. F.; Shia K. S. A convenient new procedure for converting primary amides into nitriles. Chem. Commun. 2007, 301–303. 10.1039/b614061k. [DOI] [PubMed] [Google Scholar]; b Saednya A. Conversion of carboxamides to nitriles using trichloroacetyl chloride/trimethylamine as a mild dehydrating agent. Synthesis 1985, 184–185. 10.1055/s-1985-31148. [DOI] [Google Scholar]; c Yamaguchi K.; Fujiwara H.; Ogasawara Y.; Kotani M.; Mizuno N. A Tungsten-Tin Mixed Hydroxide as an Efficient Heterogeneous Catalyst for Dehydration of Aldoximes to Nitriles. Angew. Chem., Int. Ed. 2007, 46, 3922–3925. 10.1002/anie.200605004. [DOI] [PubMed] [Google Scholar]; d Ishihara K.; Furuya Y.; Yamamoto H. Rhenium(VII) Oxo Complexes as Extremely Active Catalysts in the Dehydration of Primary Amides and Aldoximes to Nitriles. Angew. Chem., Int. Ed. 2002, 41, 2983–2986. . [DOI] [PubMed] [Google Scholar]
- Chakrabarti J. K.; Hotten T. M. A new route to nitriles. Dehydration of aldoximes using 2,4,6-trichloro-s-triazine (cyanuric chloride). J. Chem. Soc., Chem. Commun. 1972, 1226–1227. 10.1039/c39720001226. [DOI] [Google Scholar]; b Clive D. L. J. A new method for conversion of aldoximes into nitriles: use of chlorothionoformates. J. Chem. Soc. D 1970, 1014–1015. 10.1039/c29700001014. [DOI] [Google Scholar]; c Foley H. G.; Dalton D. R. Neutral conversion af aldoximes into nitriles at low temperature. J. Chem. Soc., Chem. Commun. 1973, 628–629. 10.1039/c39730000628. [DOI] [Google Scholar]; d Khan T. A.; Pernucheralathan S.; Ila H.; Junjappa H. S,S-Dimethyl dithiocarbonate: a useful reagent for efficient conversion of aldoximes to nitriles. Synlett 2004, 2019–2021. 10.1055/s-2004-830878. [DOI] [Google Scholar]; e Sarvari H. M. ZnO/CH3COCl: a new and highly efficient catalyst for dehydration of aldoximes into nitriles under solvent free readtions. Synthesis 2005, 787–790. 10.1055/s-2005-861826. [DOI] [Google Scholar]; f Rogic M. M.; Van Peppen J. F. V.; Klein K. P.; Demmin T. R. New facile method for conversion of oximes to nitriles. Preparation and acid-catalyzed transformation of aldehyde oxime ortho esters. J. Org. Chem. 1974, 39, 3424–3426. 10.1021/jo00937a030. [DOI] [Google Scholar]; g Chiou S.; Hoque A. K. M. M.; Shine H. J. Reactions of oximes with thianthrene cation radical in nitrile solvents. Cycloaddition to form oxadiazoles and deoxygenation to form nitriles. J. Org. Chem. 1990, 55, 3227–3232. 10.1021/jo00297a045. [DOI] [Google Scholar]; h Yang S. H.; Chang S. Highly efficient and catalytic conversion of aldoximes to nitriles. Org. Lett. 2001, 3, 4209–4211. 10.1021/ol0168768. [DOI] [PubMed] [Google Scholar]; i Denton R. M.; An P.; Lindovska W.; Lewis W. Phosphonium salt-catalysed synthesis of nitriles from in situ activated oximes. Tetrahedron 2012, 68, 2899–2905. 10.1016/j.tet.2012.01.067. [DOI] [Google Scholar]
- Shu Z.; Ye Y.; Deng Y.; Zhang Y.; Wang J. Palladium(II)-Catalyzed Direct Conversion of Methyl Arenes into Aromatic Nitriles. Angew. Chem., Int. Ed. 2013, 125, 10767–10770. 10.1002/ange.201305731. [DOI] [PubMed] [Google Scholar]
- a Huber V. J.; Bartsch R. A. Preparation of nitriles from carboxylic acids: A new, synthetically useful example of the Smiles rearrangement. Tetrahedron 1998, 54, 9281–9288. 10.1016/s0040-4020(98)00581-x. [DOI] [Google Scholar]; b Mlinarić-Majerski K.; Margeta R.; Veljkovic J. A facile and efficient one-pot synthesis of nitriles from carboxylic acids. Synlett 2005, 2089–2091. 10.1055/s-2005-871967. [DOI] [Google Scholar]; c Kangani C. O.; Day B. W.; Kelley D. E. Direct, facile synthesis of acyl azides and nitriles from carboxylic acids using bis(2-methoxyethyl)aminosulfur trifluoride. Tetrahedron Lett. 2007, 48, 5933–5937. 10.1016/j.tetlet.2007.06.119. [DOI] [Google Scholar]; d Telvekar V. N.; Rane R. A. A novel system for the synthesis of nitriles from carboxylic acids. Tetrahedron Lett. 2007, 48, 6051–6053. 10.1016/j.tetlet.2007.06.108. [DOI] [Google Scholar]
- Grasselli R. K. Advances and future trends in selective oxidation and ammoxidation catalysis. Catal. Today 1999, 49, 141–153. 10.1016/s0920-5861(98)00418-0. [DOI] [Google Scholar]
- Shahidi S.; Farajzadeh P.; Ojaghloo P.; Karbakhshzadeh A.; Hosseinian A. Nanocatalysts for conversion of aldehydes/alcohols/amine to nitriles: a review. Chem. Rev. Lett. 2018, 1, 37–44. 10.22034/CRL.2018.85118. [DOI] [Google Scholar]
- Gao S.; Herzig D.; Wang B. OsO4 mediated conversion of primary amines to nitriles. Synthesis 2001, 0544–0546. 10.1055/s-2001-12348. [DOI] [Google Scholar]
- a Lang X.; Ji H.; Chen C.; Ma W.; Zhao J. Selective formation of imines by aerobic photolytic oxidation of amines on TiO2. Angew. Chem., Int. Ed. 2011, 50, 3934. 10.1002/anie.201007056. [DOI] [PubMed] [Google Scholar]; b Li N.; Lang X.; Ma W.; Ji H.; Chen C.; Zhao J. Selective aerobic oxidation of amines to imines by TiO2 photocatalysis in water. Chem. Commun. 2013, 49, 5034. 10.1039/c3cc41407h. [DOI] [PubMed] [Google Scholar]
- Nakagawa K.; Tsuji T. Oxidation with Nickel Peroxide. II. Oxidation of Amines. Chem. Pharm. Bull. 1963, 11, 296. 10.1248/cpb.11.296. [DOI] [Google Scholar]
- Furukawa S.; Ohno Y.; Shishido T.; Teramura K.; Tanaka T. Selective amine oxidation using Nb2O5 photocatalyst and O2. ACS Catal. 2011, 1, 1150. 10.1021/cs200318n. [DOI] [Google Scholar]
- Sarina S.; Zhu H.; Jaatinen E.; Xiao Q.; Liu H.; Jia J.; Chen C.; Zhao J. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J. Am. Chem. Soc. 2013, 135, 5793. 10.1021/ja400527a. [DOI] [PubMed] [Google Scholar]
- Ovoshchnikov D. S.; Donoeva B. G.; Golovko V. B. Visible-light-driven aerobic oxidation of amines to nitriles over hydrous ruthenium oxide supported on TiO2. ACS Catal. 2015, 5, 34. 10.1021/cs501186n. [DOI] [Google Scholar]
- a Jallabert C.; Riviere H. Molecular oxygen activation by monovalent copper salts: transformation ofalcohols into aldehydes by the CuCl/amine/O2 system. Tetrahedron Lett. 1977, 18, 1215. 10.1016/s0040-4039(01)92978-8. [DOI] [Google Scholar]; b Capdevielle P.; Lavigne A.; Maumy M. Improved and Extended One-Step Conversion of Primary Amines into Nitriles by Copper-Catalyzed Oxidation. Synthesis 1989, 1989, 453. 10.1055/s-1989-27286. [DOI] [Google Scholar]; c Yamaguchi J.-i.; Takeda T. Oxidation of amines with CuBr2-LiOBut. Chem. Lett. 1992, 21, 1933. 10.1246/cl.1992.1933. [DOI] [Google Scholar]
- a Clarke T. G.; Hampson N. A.; Lee J. B.; Morley J. R.; Scanlon B. Argentic oxide oxidations of organic compounds. Tetrahedron Lett. 1968, 9, 5685–5688. 10.1016/s0040-4039(00)70751-9. [DOI] [Google Scholar]; b Lee J. B.; Parkin C.; Shaw M. J.; Hampson N. A.; Macdonald K. I. Oxidations involving silver-IX. Tetrahedron 1973, 29, 751–752. 10.1016/0040-4020(73)80088-2. [DOI] [Google Scholar]
- Belew J. S.; Garza C.; Mathieson J. W. Catalysis: autoxidation in the presence of active cobalt oxide. J. Chem. Soc. D 1970, 634–635. 10.1039/c29700000634. [DOI] [Google Scholar]
- a Stojiljkovic A.; Orbović N.; Mihailovic M. L.; Andrejevic V. The reaction of lead tetraacetate with unsubstituted hydrazones of some aromatic ketones and aldehydes. Tetrahedron 1970, 26, 1101–1107. 10.1016/S0040-4020(01)98787-3. [DOI] [Google Scholar]; b Stojiljkovic A.; Andrejevic V.; Mihailovic M. L. The reaction of leadtetraacetate with primary and secondary amines containing an α-methylene group. Tetrahedron 1967, 23, 721–732. 10.1016/0040-4020(67)85017-8. [DOI] [Google Scholar]
- a Yamazaki S.; Yamazaki Y. Nickel-catalyzed dehydrogenation of amines to nitriles. Bull. Chem. Soc. Jpn. 1990, 63, 301–303. 10.1246/bcsj.63.301. [DOI] [Google Scholar]; b Biondini D.; Brinchi L.; Germani R.; Goracci L.; Savelli G. Dehydrogenation of amines to nitriles in aqueous micelles. Eur. J. Org. Chem. 2005, 3060–3063. 10.1002/ejoc.200500047. [DOI] [Google Scholar]
- Tang R.; Diamond S. E.; Neary N.; Mares F. Homogeneous catalytic oxidation of amines and secondary alcohols by molecular oxygen. J. Chem. Soc., Chem. Commun. 1978, 562. 10.1039/c39780000562. [DOI] [Google Scholar]
- a Schröder M.; Griffith W. P. Potassium ruthenate: a catalytic oxidant for organic substrate. J. Chem. Soc., Chem. Commun. 1979, 58–59. 10.1039/C39790000058. [DOI] [Google Scholar]; b Green G.; Griffith W. P.; Hollinshead D. M.; Ley S. V.; Schröder M. Oxo complexes of ruthenium(VI) and (VII) as organic oxidants. J. Chem. Soc., Perkin Trans. 1 1984, 681–686. 10.1039/p19840000681. [DOI] [Google Scholar]
- Cenini S.; Porta F.; Pizzotti M. Low oxidation states ruthenium chemistry VI. Stoichiometric and catalytic oxidation by molecular oxygen of primary amines bound to dichlorobis(triphenylphosphine)ruthenium(II). J. Mol. Catal. 1982, 15, 297–308. 10.1016/0304-5102(82)80023-0. [DOI] [Google Scholar]
- Yamaguchi K.; Mizuno N. Efficient heterogeneous aerobic oxidation of amines by a supported ruthenium catalyst. Angew. Chem., Int. Ed. 2003, 42, 1480. 10.1002/anie.200250779. [DOI] [PubMed] [Google Scholar]
- a Schümperli M. T.; Hammond C.; Hermans I. Developments in the Aerobic Oxidation of Amines. ACS Catal. 2012, 2, 1108–1117. 10.1021/cs300212q. [DOI] [Google Scholar]; b Tseng K.-N. T.; Szymezak N. K. Dehydrogenative oxidation of primary amines to nitriles. Synlett 2014, 25, 2385–2389. 10.1055/s-0034-1378543. [DOI] [Google Scholar]
- Muthusamy S.; Kumarswamyreddy N. K.; Kesavan V.; Chandrasekaran S. Recent advances in aerobic oxidation with ruthenium catalysts. Tetrahedron Lett. 2016, 57, 5551–5559. 10.1016/j.tetlet.2016.11.024. [DOI] [Google Scholar]
- Olivares M.; Knörr P.; Albrecht M. Aerobic dehydrogenation of amines to nitriles catalyzed triazolidine ruthenium complexes with O2 as terminal oxidant. J. Chem. Soc., Dalton Trans. 2020, 49, 1981. 10.1039/c9dt04873a. [DOI] [PubMed] [Google Scholar]
- Lambert K. M.; Bobbitt J. M.; Eldirany S. A.; Wiberg K. B.; Bailey W. F. Facile oxidation of primary amines to nitriles using an Oxoammonium salt. Org. Lett. 2014, 16, 6484–6487. 10.1021/ol503345h. [DOI] [PubMed] [Google Scholar]
- Tao C.; Wang B.; Sun L.; Liu Z.; Zhai Y.; Zhang X.; Wang J. Merging visible-light photoredox and copper catalysis in catalytic aerobic oxidation of amines to nitriles. Org. Biomol. Chem. 2017, 15, 328–332. 10.1039/c6ob02510b. [DOI] [PubMed] [Google Scholar]
- Primo A.; Puche M.; Pavel O. D.; Cojocaru B.; Tirsoaga A.; Parvulescu V.; García H. G. Graphene oxide as a metal-free catalyst for oxidation of primary amines to nitriles by hypochlorite. Chem. Commun. 2016, 52, 1839–1842. 10.1039/c5cc09463a. [DOI] [PubMed] [Google Scholar]
- Das H. S.; Das S.; Dey K.; Singh B.; K Haridasan R. K.; Das A.; Ahmed J.; Mandal S. K. Primary amides to amines or nitriles: a dual role by a single catalyst. Chem. Commun. 2019, 55, 11868–11871. 10.1039/c9cc05856g. [DOI] [PubMed] [Google Scholar]
- Beletskaya I. P.; Sigeev A. S.; Peregudov A. S.; Petrovskii P. V. Catalytic Sandmeyer cyanation as a synthetic pathway to aryl nitriles. J. Organomet. Chem. 2004, 689, 3810–3812. 10.1016/j.jorganchem.2004.07.019. [DOI] [Google Scholar]
- Ma X. T.; Xu H.; Xiao Y. L.; Su C. L.; Liu J. P.; Xu Q. Direct synthesis of nitriles by Cu/DMEDA/TEMPO-catalyzed aerobic oxidation of primary amines with air. Chin. Chem. Lett. 2017, 28, 1336–1339. 10.1016/j.cclet.2017.01.017. [DOI] [Google Scholar]
- a Reddy T. I.; Bhawal B. M.; Rajappa S. A facile general method for the preparation of s-methyl thiolcarbamates using zeolite catalysts. Tetrahedron Lett. 1992, 33, 2857–2860. 10.1016/s0040-4039(00)78879-4. [DOI] [Google Scholar]; b Reddy T. I.; Bhawal B. M.; Rajappa S. Unique zeolite-catalyzed synthesis of nitroketene S,N-acetals. Tetrahedron 1993, 49, 2101–2108. 10.1016/s0040-4020(01)86309-2. [DOI] [Google Scholar]; c Sauter F.; Fröhlich J.; Blasl K.; Gewald K. N-[bis(methylthio)methylene]amino Ester (BMMA): Novel Reagents for Annelation of Pyrimidine Moieties. Heterocycles 1995, 40, 851–866. 10.3987/com-94-s86. [DOI] [Google Scholar]; d Sharma S. K.; Khan T. A.; Ila H.; Junjappa H. Reaction of dimethyl N-(2,2-diethoxyethyl) iminodithiocarbamate with primary amines. A new general appraoch for the synthesis of 1-substituted 2-methylthio imidazoles. Arkivoc 2001, 2001, 34–39. 10.3998/ark.5550190.0002.805. [DOI] [Google Scholar]
- Téllez F.; Cruz A.; López-Sandoval H. L.; Ramos-García I. R.; Gayosso M.; Castillo-Sierra R. N. C.; Paz-Michel B. P.; Nöth H.; Flores-Parra A. F.; Contreras R. Dithiocarbamates, Thiocarbamic Esters, Dithiocarboimidates, Guanidines, Thioureas, Isothioureas, and Tetraazathiapentalene Derived from 2-Aminobenzothiazole. Eur. J. Org. Chem. 2004, 2004, 4203–4214. 10.1002/ejoc.200400305. [DOI] [Google Scholar]
- Ford F.; Yuzawa T.; Platz M. S.; Matzinger S.; Fülscher M. Rearrangement of dimethylcarbene to propene: Study by laser flash photolysis and ab initio molecular orbital theory. J. Am. Chem. Soc. 1998, 120, 4430–4438. 10.1021/ja9724598. [DOI] [Google Scholar]
- Likhotvorik I. R.; Tippmann E.; Platz M. S. Bimolecular chemistry of dimethylcarbene. Tetrahedron Lett. 2001, 42, 3049–3051. 10.1016/s0040-4039(01)00359-8. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.




