Skip to main content
. 2022 Jul 19;8:e1039. doi: 10.7717/peerj-cs.1039

Table 5. Five-class sentiment classification studies.

Study Dataset Model Classification metrics
Accuracy Precision Recall F1macro F1weighted
Muhammad et al. (2022) NaijaSenti XLM-R-base+LAFT n/a n/a n/a n/a 0.795
Muhammad et al. (2022) NaijaSenti M-BERT+LAFT n/a n/a n/a n/a 0.7700
Fiok et al. (2021) sentiment@USNavy BART large + CNN n/a n/a n/a 0.596 n/a
Smetanin & Komarov (2021a) RuSentiment M-BERT-Base n/a 0.6722 0.6907 0.6794 0.7244
Smetanin & Komarov (2021a) RuSentiment RuBERT n/a 0.7089 0.7362 0.7203 0.7571
Smetanin & Komarov (2021a) RuSentiment M-USE-CNN n/a 0.6571 0.6708 0.6627 0.7105
Smetanin & Komarov (2021a) RuSentiment M-USE-Trans n/a 0.6821 0.6982 0.6860 0.7342
Jamadi Khiabani, Basiri & Rastegari (2020) TripAdvisor Dempster–Shafer-based model 0.79 0.5 0.47 0.49 n/a
Jamadi Khiabani, Basiri & Rastegari (2020) CitySearch Dempster–Shafer-based model 0.79 0.48 0.48 0.48 n/a
Kuratov & Arkhipov (2019) RuSentiment Multilingual BERT n/a n/a n/a n/a 0.7082
Kuratov & Arkhipov (2019) RuSentiment RuBERT n/a n/a n/a n/a 0.7263
Baymurzina, Kuznetsov & Burtsev (2019) RuSentiment SWCNN + fastText Twitter n/a n/a n/a n/a 0.7850
Baymurzina, Kuznetsov & Burtsev (2019) RuSentiment BiGRU + ELMo Wiki n/a n/a n/a n/a 0.6947
Tripto & Ali (2018) YouTube LSTM 0.5424 n/a n/a 0.5320 n/a
Li et al. (2018) Twitter Logistic Regression 0.6899 0.6053 0.6899 0.6354 n/a
Ahmadi et al. (2017) SST-5 RNTN 0.41 n/a n/a 0.32 n/a
Buntoro, Adji & Purnamasari (2016) Twitter Naïve Bayes 0.7177 0.716 0.718 n/a n/a
Aly & Atiya (2013) LABR SVM 0.503 n/a n/a n/a 0.491
Chetvirokin & Loukachevitch (2013) ROMIP-2012 (Movies) n/a 0.407 n/a n/a 0.377 n/a
Blinov, Kotelnikov & Pestov (2013) ROMIP-2012 (Books) SVM 0.481 0.339 0.496 0.402 n/a
Chetvirokin & Loukachevitch (2013) ROMIP-2012 (Cameras) n/a 0.480 n/a n/a 0.336 n/a
Pak & Paroubek (2012) ROMIP-2011 (Movies) SVM 0.599 n/a n/a 0.286 n/a
Pak & Paroubek (2012) ROMIP-2011 (Books) SVM 0.622 n/a n/a 0.291 n/a
Pak & Paroubek (2012) ROMIP-2011 (Cameras) SVM 0.626 n/a n/a 0.342 n/a

Note:

We selected only those studies, which consideredfive sentiment classes and reported at least one of the following classification measures: Precision, Recall, macro F1, weighted F1. Among all datasets, only ROMIP (Chetviorkin, Braslavskiy & Loukachevich, 2013; Chetvirokin & Loukachevitch, 2013) and RuSentiment (Rogers et al., 2018) datasets are in Russian.