Skip to main content
. 2022 Aug 23;8:e1070. doi: 10.7717/peerj-cs.1070

Table 1. A comparison between state-of-the-art depression detection techniques.

Paper Year Technique Language Data source Data size Accuracy (%)
Victor et al. (2019) 2019 BiLSTM English Questionnaire 671 participants 70.88
Rosa et al. (2018) 2019 CNN+BiLSTM Portuguese Questionnaire 146 participants 90
Wang, Niu & Yu (2019) 2020 Sentiment diffusion patterns English Twitter 100,000 tweets 79
Akhtar et al. (2019) 2020 CNN+LSTM+GRU English EmoInt 7,102 89.88
EmoBank 10,062
Facebook post 2,895
SemEval-2016 28,632
Suman et al. (2020) 2020 DL English Twitter 1,600,000 87.23
Shetty et al. (2020) 2020 LSTM English Twitter N/A 70
Model vector 76.69
Alabdulkreem (2021) 2021 RNN-LSTM Arabic Twitter 10,000 72
Chiu et al. (2021) 2021 CNN for image English Instagram 520 users N/A
Word2vec for text
Handcrafted features for behavior
Tommasel et al. (2021) 2021 RNN Spanish Twitter 150 million tweets N/A
Jyothi Prasanth, Dhalia Sweetlin & Sruthi (2022) 2022 RNN English Twitter 1,200 users 72
LSTM 76
BiLSTM 90
Zogan et al. (2022) 2022 CNN+RNN English Twitter 4,208 users 89.5
Kour & Gupta (2022) 2022 CNN-biLSTM English Twitter 1,402 depressed 94.28
300 million non-depressed
Nair et al. (2022) 2022 Machine learning English Twitter 10,000 tweets 97
Park & Moon (2022) 2022 BERT-CNN English DAIC-WOZ N/A N/A
Safa, Bayat & Moghtader (2022) 2022 Machine learning English Twitter 11,890,632 tweets 91
Lia et al. (2022) 2022 Machine learning English Twitter 1,600,000 79.9
Shankdhar, Mishra & Shukla (2022) 2022 BiLSTM+CNN English Twitter 12,274 tweets 95.12
Tong et al. (2022) 2022 Discrete Adaboost Cost-sensitive Boosting Pruning Trees English TTDD 7,873 tweets 88.39
CLPsych 2015 1,746 tweets 70.69
LSVT 128 85.72
Statlog 6,435 92.21
Glass 214 77.63