Skip to main content
. 2022 Aug 8;8:e1054. doi: 10.7717/peerj-cs.1054

Table 3. The solution indexing and the corresponding hyperparameters definitions and ranges.

Element index Corresponding hyperparameter definition Corresponding range
1 Training loss function Categorical Crossentropy, Categorical Hinge, KLDivergence, Poisson, Squared Hinge, and Hinge
2 Training batch size 4 → 48 (step = 4)
3 Model dropout ratio [0 → 0.6]
4 Transfer learning freezing ratio 1 → 100 (step = 1)
5 Weights (i.e., parameters) optimizer Adam, NAdam, AdaGrad, AdaDelta, AdaMax, RMSProp, SGD, Ftrl, SGD Nesterov, RMSProp Centered, and Adam AMSGrad
6 Dimension scaling technique Normalize, Standard, Min Max, and Max Abs
7 Utilize data augmentation techniques or not [YesNo]
8 The value of rotation (In the case of data augmentation). 0° → 45° (step = 1°)
9 In the case of data augmentation, width shift value. [0 → 0.25]
10 The value of height shift if data augmentation is applied [0 → 0.25]
11 Value of shear in case of data augmentation [0 → 0.25]
12 Value of Zoom (if data augmentation is used) [0 → 0.25]
13 Flag for horizontal flipping (if data augmentation is utilized) [YesNo]
14 (If augmentation of data has been applied), the value of Vertical flipping flag [YesNo]
15 Range of brightness changes (if data augmentation is applied) [0.5 → 2.0]