Skip to main content
. 2022 Jul 19;8:e1044. doi: 10.7717/peerj-cs.1044

Table 3. Application of deep learning in ATE task.

No Study DatasetDomain Model Performance
OE-acc OE-F1 (%) ACD-acc (%) ACD-F1 (%)
1 Poria, Cambria & Gelbukh (2016) SemEval Res14 CNN 86.20
CNN+LP1 87.17
SemEval Lap14 CNN 81.06
CNN+LP 82.32
2 Tran, Hoang & Huynh (2019) SemEval Res14 BiGRU-CRF 85
SemEval Lap14 78.5
3 Xu et al. (2018) SemEval Lap14 DE-CNN 81.59
SemEval Res16 74.37
4 Wu et al. (2018) SemEval Res14 unsupervised model 76.15
SemEval Lap14 60.75
5 Ma et al. (2019) SemEval Lap14 Seq2Seq4ATE 80.31
SemEval Res16 75.14
6 Liao et al. (2019b) SemEval Res14-16 LCC+GBC2 26.0% 41.2
SemEval Lap14, 16 33.7% 36.1
7 Xue et al. (2017) SemEval Res14 MTNA 83.65 88.91
SemEval Res15 67.73 65.97
SemEval Res16 72.95 76.42
8 Wu et al. (2019) Digital QA reviews MTA 65.67 74.92 79.65
Beauty QA reviews 58.06 56.46 69.92
Luggage QA reviews 63.74 63.58 57.74

Notes:

1

LP: linguistic patterns.

2

LCC+GBC: model that coupling global and local context.