Skip to main content
. 2022 Jul 19;8:e1045. doi: 10.7717/peerj-cs.1045

Table 6. Summary of multiple-tasks/multi-tasking self-supervised learning methods in medical imaging.

No. Authors Pretext task Down-stream task
1 Tajbakhsh et al. (2019) Colorization rotation prediction 3D patch reconstruction Lung lobe segmentation FPR for nodule detection skin lesions segmentation diabetic retinopathy grading
2 Jiao et al. (2020) Temporal order correction transformation prediction Standard plane detection saliency prediction
3 Li, Chen & Zheng (2020) ColorMe Cervix type classification skin lesion segmentation
4 Taleb et al. (2020) CPC Jigsaw puzzle Exemplar CNN Rotation Prediction Relative position prediction Brain tumors segmentation pancreas tumor segmentation
5 Luo et al. (2020) Self-supervised fuzzy clustering Color fundus classification diabetic retinopathy classification
6 Haghighi et al. (2020) Semantic Genesis Lung nodule segmentation FPR for nodule detection liver segmentation chest diseases classification brain tumor segmentation pneumothorax segmentation
7 Zhang et al. (2020) Scale-aware restoration Brain tumor segmentation pancreas segmentation
8 Dong, Kampffmeyer & Voiculescu (2021) Multi-task self-supervised learning Whole heart segmentation
9 Koohbanani et al. (2021) Self-path histopathology image classification
10 Zhang et al. (2021) SimCLR Jigsaw puzzle Binary OCT classification multi-class OCT classification
11 Li et al. (2021) Rotation prediction multi-view instance discriminate PM classification AMD classification
12 Lu, Li & Ye (2021) Fiber streamlines density map prediction Registration imitation White matter tract segmentation