Table 5. Five-class sentiment classification studies.
| Study | Dataset | Model | Classification metrics | ||||
|---|---|---|---|---|---|---|---|
| Accuracy | Precision | Recall | |||||
| Muhammad et al. (2022) | NaijaSenti | XLM-R-base+LAFT | n/a | n/a | n/a | n/a | 0.795 |
| Muhammad et al. (2022) | NaijaSenti | M-BERT+LAFT | n/a | n/a | n/a | n/a | 0.7700 |
| Fiok et al. (2021) | sentiment@USNavy | BART large + CNN | n/a | n/a | n/a | 0.596 | n/a |
| Smetanin & Komarov (2021a) | RuSentiment | M-BERT-Base | n/a | 0.6722 | 0.6907 | 0.6794 | 0.7244 |
| Smetanin & Komarov (2021a) | RuSentiment | RuBERT | n/a | 0.7089 | 0.7362 | 0.7203 | 0.7571 |
| Smetanin & Komarov (2021a) | RuSentiment | M-USE-CNN | n/a | 0.6571 | 0.6708 | 0.6627 | 0.7105 |
| Smetanin & Komarov (2021a) | RuSentiment | M-USE-Trans | n/a | 0.6821 | 0.6982 | 0.6860 | 0.7342 |
| Jamadi Khiabani, Basiri & Rastegari (2020) | TripAdvisor | Dempster–Shafer-based model | 0.79 | 0.5 | 0.47 | 0.49 | n/a |
| Jamadi Khiabani, Basiri & Rastegari (2020) | CitySearch | Dempster–Shafer-based model | 0.79 | 0.48 | 0.48 | 0.48 | n/a |
| Kuratov & Arkhipov (2019) | RuSentiment | Multilingual BERT | n/a | n/a | n/a | n/a | 0.7082 |
| Kuratov & Arkhipov (2019) | RuSentiment | RuBERT | n/a | n/a | n/a | n/a | 0.7263 |
| Baymurzina, Kuznetsov & Burtsev (2019) | RuSentiment | SWCNN + fastText Twitter | n/a | n/a | n/a | n/a | 0.7850 |
| Baymurzina, Kuznetsov & Burtsev (2019) | RuSentiment | BiGRU + ELMo Wiki | n/a | n/a | n/a | n/a | 0.6947 |
| Tripto & Ali (2018) | YouTube | LSTM | 0.5424 | n/a | n/a | 0.5320 | n/a |
| Li et al. (2018) | Logistic Regression | 0.6899 | 0.6053 | 0.6899 | 0.6354 | n/a | |
| Ahmadi et al. (2017) | SST-5 | RNTN | 0.41 | n/a | n/a | 0.32 | n/a |
| Buntoro, Adji & Purnamasari (2016) | Naïve Bayes | 0.7177 | 0.716 | 0.718 | n/a | n/a | |
| Aly & Atiya (2013) | LABR | SVM | 0.503 | n/a | n/a | n/a | 0.491 |
| Chetvirokin & Loukachevitch (2013) | ROMIP-2012 (Movies) | n/a | 0.407 | n/a | n/a | 0.377 | n/a |
| Blinov, Kotelnikov & Pestov (2013) | ROMIP-2012 (Books) | SVM | 0.481 | 0.339 | 0.496 | 0.402 | n/a |
| Chetvirokin & Loukachevitch (2013) | ROMIP-2012 (Cameras) | n/a | 0.480 | n/a | n/a | 0.336 | n/a |
| Pak & Paroubek (2012) | ROMIP-2011 (Movies) | SVM | 0.599 | n/a | n/a | 0.286 | n/a |
| Pak & Paroubek (2012) | ROMIP-2011 (Books) | SVM | 0.622 | n/a | n/a | 0.291 | n/a |
| Pak & Paroubek (2012) | ROMIP-2011 (Cameras) | SVM | 0.626 | n/a | n/a | 0.342 | n/a |
Note:
We selected only those studies, which consideredfive sentiment classes and reported at least one of the following classification measures: Precision, Recall, macro F1, weighted F1. Among all datasets, only ROMIP (Chetviorkin, Braslavskiy & Loukachevich, 2013; Chetvirokin & Loukachevitch, 2013) and RuSentiment (Rogers et al., 2018) datasets are in Russian.