Table 1. A comparison between state-of-the-art depression detection techniques.
| Paper | Year | Technique | Language | Data source | Data size | Accuracy (%) |
|---|---|---|---|---|---|---|
| Victor et al. (2019) | 2019 | BiLSTM | English | Questionnaire | 671 participants | 70.88 |
| Rosa et al. (2018) | 2019 | CNN+BiLSTM | Portuguese | Questionnaire | 146 participants | 90 |
| Wang, Niu & Yu (2019) | 2020 | Sentiment diffusion patterns | English | 100,000 tweets | 79 | |
| Akhtar et al. (2019) | 2020 | CNN+LSTM+GRU | English | EmoInt | 7,102 | 89.88 |
| EmoBank | 10,062 | |||||
| Facebook post | 2,895 | |||||
| SemEval-2016 | 28,632 | |||||
| Suman et al. (2020) | 2020 | DL | English | 1,600,000 | 87.23 | |
| Shetty et al. (2020) | 2020 | LSTM | English | N/A | 70 | |
| Model vector | 76.69 | |||||
| Alabdulkreem (2021) | 2021 | RNN-LSTM | Arabic | 10,000 | 72 | |
| Chiu et al. (2021) | 2021 | CNN for image | English | 520 users | N/A | |
| Word2vec for text | ||||||
| Handcrafted features for behavior | ||||||
| Tommasel et al. (2021) | 2021 | RNN | Spanish | 150 million tweets | N/A | |
| Jyothi Prasanth, Dhalia Sweetlin & Sruthi (2022) | 2022 | RNN | English | 1,200 users | 72 | |
| LSTM | 76 | |||||
| BiLSTM | 90 | |||||
| Zogan et al. (2022) | 2022 | CNN+RNN | English | 4,208 users | 89.5 | |
| Kour & Gupta (2022) | 2022 | CNN-biLSTM | English | 1,402 depressed | 94.28 | |
| 300 million non-depressed | ||||||
| Nair et al. (2022) | 2022 | Machine learning | English | 10,000 tweets | 97 | |
| Park & Moon (2022) | 2022 | BERT-CNN | English | DAIC-WOZ | N/A | N/A |
| Safa, Bayat & Moghtader (2022) | 2022 | Machine learning | English | 11,890,632 tweets | 91 | |
| Lia et al. (2022) | 2022 | Machine learning | English | 1,600,000 | 79.9 | |
| Shankdhar, Mishra & Shukla (2022) | 2022 | BiLSTM+CNN | English | 12,274 tweets | 95.12 | |
| Tong et al. (2022) | 2022 | Discrete Adaboost Cost-sensitive Boosting Pruning Trees | English | TTDD | 7,873 tweets | 88.39 |
| CLPsych 2015 | 1,746 tweets | 70.69 | ||||
| LSVT | 128 | 85.72 | ||||
| Statlog | 6,435 | 92.21 | ||||
| Glass | 214 | 77.63 |