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Abstract

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) 

tractography have received considerable attention. While the technical advances spearheaded by 

the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it 

remains unclear how these data should be analyzed to maximize tractography accuracy. Over 

a period of two years, we have engaged the dMRI community in the IronTract Challenge, 

which aims to answer this question by leveraging a unique dataset. Macaque brains that 

have received both tracer injections and ex vivo dMRI at high spatial and angular resolution 

allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art 

dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the 

HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. 

Importantly, we show that simple pre- and post-processing strategies can improve the accuracy 

and robustness of many tractography methods. Finally, we find that fiber configurations that 

go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The 

IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for 

both users and developers of dMRI analysis methods.
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1. Introduction

Diffusion MRI (dMRI) tractography allows us to image brain pathways in vivo and non-

invasively, and is thus a useful tool in a variety of research and clinical settings. However, 

it relies on indirect measurements of axonal orientations extracted from the dMRI signal, 

which can lead to errors in the reconstructed pathways. Possible sources of these errors, as 

identified by early studies, included uncertainty in the signal due to imaging noise (Jones, 

2003) and crossing fibers (Tuch et al., 2003). These issues motivated the effort to improve 

the signal-to-noise ratio (SNR), as well as the spatial and angular resolution of dMRI. The 

Human Connectome Project (HCP) sought to address these needs by developing scanners 

with ultra-high gradients, which allowed higher b-values to be acquired without sacrificing 

SNR, and accelerated dMRI sequences, which enabled higher angular and spatial resolution 

with shorter acquisition times (Harms et al., 2018; Setsompop et al., 2013; Sotiropoulos 

et al., 2013; Van Essen et al., 2013). These developments made multi-shell dMRI data 

prevalent. In parallel, orientation reconstruction methods were adapted to make better use 

of such data (Aganj et al., 2010; Canales-Rodríguez et al., 2009; Christiaens et al., 2015; 

Jbabdi et al., 2012; Jeurissen et al., 2014).

These advances in data acquisition and analysis improved our ability to resolve crossing 

fibers within a voxel (Fan et al., 2014; Jones et al., 2018) and allowed us to reconstruct 

white-matter circuitry in greater detail than previously possible (Edlow et al., 2016; Maffei 

et al., 2018). However, it is unclear which analysis methods maximize the anatomic accuracy 

of the pathways that can be reconstructed from these state-of-the-art acquisition protocols. 

Given the large amounts of HCP-style, multi-shell data that are now publicly available 

(Bookheimer et al., 2019; Casey et al., 2018; Harms et al., 2018; Van Essen et al., 2013), 

and the plethora of methods for pre-processing, orientation reconstruction, and tractography 

that can be applied to these data, it is of critical importance to compare these methods with 

respect to objective metrics of anatomic accuracy.

Anatomic tracing in non-human primates (NHPs) can be used to assess the accuracy of 

tractography in the brain (Yendiki et al., 2021). It allows us to reconstruct the complete 

trajectories of axon bundles from a tracer injection site to their destinations throughout 

the brain. The majority of previous studies that compared dMRI tractography to anatomic 

tracing were limited to single-shell dMRI data (Azadbakht et al., 2015; Dauguet et al., 2007; 

Gao et al., 2013; Schilling et al., 2019a; Schilling et al., 2019b; Thomas et al., 2014; van 

den Heuvel et al., 2015). Furthermore, the majority of such studies only considered the 

end points of the fiber bundles, and not their complete trajectory (Ambrosen et al., 2020; 

Azadbakht et al., 2015; Donahue et al., 2016; Girard et al., 2020; Hagmann et al., 2008; van 

den Heuvel et al., 2015). That is because they did not have dMRI and tracer data from the 

same brains, hence they relied on connectivity matrices from existing tracer databases.

The IronTract Challenge is the first open tractography challenge to be conducted on high-

resolution, densely sampled brain dMRI data. This allowed us to evaluate tractography 

accuracy for two widely adopted sampling schemes: multi-shell and Cartesian-grid. We 

leveraged a unique collection of NHP brains, where both anatomic tracer injections and 

ex vivo dMRI had been performed (Grisot et al., 2021; Safadi et al., 2018; Tang et al., 
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2019). The availability of dMRI and tracer data in the same brains allowed us to evaluate 

the accuracy of tractography not only at the end points of the axon bundles but along their 

trajectory in the white matter. This is the only way to localize exactly where tractography 

algorithms go wrong, which is a necessary step towards determining why they go wrong, 

and therefore how to improve them.

The IronTract Challenge also differed from previous tractography challenges in terms of 

its design. Participants submitted results with a wide range of tractography thresholds. 

When methods are compared only at their default thresholds (e.g., (Maier-Hein et al., 2017; 

Schilling et al., 2019a; Thomas et al., 2014)), they differ in terms of both sensitivity and 

specificity, and it is impossible to disentangle the effect of the threshold and the effect of 

the algorithm. Our design allowed us to circumvent this issue and to compare algorithms in 

terms of their sensitivity at the same level of specificity.

A previous validation study used data only from the training case of this challenge and 

performed a systematic comparison of a small number of q-space sampling, orientation 

reconstruction, and tractography methods, in all their permutations (Grisot et al., 2021). 

The IronTract Challenge expands the scope of our prior validation studies in two major 

ways. First, challenge participants chose a much wider range of state-of-the-art orientation 

reconstruction and tractography methods. Second, the addition of the validation case, which 

involved an injection in a different anatomical location and fibers following very different 

trajectories than the training case, allowed us to compare the robustness of the methods to 

the location of the seed region.

The IronTract Challenge was administered in two rounds (https://irontract.mgh.harvard.edu). 

The first round was organized in the context of the 2019 international conference on 

Medical Image Computing and Computer-Assisted Intervention. Preliminary results from 

the first and second rounds were presented, respectively, at the 2020 and 2021 annual 

meetings of the International Society for Magnetic Resonance in Medicine (Maffei et al., 

2021, 2020). In the first round, two teams outperformed all others, achieving both high 

accuracy and robustness to the location of the seed region. This motivated the second round, 

where all participants revisited their analyses, replacing their pre- and post-processing steps 

with those of the two high-performing teams. This allowed us to investigate the extent 

to which performance was dependent on the pre- and post-processing vs. the orientation 

reconstruction and tractography methods. The outcomes of this effort, as detailed below, 

include (i) practical recommendations for users of HCP-style, multi-shell dMRI data, who 

are interested in methods for analyzing these data that maximize anatomical accuracy, and 

(ii) insights on the fundamental failure modes of tractography for method developers, who 

are interested in potential avenues for improving these methods.

2. Methods

2.1. Outline of the challenge

Both rounds of the IronTract challenge followed the outline shown in Fig. 1. In vivo tracer 

injections and ex vivo dMRI scanning were performed on two macaque brains (see 2.2 

Data description). The dMRI data, acquired on a Cartesian grid, were resampled onto the 
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two-shell of the HCP acquisition protocol (Harms et al., 2018). We will refer to these 

datasets as diffusion spectrum imaging (DSI) and HCP respectively. The organizing team 

uploaded the data to the QMENTA platform (https://qmenta.com/irontract-challenge/) and 

the challenge teams could download them along with the tracer injection sites in the dMRI 

space. Each team analyzed the data with methods of their choice (see 2.3 Analysis of dMRI 

data by challenge participants). In round 1, this included image pre-processing, orientation 

reconstruction, tractography, and tractogram post-processing. In round 2, the pre- and post-

processing steps were standardized across all teams. Each team produced tractograms with 

a range of thresholds and uploaded them to the QMENTA platform. A score was computed 

on the fly by comparing the tractograms to the tracer data (see 2.4 ROC analysis). For the 

training case, participants were shown their score and were allowed to repeat data analysis 

and upload of results. Thus, participants tuned their analysis pipelines to maximize their 

score on the training case. Finally, they applied the optimized pipeline to the data from the 

validation case. The organizing team computed AUC scores on the validation case and used 

them for the final ranking of the challenge teams.

2.2. Data description

The training and validation cases used in this challenge are part of a previously described 

dataset that consists of in vivo tracing and high-resolution ex vivo dMRI acquired in the 

same macaque brains (Grisot et al., 2021; Safadi et al., 2018; Tang et al., 2019).

2.2.1. Tracer injections—The training and validation datasets came from two different 

male rhesus macaques. The former received an injection of the anterograde/bidirectional 

tracer Lucifer Yellow in the anterior frontal cortex (frontal pole). The latter received an 

injection of the anterograde/bidirectional tracer Fluorescein in the ventrolateral prefrontal 

cortex (vlPFC). Surgery and tissue preparation were performed at the University of 

Rochester Medical Center. Details of these procedures were described previously (Haber, 

1988; Lehman et al., 2011; Safadi et al., 2018). Briefly, each monkey received an injection 

of a bidirectional tracer conjugated with dextran amine (40–50 nl, 10% in 0.1 M phosphate 

buffer, pH 7.4; Invitrogen). Twelve days after the injection, animals were perfused and their 

brains were postfixed overnight and cryoprotected in increasing gradients of sucrose (10, 20, 

and 30%). All experiments were performed in accordance with the Institute of Laboratory 

Animal Resources Guide for the Care and Use of Laboratory Animals and approved by the 

University of Rochester Committee on Animal Resources.

2.2.2. dMRI data acquisition—After fixation, the brains were scanned in a small-bore 

4.7T Bruker BioSpin scanner (maximum gradient strength 480 mT/m) using a 3D EPI 

sequence with the following parameters: T R = 750 ms, T E = 43 ms, δ = 15 ms, Δ 

= 19 ms, maximum b = 40, 000 ss/mm2, matrix size 96 × 96 × 112, 0.7 mm isotropic 

resolution. Brains were submerged in liquid Fomblin to eliminate susceptibility artifacts. 

We acquired 1 non-diffusion weighted (b = 0 s/mm2) volume and 514 diffusion-weighted 

volumes corresponding to a Cartesian lattice in q-space. The total acquisition time was 48 h. 

We refer to this q-space sampling scheme data as DSI.
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We resampled the data onto q-shells, following a methodology that was previously described 

and validated (Jones et al., 2021, 2020). It involves approximating data points distributed 

on spheres in q-space from data points distributed on a Cartesian grid, using a fast 

implementation of the non-uniform fast Fourier transform (NUFFT) (Fessler and Sutton, 

2003). We followed this procedure to generate data on the two q-shells of the lifespan and 

disease HCP acquisition protocol (Harms et al., 2018). This in vivo protocol includes 93 

directions with b = 1, 500 s/mm2 and 92 directions with 3, 000 s/mm2.We multiplied these 

b-values by the 4x factor required to achieve comparable diffusion contrast ex vivo as in 
vivo (Dyrby et al., 2011), i.e., we used b = 6000 and 12000 s/mm2. We refer to this q-space 

sampling scheme as HCP.

To assess the SNR, we first fit the tensor model to the data and then delineated a mask 

encompassing the CC by selecting the highly red voxels in the color-coded fractional 

anisotropy (FA) map. We extracted the mean signal from this mask and from a mask outside 

the brain to capture the noise. We computed the SNR as the mean (signal)/standard deviation 
(noise) (Jones et al., 2013) for the b = 0 image (training: 63.56, validation: 51.16) and a for 

a b = 40,000 s/mm2 image (training: 16.42, validation: 12.76). The computation was done in 

DIPY (Garyfallidis et al., 2014).

2.2.3. Histological processing—Following whole-brain ex vivo dMRI, the brains 

were returned to the University of Rochester for histological processing. They were 

sectioned in 50 μm thick coronal slices on a freezing microtome into 0.1 m phosphate 

buffer or cryoprotectant solution as previously described (Haber et al., 2000). An undistorted 

photo of the blockface was taken before cutting for use in image registration (See 2.2.4 

Registration of tracer and dMRI data). Immunocytochemistry was then performed on every 

8th slice to visualize the transported tracer, resulting in an inter-slice resolution of 400 

μm. Additional details on the histological procedures can be found elsewhere (Haber et 

al., 2006; Haynes and Haber, 2013; Lehman et al., 2011). Labeled fiber bundles were 

outlined under dark-field illumination with a 4.0 or 6.4x objective, using Neurolucida 

software (MBF Bioscience). Fibers traveling together were outlined as a group or bundle. 

Axons were charted as they left the tracer injection site and followed through the right 

hemisphere, until the anterior commissure. The 2D outlines were combined across slices 

using IMOD software (Boulder Laboratory (Kremer et al., 1996)) to create 3D renderings of 

the structures and pathways as they traveled through them. These 2D outlines were used to 

further refine bundle contours and ensure spatial consistency across sections.

2.2.4. Registration of tracer and dMRI data—Each histology slice was registered 

to its corresponding blockface using a 2D robust affine registration (Reuter et al., 2010), 

followed by a 2D symmetric diffeomorphic registration (Avants et al., 2008). Blockface 

images were then stacked to create a 3D volume and registered to the b=0 dMRI volume 

using a 3D affine registration followed by a 3D diffeomorphic registration, with the same 

methods as above. The computed transformations were then applied to the tracer mask and 

the injection site mask, to map them into dMRI space. The transformed injection site mask 

was shared with challenge participants, to be used as the seed region for tractography.
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2.3. Analysis of dMRI data by challenge participants

2.3.1. Round 1—In the first round, teams were provided raw dMRI data. They were 

allowed to use the q-space sampling scheme and analysis methods of their choice. A detailed 

description of the methods that each team used in this round, including pre-processing, 

orientation reconstruction method, tractography, and post-processing, are provided in the 

Supplementary note 1. Both probabilistic and deterministic tractography approaches were 

deployed, with a variety of orientation reconstruction methods. Participants were asked to 

generate tractograms at multiple thresholds by varying one or more parameters of their 

choice. The most common choices were lower thresholds on probability, for submissions 

that used a probabilistic tractography algorithm; and upper thresholds on the bending angle, 

sometimes combined with lower thresholds on fractional anisotropy or other microstructural 

parameters, for submissions that used a deterministic tractography algorithm.

For each submission, participants uploaded a series of volumes, obtained by applying 

different thresholds to the tractograms, to the QMENTA platform. A score was computed 

on the fly by comparing the tractograms to the tracer data (see 2.4 ROC analysis). For 

the training case, the platform generated a performance report, including the AUC score, 

and made it available to the participant. Participants could repeat their analysis, upload, 

and score any number of times, allowing them to fine-tune the free parameters of their 

methods and optimize their score. They then applied their optimized analysis pipeline to the 

dMRI data from the validation case and uploaded the resulting tractograms to the QMENTA 

platform.

2.3.2. Round 2—In the second round, analysis and scoring of the training and 

validation cases were performed as described above. The difference was that the pre- 

and post-processing steps were standardized across teams. Participants downloaded pre-

processed dMRI data from the QMENTA platform and were provided two scripts for the 

post-processing steps. The orientation reconstruction and tractography methods were not 

standardized.

Pre-processing:  This followed the dMRI pre-processing procedures that had been used in 

round 1 by Team 1, the team that achieved the best performance (see 3.1 Round 1 Results). 

They included denoising (Veraart et al., 2016) and correction for Gibbs ringing (Kellner et 

al., 2016) in MRtrix3 (Tournier et al., 2019), and correction for motion and eddy-current 

distortions in FSL (Andersson et al., 2003; Andersson and Sotiropoulos, 2015). A binary 

dilation was applied to the tracer injection site mask.

Orientation reconstruction and tractography:  Teams were asked to apply the same 

orientation reconstruction and tractography methods as in round 1, if they had participated 

in round 1, or any methods of their choice otherwise. Supplementary note 2 details the 

orientation reconstruction and tractography method used by the teams in round 2.

Post-processing:  This replicated the post-processing strategies that had been used by the 

two teams that had consistently good performance across both training and validation cases 

in round 1. (i) Gaussian filtering. This strategy had been implemented by Team 1 in round 
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1. It included the application of a Gaussian filter with sigma = 0.5 to increase coverage, 

followed by an iterative thresholding of 200 steps on the log of the streamline count, for 

a total of 200 output tractogram volumes. (ii) Anatomical ROIs. This strategy had been 

implemented by Team 2 in round 1. ROIs from the PennCHOP macaque atlas (Feng et al., 

2017) were transformed to the space of each dMRI dataset. Only streamlines intersecting 

at least one of these ROIs were retained. The ROIs were selected on the base of general 

knowledge of projections of the prefrontal cortex (Lehman et al., 2011) and were located 

in: the cingulum bundle, the genu of the corpus callosum, the external capsule, the anterior 

limb of the internal capsule, and the uncinate fasciculus (Supplementary Fig. 1). For round 

2, after applying the anatomical ROIs, the same smoothing (sigma = 0.5) and iterative 

thresholding (200 steps on the log of the streamline count) as in the Gaussian filtering 

strategy were performed. It is important to differentiate between the anatomical ROIs used 

by Team 2, which were based on prior knowledge of the brain regions that are connected 

to the specific injection sites, and other masks. The anatomical ROIs were applied after 

generating tractography streamlines, hence we consider them a post-processing step. Teams 

could still use masks that were not specific to the connectional anatomy of the injection 

site (e.g., FA masks). These were used in the process of generating streamlines, hence we 

included them in the tractography step (Supplementary note 1, supplementary note 2).

2.4. ROC analysis

2.4.1. AUC score—We adopted the area under the receiver operating characteristic 

(ROC) curve (AUC) as our main performance score. The ROC analysis was performed as 

follows. For each of the submitted tractograms, we obtained the numbers of voxels that 

were true positive (TP; voxels included both in the tractogram and in the tracer mask), 

true negative (TN; voxels included neither in the tractogram nor in the tracer mask), false 

positive (FP; voxels included in the tractogram but not in the tracer mask), and false negative 

(FN; voxels included in the tracer mask but not in the tractogram). The computation of TN 

and FP was performed for only for voxels included in a brain mask. The mask excluded 

brain regions were not labeled in the tracing data (e.g., because they were too caudal to 

contain projections of these injection sites). The true-positive rate (TPR) and false-positive 

rate (FPR) were then calculated as follows:

TPR = TP
TP + FN

FPR = FP
FP + TN

This was repeated for all tractograms in a submission, which had been thresholded at 

different levels (either with the thresholding method chosen by each team in round 1, or 

with the standardized thresholding method in round 2). We obtained the ROC curve of each 

submission by plotting the TPR as a function of FPR. We computed a partial AUC score, 

i.e., the area under the ROC curve for FPR in the [0,0.3] range. Thus, the maximum possible 

AUC score was 0.3. The choice of this range was based on prior results showing that 
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deterministic tractography methods cannot always achieve FPRs outside this range (Grisot et 

al., 2021).

2.4.2. Bundle-wise TPR—As an alternative to the voxel-wise TPR, we also investigated 

how many of the main white-matter areas that were included in the tracer mask were reached 

by each tractography method. The goal was to determine what FPR we would have to 

tolerate with each method to reach the main bundles that the injection site projects to, 

and what tractography threshold would allow us to achieve that. To this end, every voxel 

included in the tracer mask in dMRI space was labeled by AY and CM. For the training case, 

voxels were assigned to one of 8 classes: anterior frontal white matter (AF); anterior limb of 

the internal capsule (ALIC); cingulum bundle (CB); corpus callosum (CC); external capsule 

(EC); medial prefrontal white matter (MPF); lateral prefrontal white matter (LPF); uncinate 

fasciculus (UF). For the validation case, voxels were assigned to one of 10 classes: ALIC; 

brainstem fibers (BS); commissural fibers (CF); CB; CC; EC; extreme capsule (EmC); 

LPF; thalamic fibers (ThF); UF. We assumed that tractography reached one of the above 

labels successfully if it reached at least 50% of the voxels in the label. We computed the 

bundle-wise TPR, which we defined as the percentage of labels reached successfully by each 

tractogram. We then identified the tractogram threshold at which each submission achieved 

a bundle-wise TPR of 0.8, i.e., reached 80% of the white-matter regions that the injection 

site projects to. The goal was to examine if there was a similar threshold for which most 

methods achieved satisfactory coverage of the true bundles. If such a common threshold 

exists, it may be a sensible choice for users of tractography, in the general scenario where 

ground truth is not available.

2.4.3. Hausdorff distance—As an alternative error metric to the FPR, we computed the 

modified Hausdorff distance (MHD) (Dubuisson et al., 1994) between the tracer mask and 

the tractogram. The MHD between two set of points S and T is defined as the minimum 

distance between a point in one set and any point in the other set, averaged over all points in 

the two sets:

M H D(S, T) = 1
S ∑

sϵS
mintϵTd(s, t) + 1

T ∑
tϵT

minsϵSd(t, s),

where d(•,•) is the Euclidean distance between two points, and |•| is the size of a set. Greater 

MHD indicates greater deviation of the tractography volume from the tracer.

2.5. Localization of challenging areas

Having tracer and dMRI data from the same brain allows us to identify the exact 

locations where tractography goes wrong, and thus the fiber geometries that are consistently 

challenging across tractography methods. To this end, we extracted a map of TP voxels at 

FPR = 0.1, for each of the submissions that participated in both rounds of the challenge. 

We binarized these maps and summed them across all submissions. This yielded a histogram 

that showed the number of teams that achieved a TP in each voxel of the tracer mask. This 

allowed us to identify the locations where errors occurred consistently across tractography 
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methods in round 1, and to examine whether the pre- and post-processing steps that were 

applied in round 2 mitigated these common errors.

2.6. Comparison of orientation distribution functions

After the end of the challenge, we asked participants to share the orientation distribution 

functions (ODFs) from their final submissions, to examine if the ODFs played a role in 

the performance differences between teams. All ODFs were projected onto a common set 

of 362 directions that were distributed uniformly on the half sphere. This direction set was 

generated by the electrostatic repulsion model (Caruyer et al., 2013), as implemented in 

DIPY (Garyfallidis et al., 2014). We then normalized the ODFs by the maximum ODF 

value and converted their amplitudes to their spherical harmonic representation in MRtrix3 

(lmax=12) (Tournier et al., 2019). For each submission, we extracted a voxel-wise map of 

orientation dispersion by computing the mean dispersion of the ODF lobes inside the voxel 

(Smith et al., 2013). We included only ODF lobes with peak amplitudes larger than 0.2 

times the maximum ODF amplitude, as very small peaks would typically not be used in 

tractography. For each submission, we extracted the orientation dispersion for a maximum 

of 3 peaks per orientation distribution function (ODF) in MRtrix3 (Jeurissen et al., 2013; 

Raffelt et al., 2015). We computed the Spearman’s rank correlation between the mean 

dispersion and the AUC (Scipy 1.3.1).

3. Results

3.1. Round 1 results (variable pre- and post-processing)

Out of 30 registered teams, 12 completed the challenge (total submissions: 227; training: 

186; validation: 38) and 16 final submissions were ranked. A detailed list is reported in 

Supplementary Table 1.

Overall, results from round 1 showed that, in both training and validation cases, no 

submission could achieve high TPR without also generating a large number of false 

positives (Fig. 2A). Most submissions achieved TPRs higher than 0.8 only at FPRs higher 

than 0.2. Almost all submissions achieved higher accuracy in the training case (mean 

AUC=0.20) than in the validation case (mean AUC=0.16). Three teams only (Teams 1, 2, 

6) obtained similar accuracy across datasets, with even higher accuracy for the validation 

case (Fig. 2B). The AUC score of two of these three teams (Teams 1,2) was considerably 

higher (AUC > 0.23) than all other submissions (AUC ≤ 0.18) in the validation case. 

The overall highest score (AUC = 0.27) was obtained by Team 1, with a combination of 

the Robust and Unbiased Model-BAsed Spherical Deconvolution (Rumba-SD) method for 

orientation reconstruction (Canales-Rodríguez et al., 2015) and probabilistic tractography 

(Garyfallidis et al., 2014; Girard et al., 2014) on the DSI data. Methods that used the DSI 

scheme achieved consistently high accuracy (Fig. 2C, left), whereas methods that used the 

HCP scheme varied in their performance. However, the results suggest that, if analysis 

methods can be optimized carefully, the HCP acquisition may approach the accuracy 

of the much more demanding DSI acquisition. While most orientation reconstruction 

methods performed similarly in the training case, Rumba-SD (Canales-Rodríguez et al., 

2015) outperformed the other submissions in the validation case (Fig. 2C, center). Finally, 
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probabilistic tractography approaches achieved overall higher accuracy scores (mean AUC 

= 0.20) than deterministic ones (mean AUC = 0.15), especially for the validation case (Fig. 

2C, right) (See Supplementary Fig. 2 for performance by method).

3.2. Sensitivity varies across white matter regions

We investigated how many of the white matter regions included in the tracer mask were 

correctly labeled by each Submission. Fig. 3 shows the TPR of each submission at the 

same specificity level (FPR=0.1) for different white matter ROIs labeled in the training 

and validation case (2.4.2 Bundle-wise TPR). Sensitivity was variable across regions, with 

similar patterns across submissions. In the training case, most teams labeled the EC, CC, and 

MPF correctly, but could reach the UF and CB only partially (Fig. 3A).

In the validation case, almost all methods could label the UF, EC, and LPF correctly but 

most of the submissions failed to reach regions located at a greater distance from the 

injection site, like the BS, ThF, and ALIC. In the training case several teams achieved 

similar performance as Team 1. In the validation case, however, where fine-tuning with 

respect to the ground truth was not possible, the performance of most teams deteriorated. 

The best result was achieved by the Rumba-SD model (Canales-Rodríguez et al., 2015) 

and probabilistic tractography (Garyfallidis et al., 2014; Girard et al., 2014) on the DSI 

data (Team 1), which achieved a TPR higher than 0.9 for all the regions. There were clear 

differences in the bundles where errors occurred in the training vs. the validation case. 

This has to do with the fact that fibers starting from the two different injection sites enter 

these bundles from different angles (See 3.4 Branching and turning fiber configurations are 

challenging for tractography).

3.3. Round 2 results (standardized pre- and post-processing)

Fourteen teams completed round 2 (259 total submission. Training: 105. Validation: 154). 

Of these, eleven also completed round 1, one completed round 1 but submitted results with 

a different pipeline in round 2, and two teams were new (Team 13 and Team 14). Some of 

the teams that had completed round 1 submitted results with new methods, in addition to 

regenerating results with the methods that they had used in round 1 but with the standardized 

pre- and post-processing. Fifty final submissions were ranked (Supplementary Table 2).

Results show that the performance of most returning teams improved when compared to 

round 1, as a result of applying the harmonized pre- and post-processing strategies. This 

improvement was greater for the validation case (2–85%) than the training case (2–30%) 

(Fig. 4A). As a result, the difference in AUC score between the training and validation case 

decreased substantially in round 2 (Fig. 4B). This led to many more teams achieving more 

similar performance between the training and validation case (Supplementary Fig. 3). At the 

same FPR = 0.1, all submissions achieved higher TPR than in round 1 (Supplementary Fig. 

4).

Remarkably, post-processing by Gaussian filtering, which does not assume any prior 

anatomical knowledge, also improved results for most submissions (Fig. 4B), leading to a 

training-validation percent difference only slightly higher than the one obtained when using 

the anatomical ROIs. Only two teams (Team 6 and Team 8) did not show improvement with 
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Gaussian filtering and one of them (Team 8) did not show improvement with anatomical 

ROIs. These improvements allowed most teams to obtain higher scores, reducing the 

difference between their performance and that of Team 1, especially for the validation case 

(Fig. 4C).

Fig. 5 shows ROC curves for round 2 with the bundle-wise TPR, i.e., the portion of 

white-matter regions where each submission achieved at least 50% coverage. For this 

and subsequent results presented in this section, we show only one submission per team 

(the one that achieved the highest AUC score on the validation case). Results are shown 

for post-processing by a Gaussian filter. Some of the submissions that used deterministic 

tractography (Team 8 for HCP and DSI schemes; Team 12 for HCP scheme) could not reach 

all the ten white-matter regions and are thus not shown. There was considerable variability 

across submissions, with Teams 1 and 2 reaching 50% coverage of all the regions with FPR 

< 0.11, and the remaining submissions with FPR > 0.15. Deterministic methods (solid lines) 

operate at lower specificity levels, and are only able to reach all regions at the cost of FPR 

> 0.22. In some cases, submissions that used the same orientation reconstruction method 

(M-CSD (Dhollander et al., 2019; Jeurissen et al., 2014)) achieved coverage of all regions 

at very different FPR levels, suggesting that other algorithmic choices had an impact on the 

TPR/FPR trade-off. It is worth noting that for the DSI scheme, all submissions (including 

deterministic) reached all ten regions at higher specificity levels (FPR ≤ 0.15) than for the 

HCP scheme, and that the submission that used Rumba-SD was able to reach 9 out of 10 

regions with an FPR as low as 0.06.

Fig. 6 shows the tractogram threshold for which each team achieved bundle-wise TPR = 0.8. 

Overall, most submissions needed very relaxed thresholds (< 0.02 of the maximum value 

in the tractogram). Only one submission, using ASI (Wu et al., 2019) and deterministic 

tractography (Wu et al., 2020), achieved this coverage at a much more stringent threshold 

(0.13 of the maximum value in the tractogram). However, this submission also produced a 

much higher FPR at that threshold. For most submissions, a slightly higher (more stringent) 

threshold was needed in the validation case than the training case.

Supplementary Fig. 5 shows the MHD between the tracer mask and the tractogram plotted 

against the TPR. While the FPR penalizes all FPs equally, the MHD measures how far from 

the tracer mask the FPs occur. The plots show that the MHD was greater for the validation 

than the training case for all submissions, even those that achieved similarly high AUC score 

in the two cases. At the same sensitivity level, MHD was greater for deterministic than 

probabilistic methods. Similarly to what we observed with the bundle-wise ROCs of Fig. 

5, there were submissions that used the same orientation reconstruction method (CSD) but 

had very different MHDs at the same level of sensitivity (3–8 mm range at TPR = 0.8). The 

MHD was below 10 mm for all submissions and all levels of sensitivity.

3.4. Branching and turning fiber configurations are challenging for tractography

Fig. 7 shows histograms of the number of teams that achieved a TP (i.e., voxels included 

both in the tractogram and in the tracer mask) in each voxel of the tracer mask, at FPR = 0.1.
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These histograms are shown for round 1 and for each of the post-processing strategies 

adopted in round 2. The pre- and post-processing used in round 2 improved the overall 

coverage of the tracer masks by tractography. In the training case, the ALIC, CB, EC were 

labeled correctly by most teams (Fig. 7, top, light blue arrows), while only few teams could 

label these regions in round 1. The region where fibers turn sharply towards the temporal 

terminations of the UF remained challenging for all teams in both rounds (Fig. 7, top, 

violet arrow). In the validation case, the biggest improvement was located where fibers 

coming from the ALIC branch into fibers entering the thalamus and fibers entering a narrow 

bundle of axons projecting down the brainstem. In round 2, more submissions labeled the 

thalamic fibers correctly and achieved improved coverage of the inferior brainstem fibers. 

Despite this improvement, this region continues to pose challenges for most teams (Fig. 7, 

bottom, violet arrow). Like the UF region, this branch point is located further away from 

the injection/seed point than other regions in the tracing mask. Therefore, tractography needs 

to traverse other branching and turning points to get there and, as errors accumulate, the 

number of streamlines that reach these regions is small.

We can better understand the nature of these errors by examining the false positives that 

occur around these challenging areas. We identified two regions for the training case (UF 

and LPF) and two for the validation case (ALIC and EC) where the tracer and tractography 

trajectories consistently diverged in most submissions (Fig. 8, Supplementary video). We 

observed that in areas where fibers branch into two bundles, tractography tends to follow 

the least curved of the two and miss the other. Similarly, in areas where fibers take a sharp 

turn but, at the resolution of the dMRI data, overlap with a separate, less curved pathway, 

tractography follows the latter, instead of taking the turn. An example of such configuration 

is the area where the fibers coming from the EC turn towards the UF and the ILF (Fig. 8B). 

Here tractography follows the ILF erroneously and fails to reach the UF terminations in the 

temporal lobe.

Fanning regions also lead to errors in tractography. In the training case, fibers exiting the 

injection site branch from the main bundle, which is sometimes referred to as the “stalk”, 

and fan out towards the dorsolateral prefrontal cortex. Here tractography follows the main 

stalk, continuing in the frontal white matter and does not turn superolateral to then fan 

into the LPF (Fig. 8C). In the validation case, most teams showed false negatives in the 

supero-frontal projections of the CC (Fig. 7). Fig. 8D shows that here tractography continues 

into the body of the CC to project to contralateral areas, missing the sharp turn of CC 

projections to the superior frontal gyrus. Another region of the validation case that showed 

significant false negatives across submissions was the region where fibers enter the ALIC. 

Here tractography prefers following the direction of least curvature in the CC body and into 

the big bundle of anterior-posterior fibers stemming from the EC, rather than turning into the 

smaller ALIC (Fig. 8E).

3.5. Sharper diffusion profiles do not always lead to more accurate tractography

We compared the ODFs from different submissions in an area that was consistently 

challenging across methods. This was where fibers branched into thalamic and brainstem 

fibers (Fig. 7). All submissions identified two fiber populations correctly in the superior part 
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of this region, where fibers branched, and one main fiber population in the inferior part, 

where fibers projected caudally to the brainstem. However, there were differences in the 

sharpness of the ODFs. Interestingly, the submissions that achieved the highest accuracy 

were not the ones with the sharpest diffusion profiles. This suggests that, depending on the 

underlying fiber configuration, ODF sharpness may not be a universally desirable property. 

Especially in the superior part of the ROI, where the two sets of fibers diverge, the best 

performing teams (Fig. 9B–D) show somewhat less sharp ODFs. However, no clear trend 

was visible across submissions as some of the submissions achieving lower accuracy also 

show less sharp ODFs.

We quantified the sharpness of the ODFs by computing the dispersion of each peak in each 

voxel. Fig. 10 shows plots of the average dispersion in seven ROIs from the training and 

validation case. We selected both regions with complex fiber configurations (UF, CB, CC, 

EC-IC, TH-BS) and regions that should mainly contain single fiber orientations, like the 

body of the CC (CCb) and BS. Fig. 10 shows that, although ODF dispersion was not the 

only factor that determined accuracy, submissions that achieved higher AUC scores had less 

sharp ODFs, especially in regions with turning, fanning, and branching fiber configurations 

(TH-BS, CC, UF). This variability across regions was confirmed by correlating the AUC 

with the mean dispersion across all ROIs from the training and validation cases. Results 

show a lack of such a correlation for both HCP and DSI data (Supplementary Fig. 6).

4. Discussion

The IronTract Challenge evaluated a variety of state-of-the-art tractography methods on 

high-angular and spatial resolution dMRI data by quantitative voxel-wise comparison 

to anatomic tracing data in the same NHP brains. This effort differed from previous 

tractography challenges in several ways. First, the dMRI acquisition protocol allowed us to 

evaluate HCP-style and DSI acquisition schemes in real brain data. Second, the availability 

of both dMRI and tracer data in the same brains allowed the precise localization of 

tractography errors and challenging fiber configurations. Third, a training and validation 

case with different injection sites allowed us to evaluate the robustness of submissions 

across seed areas. Fourth, a full ROC analysis allowed us to compare the sensitivity 

of different methods at the same level of specificity. Fifth, by iterating over the results 

in a second round, where all teams used the same pre- and post-processing steps, we 

disentangled the contribution of these steps from that of the orientation reconstruction 

and tractography steps. Our results provide insights into the optimal processing strategies 

for widely available, HCP-style data. They also reveal why errors occur even with these 

state-of-the-art acquisition and analysis techniques, thus pointing to possible areas of 

improvement for future methodological development.

4.1. The effect of acquisition scheme and propagation method

We compared an HCP-style, two-shell acquisition scheme with a much more densely 

sampled DSI scheme. Overall, higher accuracy was achieved by methods that used the 

full DSI data (515 diffusion volumes) (Fig. 2). However, a few of the methods that used 

the HCP data approached the accuracy of the DSI methods. For methods that could be 
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applied to both schemes, the loss in accuracy when using HCP versus DSI data was lower 

than 10% (Supplementary Table 1, Fig. 2). This illustrates that when analysis methods 

are carefully optimized, the two-shell HCP scheme represents an advantageous trade-off 

between accuracy and acquisition time, given that DSI acquisition involves 2.8 times more 

directions and 3.3 times higher maximum b-value. Previous validation studies showed that 

DSI produces more accurate fiber orientation estimates both in simulations (Daducci et al., 

2014) and in comparison to optical imaging measurements (Jones et al., 2020). In this study, 

the most accurate submission was obtained using DSI data. While a full DSI acquisition 

is time-consuming, compressed sensing (CS) allows DSI data to be reconstructed from 

undersampled q-space (Menzel et al., 2011; Setsompop et al., 2013; Tobisch et al., 2018). 

A recent post mortem validation study showed that a CS-DSI protocol with 171 directions 

(similar to the number of directions in the two-shell HCP protocol), preserves the high 

angular accuracy of fully sampled DSI (Jones et al., 2021). Thus, it is a viable alternative 

that combines the benefits of shell and grid acquisitions.

In regard to the propagation method, we found that probabilistic tractography led to overall 

higher AUC (mean AUC: 0.22) than deterministic tractography (mean AUC = 0.17). This 

was particularly true for the validation case, where pipelines were not optimized with 

respect to the ground truth (Fig. 2A and C). This confirms the overall lower sensitivity of 

deterministic approaches at the same level of specificity (Girard et al., 2020; Grisot et al., 

2021). Probabilistic tractography led to better bundle coverage (Fig. 5). Three deterministic 

submissions could not reach all the bundles labeled in the validation case, and the other ones 

did so at a much higher FPR than the probabilistic methods (Fig. 5). This was especially true 

for white matter regions located further away from the injection site/seed (Fig. 3B).

4.2. The effect of orientation reconstruction method

Differences between the ODFs from the various submissions were mostly subtle. Our results 

suggest that there is no simple, one-to-one mapping between ODF characteristics and the 

accuracy of tractography (Fig. 10, Supplementary Fig. 6). This result is in line with a recent 

study that found that there is no single optimal method for all different fiber configurations 

(Canales-Rodríguez et al., 2019).

However, the dispersion of the ODFs does seem to play a role. The conventional wisdom is 

that sharper ODFs are better because they help resolve crossing fibers with small inter-fiber 

angles (Canales-Rodríguez et al., 2019). However, the ODFs from the winning method 

(Rumba-SD) showed higher dispersion than ODFs from most of the other submissions. This 

was the case in almost all selected ROIs and especially in those that included branching, 

fanning, or turning fibers (Fig. 10). Less sharp ODFs, when combined with probabilistic 

tractography, allow a broader range of orientations to be sampled from the same ODF peak. 

This can be beneficial in areas of branching or fanning. Areas where fibers take sharp turns 

remain a challenge for all methods. They can only be resolved by relaxing bending angle 

thresholds to a degree where the FPR becomes prohibitively high.

In a previous study, we evaluated a different set of tractography methods on the dataset that 

we refer to as the training set here (Grisot et al., 2021). We observed the highest accuracy 

from the combination of probabilistic tractography with GQI, a reconstruction method that 
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does not produce particularly sharp ODFs. The performance of probabilistic GQI in that 

study (TPR < 0.7 at FPR = 0.1) was lower than the performance of probabilistic Rumba-SD 

in the present study (TPR = 0.74 at FPR = 0.1). However, it may be worth revisiting the 

probabilistic GQI approach with the optimized pre- and post-processing methods of the 

IronTract Challenge.

4.3. The effect of pre- and post-processing

In the second round of the challenge, we investigated the extent to which the pre- and 

post-processing strategies had contributed to the higher robustness achieved by Teams 1 and 

2 in the first round. When the remaining teams used the same strategies, accuracy improved 

for almost all submissions (Fig. 4). This improvement was higher for the validation than the 

training case, i.e., the accuracy of tractography became more robust to the location of the 

seed region. More specifically, accuracy improved in some regions that proved challenging 

in round 1 (Fig. 7).

While we did not study the effects of the pre- and post-processing separately, prior work 

studied the effects of some pre-processing steps on the accuracy of diffusion orientation 

estimates (Daducci et al., 2014). They found that denoising improved orientation accuracy 

up to 30–40%. Approximately half of the teams had applied denoising in round 1 and 

only four teams had performed eddy-current correction. These steps were included in the 

standardized pre-processing of round 2.

The improved accuracy obtained with the use of a priori anatomical ROIs was expected. 

The more surprising result was that post-processing with a simple Gaussian filter, which 

requires no prior anatomical information, increased the AUC by up to 80%, a benefit 

similar to the use of anatomical ROIs (Supplementary Fig. 2). While harmonizing pre- 

and post-processing in round 2 decreased the difference in AUC score between all the 

submissions and Team 1, the latter continued to achieve the highest accuracy. When using 

DSI data, Team 1 could reach a much higher TPR than all other submissions (TPR = 0.96 

at FPR=0.1), suggesting that its pre- and post-processing strategies were not the only factors 

contributing to its high performance.

4.4. Localization of challenging areas

Having data from anatomic tracing and dMRI in the same monkey brain allowed us to 

identify the regions where tractography errors occurred consistently across submissions. 

These included regions where fibers branched into smaller bundles, or where they took a 

sharp turn to enter a bundle (Figs. 7 and 8, Supplementary video). These results agree with 

previous validation studies (Grisot et al., 2021; Schilling et al., 2019a) and illustrate the 

importance of anatomic tracing for identifying realistic failure modes of tractography that go 

beyond the simple crossing fiber configurations used in digital or physical phantoms. Almost 

all submissions were successful in identifying projections that ran through major crossing 

regions (Figs. 3 and 7). However, many methods had trouble following fibers that branched 

into smaller bundles or fanned off the main bundle (Figs. 7 and 8). These results highlight 

the need for further validation and development of tractography methods that go beyond the 

crossing-fiber paradigm.

Maffei et al. Page 15

Neuroimage. Author manuscript; available in PMC 2022 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.5. Robustness across seed areas

Our training and validation cases allowed us to evaluate the robustness of tractography 

methods across different seed areas. The two injection sites, while projecting through similar 

white-matter pathways (Fig. 3), follow very different routes to reach these pathways and 

pose different challenges to tractography. In the training case, the injection site is in the 

frontal pole. From here, most fibers travel straight posteriorly to enter the internal and 

external capsule. The most challenging areas are where fibers fan out into the LPF or turn 

into the UF and CB (Figs. 7 and 8). In the validation case, the injection site is in the vlPFC. 

From here, fibers need to first course medially and take a more complicated and curved 

trajectory before entering the capsules. The ALIC shows lower TPs in the validation case 

than in the training case (Fig. 3), and the most challenging area is located posterior to the 

ALIC where fibers branch into thalamic and brainstem fibers (Fig. 7).

For most of the submissions, optimizing the methods with respect to accuracy for one 

seed/injection region did not guarantee optimal performance for another region, with a 25% 

average decrease in AUC score between the training and the validation case (Fig. 2). Only 

two teams could achieve high accuracy for both injection sites. One of these two teams 

used anatomical ROIs, based on general knowledge on the connections of the prefrontal 

cortex from previous tracer experiments (Lehman et al., 2011), illustrating the importance of 

such experiments for mapping the organizational rules of white matter projections. In future 

studies, we intend to investigate a wider variety of injection sites and evaluate whether these 

conclusions generalize to different brain areas.

4.6. Optimal data processing for the HCP protocol

One of the main goals of the IronTract challenge was to identify optimal processing 

strategies for the widely used, two-shell HCP acquisition scheme. Our results can inform 

various methodological choices that have to be made when analyzing such data, including 

pre-processing, orientation reconstruction, tractography, post-processing, and thresholding. 

When these choices were made as summarized below, tractography reconstructed 8 out of 

the 10 bundles present in the tracer mask with FPR = 0.05, and it reconstructed all 10 with 

FPR = 0.1 (Fig. 5).

Pre-processing: The winning pipeline included denoising (Veraart et al., 2016), 

corrections for Gibbs ringing (Kellner et al., 2016), and motion/eddy-current distortions 

(Andersson et al., 2003; Andersson and Sotiropoulos, 2015), all sensible and widely used 

procedures.

Orientation reconstruction: The method that achieved the highest performance was 

Rumba-SD (Figs. 3, 5 and Supplementary Figs. 5 and 7). Its estimation framework relies on 

Rician and noncentral Chi likelihood models, which accommodate realistic MRI noise, and 

a 3D total-variation spatial regularization term, which promotes continuity and smoothness 

along individual tracts by taking into account the spatial correlation among adjacent voxels 

(Canales-Rodríguez et al., 2015). While this is a relatively newer method, we note that high 

accuracy and robustness were also achieved by classical reconstruction methods like CSD 

(Tournier et al., 2007) (applied on the high-b shell only) and DSI (Wedeen et al., 2005). 
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However, these results were specific to Team 2, who supplemented these methods with 

anatomical ROIs. The 3CMP (Tran and Shi, 2015) and M-CSD (Dhollander et al., 2019; 

Jeurissen et al., 2014) also achieved relatively higher accuracy and lower reconstruction 

error than other methods (Figs. 5 and 6).

Tractography: Our results concur with previous studies that showed the higher sensitivity 

of probabilistic methods, when compared to their deterministic counterparts at the same 

specificity (Girard et al., 2020; Grisot et al., 2021; Schilling et al., 2018).

Post-processing: Simple Gaussian post-filtering improved the accuracy of most 

tractography methods used in this challenge, as well as their robustness to the location 

of the seed region. The use of inclusion ROIs based on prior anatomical knowledge led to 

small additional gains in performance.

Thresholding: Most methods required a rather low threshold (< 2% of the maximum 

value of the tractogram) to reach all the main bundles present in the tracer (Fig. 6). This 

is in agreement with a prior finding that the biggest changes in tractograms occur between 

thresholds of approximately 2 and 3%, above which the sensitivity of tractography decreases 

dramatically (Schilling et al., 2019a). We note that we focused on optimal thresholds for 

reconstructing all the bundles that the injection site projects to, which is a task that requires 

high sensitivity. In other tasks, such as constructing whole-brain connectivity matrices, high 

specificity may be more important. In that case, where low specificity would lead to a 

situation where most brain regions appear to be connected to each other, one may want to 

use more stringent thresholds and accept that only a subset of the true connections will be 

included.

It is important to note that the outcomes of this study are based on ex vivo dMRI data 

and therefore the processing strategies suggested here may be supplemented with additional 

steps, such corrections for Rician noise correction (Koay and Basser, 2006) or susceptibility-

induced distortions (Andersson et al., 2003), when analyzing in vivo data.

4.7. Limitations

The main limitation of using tracer injections to validate dMRI tractography is that such 

studies cannot be performed in the human brain. Human and NHP brains differ in terms of 

both absolute and relative sizes of different gray and white-matter structures. However, 

similarities in position, cytoarchitectonics, connections, and behavior indicate that the 

overall organization of brain circuitry is relatively comparable (Petrides et al., 2012; Petrides 

and Pandya, 1984). In particular, the relative positions of different brain regions, as well as 

the obstacles the fibers encounter on their way from one area to another, are comparable. 

As a result, similar fiber geometries (crossing, branching, turning, fanning) exist in similar 

locations of the NHP and human brain. Thus, important insights can be gained from the 

performance of tractography methods in NHP brains.

The present study was limited to two injection/seed areas. Furthermore, we used binary 

tracer and tractography maps, i.e., we only compared the presence or absence of labeled 

axons and tractography streamlines at each voxel, rather than their density. Automated 
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methods for segmenting and quantifying the tracer maps will be critical for extending these 

analyses in the future.

Other limitations of tracer validation studies include imperfect tracer uptake or imperfect 

alignment of histology and dMRI data. The injections used in this study passed rigorous 

quality assurance checks at Dr. Haber’s laboratory and had high-quality transport. Injections 

that showed evidence of contamination or weak labeling were not included in this study 

(Haber et al., 2006). The manual annotation of the axon bundles and their alignment to the 

dMRI volumes were also checked by Dr. Haber and refined at multiple stages.

Finally, it should be noted that macaque brains are fixed by in situ perfusion, which limits 

the degradation of the tissue caused by autolysis in human post mortem brains (D’Arceuil 

and de Crespigny, 2007). Nonetheless, diffusivity is reduced in all post-mortem specimens 

when compared to in vivo brains. Previous studies have demonstrated that, while fixation 

decreases diffusivity by 60–80% compared to in vivo, diffusion anisotropy along fiber 

orientations is largely preserved (D’Arceuil and de Crespigny, 2007; Dyrby et al., 2011; 

McNab et al., 2009). We accounted for the decrease in diffusivity by multiplying the b-

values in the dMRI protocol by a factor of 4. Some parameters of orientation reconstruction 

methods may have to be adjusted differently for ex vivo and in vivo tissue, therefore we have 

not provided recommendations on the values of such parameters.

5. Conclusion

As part of the IronTract challenge we undertook a comprehensive, quantitative, voxel-wise 

assessment of tractography accuracy across different tractography pipelines, acquisition 

schemes, and seed areas. This allowed us to identify common failure modes of tractography 

for both commonly used and more recently developed tractography algorithms and to 

propose optimized strategies for analyzing dMRI data that have been acquired with 

high angular resolution techniques, including the popular two-shell acquisition scheme 

employed by the lifespan and disease HCP. The IronTract Challenge remains open (https://

qmenta.com/irontract-challenge/) and we plan to expand its scope in future iterations. We 

hope that it can serve as a valuable validation tool for both users and developers of dMRI 

analysis methods.
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Fig. 1. Overview of the IronTract Challenge.
Data from two monkey brains, one with an injection in the anterior frontal cortex and one 

with an injection in the vlPFC, served as the training and validation case, respectively. Ex 
vivo dMRI data were acquired for both brains on a Cartesian grid (515 directions, bmax = 

40, 000 s/mm2) and resampled via NUFFT on the two shells of the HCP lifespan acquisition 

scheme, with b-values adjusted for ex vivo dMRI (93 directions with b = 6000 s/mm2, 

92 directions with b = 12, 000 s/mm2). Participants downloaded data and uploaded results 

on the QMENTA platform. For the training case, they received a score, allowing them 

to optimize their tractography pipeline. The optimized pipelines were then applied to the 

validation case for the final scores.
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Fig. 2. Round 1 results.
(A) ROC curves are shown for each submission. Results are shown for the training case 

(left) and validation case (right), and for the HCP (solid lines) and DSI (dashed line) 

acquisition schemes. (B) Bar plots show the AUC score for each submission for the 

training case (blue) and validation (green) case, and for HCP and DSI sampling schemes. 

(C) AUC scores are shown by acquisition scheme, orientation reconstruction method, and 

tractography propagation method for the training case (top) and the validation case (bottom). 

Rumba-SD = robust and unbiased model-based spherical deconvolution(Canales-Rodríguez 

et al., 2015); CSD= constrained spherical deconvolution (Tournier et al., 2007); M-CSD 

= multi-shell multi-tissue CSD (Dhollander et al., 2019; Jeurissen et al., 2014); 3Comp = 

three compartment model(Tran and Shi, 2015); ASI = asymmetry spectrum imaging (Wu 
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et al., 2019); GQI = generalized Q-ball imaging (Yeh et al., 2010); RL= Richardson Lucy 

(Dell’Acqua et al., 2010), RDSI = radial diffusion spectrum imaging (Baete et al., 2019, 

2016).
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Fig. 3. Performance by white-matter region.
(A) 3D rendering of the tracer mask (in green) and injection site (in red) for the training 

case, showing the location of the coronal slices that are displayed in boxes a, b, and c. The 

boxes show the main white-matter pathways present in the tracing. Boxplots overlaid with 

scatterplots show the TPR in each bundle for each submission, with the HCP scheme (top, 

light grey) and the DSI scheme (bottom, light blue). (B) The same results are presented 

for the validation case. All TPRs were evaluated at FPR=0.1. (AF = anterior frontal white 

matter; ALIC=anterior limb of the internal capsule; BS= brainstem fibers; CB = cingulum 
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bundle; CC = corpus callosum; CF = commissural fibers; EC = external capsule; EmC = 

extreme capsule; LPF = lateral pre-frontal white matter; MPF = medial pre-frontal white 

matter; OF = orbitofrontal white matter; ThF = thalamic fibers; UF = uncinate fasciculus).
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Fig. 4. Effect of harmonized pre- and post-processing.
(A) Boxplots show the percent change in AUC scores between round 1 and round 2 for 

both post-processing strategies (Gaussian filter and anatomical ROIs). Results are shown for 

the training case (blue) and validation case (green), and for the HCP (left) and DSI (right) 

acquisition schemes. (B) Difference in AUC scores between the training and validation 

cases, for round 1 and for each of the two post-processing strategies in round 2 (Gaussian 
Filter and Anatomical ROIs). (C) We show the difference between the AUC score achieved 

in round 1 by Team 1 and the AUC scores achieved by all other submissions in round 1 

and the two post-processing strategies in round 2. Median percent change is indicated by a 

horizontal line in each plot.
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Fig. 5. Bundle-wise TPR.
ROC curves with the bundle-wise TPR are shown for the validation case and post-processing 

by a Gaussian filter. The bundle-wise TPR is defined as the portion of white-matter 

regions (ALIC, BS, CB, CC, CF, EC, EmC, LPF, ThF, UF) where a submission achieved 

at least 50% coverage. ASI = asymmetry spectrum imaging(Wu et al., 2018); 3CMP = 

three compartment model (Tran and Shi, 2015); CSD = constrained spherical deconvolution 

(Tournier et al., 2007); DSI = Diffusion spectrum imaging (Wedeen et al., 2005); GQI 

= generalized Q-ball imaging (Yeh et al., 2010); M-CSD = multi-shell multi-tissue CSD 

(Dhollander et al., 2019; Jeurissen et al., 2014); RDSI = radial diffusion spectrum imaging 

(Baete et al., 2019, 2016); Rumba-SD = robust and unbiased model-based spherical 

deconvolution (Canales-Rodríguez et al., 2015).
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Fig. 6. Tractogram thresholds needed to achieve high coverage of the tracer mask.
Bar plots show the tractogram threshold (with respect to the maximum value in the 

tractogram) for which each submission achieved bundle-wise TPR = 0.8. Submissions are 

grouped by the orientation reconstruction method that they used. Results are shown for 

the training (blue) and validation (green) case, and for the HCP (left) and DSI (right) 

sampling scheme. The bars are ordered along the x-axis by the FPR of the corresponding 

submissions, which is also indicated by the saturation level of each bar. ASI = asymmetry 

spectrum imaging (Wu et al., 2019, 2018); 3CMP = three compartment model (Tran and Shi, 

2015); CSD = constrained spherical deconvolution (Tournier et al., 2007); DSI = Diffusion 

spectrum imaging (Wedeen et al., 2005); GQI = generalized Q-ball imaging (Yeh et al., 

2010); M-CSD = multi-shell multi-tissue CSD (Dhollander et al., 2019; Jeurissen et al., 

2014); RDSI = radial diffusion spectrum imaging (Baete et al., 2019, 2016); Rumba-SD = 

robust and unbiased model-based spherical deconvolution (Canales-Rodríguez et al., 2015).
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Fig. 7. Number of teams reaching each voxel in the tracer mask.
The heat maps are maximum intensity projections of the histograms of TPs across teams 

at FPR = 0.1, for the HCP acquisition scheme. The tracer mask is shown in green, under 

the heat maps. Results are shown for the training and validation case, and for round 1 

and the two filtering strategies (Gaussian filtering, anatomical ROIs) in round 2. Only 

submissions that completed both rounds were included. Cyan arrows point to regions where 

the standardized pre- and post-processing round 2 led to improvement with respect to round 

1. Violet arrows point to regions that remained challenging in both rounds.
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Fig. 8. Challenging areas for tractography.
(A) 3D rendering of the tracer and injection site for the training (green) and validation (red) 

cases. Labeled boxes show the location of 2D views presented in B-E. (B, C) A map of 

FPs is shown for one representative submission at FPR = 0.1 (red), overlaid by the tracer 

mask (blue) for the training case. Streamlines follow the ILF, instead of turning into the UF 

(B). Streamlines continue into the AF instead of fanning into the LPF (C). (D, E) A map 

of FPs is shown for one representative submission at FPR = 0.1 (red), overlaid by the tracer 

mask (blue) for the validation case. Streamlines continue in the body of the CC to project 

contralaterally and miss the turn into the superior frontal gyrus (D). Tractography follows 

paths of lower curvature in the body of the CC and in the EC, instead of projecting into the 

ALIC (E). AF: antero-frontal white matter; ALIC: anterior limb of the internal capsule; CC: 

corpus callosum; EC: external capsule; ILF: inferior longitudinal fasciculus; LPF: lateral 

pre-frontal white matter; UF: uncinate fasciculus.
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Fig. 9. Comparison of ODFs across submissions.
(A) 3D rendering of the tracer mask from the validation case, showing the location of the 

magnification region where thalamic (TH) and brainstem (BS) fibers branch. (B–R) ODFs 

for each submission are visualized for the region shown in A. Submissions are ordered 

based on the AUC score obtained for the validation case in round 2. ASI: asymmetry 

spectrum imaging (Wu et al., 2019); 3CMP: three compartment model (Tran and Shi, 2015); 

CSD: constrained spherical deconvolution (Tournier et al., 2007); DSI: Diffusion spectrum 

imaging (Wedeen et al., 2005); M-CSD: multi-shell multi-tissue CSD (Dhollander et al., 

2019; Jeurissen et al., 2014); ML: machine learning-based reconstruction (Karimi et al., 

2021); RDSI: radial diffusion spectrum imaging (Baete et al., 2019, 2016); Rumba-SD: 

robust and unbiased model-based spherical deconvolution (Canales-Rodríguez et al., 2015).
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Fig. 10. Effect of ODF dispersion and peak orientation on the accuracy of tractography.
Bar plots of mean dispersion for each submission and each sampling scheme across different 

ROIs from the training and validation cases. For each ROI, teams are ordered along the 

x-axis based on AUC score for the validation case in round 2. Note that, as dispersion affects 

only methods that sample orientations from ODF, we excluded methods that follow the peak 

orientation exclusively. Training case: CB = cingulum bundle, UF = uncinate fasciculus. 

Validation case: BS = brainstem, CC = corpus callosum, CCb = body of the corpus 

callosum, EC-IC = external capsule – internal capsule, TH-BS = thalamus – brainstem. 

ASI = asymmetry spectrum imaging (Wu et al., 2019); 3CMP = three compartment model 

(Tran and Shi, 2015); CSD = constrained spherical deconvolution (Tournier et al., 2007); 

DSI = Diffusion spectrum imaging (Wedeen et al., 2005);; M-CSD = multi-shell multi-tissue 

CSD (Dhollander et al., 2019); GRL= generalized Richardson-Lucy (Guo et al., 2019); 

ML = machine learning-based reconstruction (Karimi et al., 2021); RDSI = radial diffusion 

spectrum imaging (Baete et al., 2019, 2016); Rumba-SD = robust and unbiased model-based 

spherical deconvolution (Canales-Rodríguez et al., 2015).
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