Skip to main content
. 2022 Jul 19;8:e1045. doi: 10.7717/peerj-cs.1045

Table 4. Summary of generative self-supervised learning methods in medical imaging.

No. Authors Pretext task Down-stream task
1 Ross et al. (2018) Image Colorization Surgical instruments segmentation
2 Chen et al. (2019) Context restoration Fetal image classification Abdominal multi-organ localization Brain tumour segmentation
3 Zhou et al. (2019) Models Genesis Lung nodule segmentation FPR for nodule detection FPR for pulmonary embolism Liver segmentation pulmonary diseases classification RoI, bulb, and background classification Brain tumor segmentation
4 Matzkin et al. (2020) Skull reconstruction Bone flap volume estimation
5 Hervella et al. (2020b) Multi-modal reconstruction Fovea localization Optic disc localization Vasculature segmentation Optic disc segmentation
6 Holmberg et al. (2020) Cross modal retinal thickness prediction Diabetic retinopathy grading
7 Prakash et al. (2020) Image denoising Nuclei images segmentation
8 Hu et al. (2020) Context encoder Quality score classification Thyroid nodule segmentation Liver and kidney segmentation
9 Tao et al. (2020) Rubik cube++ Pancreas segmentation Brain tissue segmentation