Skip to main content
. 2022 Aug 23;8:e1070. doi: 10.7717/peerj-cs.1070

Table 9. The loss and confusion matrix results of the four USE flavors on the six datasets.

Keyword Dataset Loss TP TN FP FN
USE-M (Tuned) Before Normalization 0.718 109 136 25 35
USE-MQA (Tuned) Before Normalization 0.442 116 136 25 28
USE-M Before Normalization 0.444 123 127 34 21
USE-MQA Before Normalization 0.431 111 144 17 33
USE-M (Tuned) After Normalization 1.063 111 118 43 33
USE-MQA (Tuned) After Normalization 1.338 114 118 43 30
USE-M After Normalization 0.538 117 112 49 27
USE-MQA After Normalization 0.473 115 123 38 29
USE-M (Tuned) Stemmed 0.750 115 132 29 29
USE-MQA (Tuned) Stemmed 1.590 103 126 35 41
USE-M Stemmed 0.527 113 111 50 31
USE-MQA Stemmed 0.526 94 130 31 50
USE-M (Tuned) Lemmatized 0.483 90 142 19 54
USE-MQA (Tuned) Lemmatized 1.344 102 123 38 42
USE-M Lemmatized 0.523 113 114 47 31
USE-MQA Lemmatized 0.477 112 123 38 32
USE-M (Tuned) Stemmed and Filtered 1.039 106 125 36 38
USE-MQA (Tuned) Stemmed and Filtered 1.189 93 120 41 51
USE-M Stemmed and Filtered 0.570 100 115 46 44
USE-MQA Stemmed and Filtered 0.598 68 139 22 76
USE-M (Tuned) Lemmatized and Filtered 1.102 101 123 38 43
USE-MQA (Tuned) Lemmatized and Filtered 0.877 103 123 38 41
USE-M Lemmatized and Filtered 0.618 104 121 40 40
USE-MQA Lemmatized and Filtered 0.539 114 113 48 30