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Abstract

Accurate assessment of TCR-antigen specificity at the whole immune repertoire level lies at 

the heart of improved cancer immunotherapy, but predictive models capable of high-throughput 

assessment of TCR-peptide pairs are lacking. Recent advances in deep sequencing and 

crystallography have enriched the data available for studying TCR-p-MHC systems. Here, we 

introduce a pairwise energy model, RACER, for rapid assessment of TCR-peptide affinity at the 

immune repertoire level. RACER applies supervised machine learning to efficiently and accurately 

resolve strong TCR-peptide binding pairs from weak ones. The trained parameters further enable 

a physical interpretation of interacting patterns encoded in each specific TCR-p-MHC system. 

When applied to simulate thymic selection of an MHC-restricted T-cell repertoire, RACER 

accurately estimates recognition rates for tumor-associated neoantigens and foreign peptides, 

thus demonstrating its utility in helping address the large computational challenge of reliably 

identifying the properties of tumor antigen-specific T-cells at the level of an individual patient’s 

immune repertoire.
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1 Introduction

The advent of new strategies that unleash the host immune system to battle malignant 

cells represents one of the largest paradigm shifts in treating cancer and has ushered in 

a new frontier of cancer immunotherapy [1]. Various treatments have emerged, including 

checkpoint blockade therapy [2], tumor antigen vaccine development [3], and the infusion of 

a donor-derived admixtures of immune cells [4]. A majority of successful treatments to-date 

rely on the anti-tumor potential of the CD8+ T-cell repertoire, a collection of immune cells 

capable of differentiating between malignant cells and normal tissue by recognizing tumor-

associated neoantigens (TANs) detectable on the cell surface [5]. Therefore, accurately 

assessing a T-cell repertoire’s ability to identify cancer cells by recognizing their tumor 

antigens lies at the heart of optimizing cancer immunotherapy.

A complete understanding of adaptive immune recognition and the tumor-immune 

interaction has remained a formidable task, owing in part to the daunting complexity 

of the system. For example, antigens and self-peptides contained in an epitope (i.e. 

recognizable peptide sequences) space of size ∼ 209 are presented to ∼ 107 unique T-cell 

clones in each individual [6], a small fraction of the upper limit of TCR diversity (∼ 
1020) [7]. Moreover, their behavior is tempered via an elaborate thymic negative selection 

process in order to avoid auto-recognition [8]. Here, T-cell clones, each with uniquely 

generated T-cell receptors (TCRs), interface with numerous (∼ 104) self-peptides presented 

on the major histocompatibility complex (p-MHC) of thymic medullary epithelial cells 

via TCR CDR3α and β chains, and survive only if they do not bind too strongly [9]. 

This process, together with systems-level peripheral tolerance [10], imparts T-cells with 

durable tolerance to major self-peptides and influences many of the recognition properties 

of the resultant repertoire. The complexity of the adaptive immune system has attracted 

numerous mathematical modeling efforts quantifying the mechanisms underlying T-cell 

immune response. Collectively, the field has made significant progress in understanding 

the population-level effects of tolerance on T-cell recognition and self vs. non-self 

discrimination [9, 11]. This includes the T-cell repertoire’s effectiveness at discerning tumor 

from self-antigens [12], its ability to impart immunity against current and future threats [13, 

14], and the extent of selection pressure that it exerts on an evolving cancer population [15, 

16].

Any attempt at better understanding these system-scale properties must start with a reliable 

method to evaluate the interaction between specific TCR-p-MHC pairs. Despite this, a 

comprehensive, biophysical model capable of learning the energy contributions of each 

contact pair in a TCR-p-MHC system and applying them to new predictions remains elusive. 

To-date, experimental research has integrated solved crystal structures [17, 18] with peptide 

sequencing [19, 20] to probe the physiochemical hallmarks of epitope-specific TCRs. 

Publicly available crystal structures have enabled researchers to identify detailed structural 

features that influence the binding specificity of TCR-p-MHC pairs, and machine learning 

algorithms have made progress on the complementary task of accurately predicting peptide-

MHC binding [21, 22, 23, 24] as well as TCR-peptide binding [25, 26]. However, the limited 

number of available structures relative to the diversity in MHC alleles and TCR-peptide 

combinations complicates extrapolation to unsolved systems. Alternate templatebased 
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structural modeling [27] and docking [28] approaches are limited by calculation speeds 

(at best one structure-per-minute), thus it is unlikely in the foreseeable future that such 

strategies can be used to investigate the number of TCR-peptide interactions necessary to 

study the problem at the immune-repertoire level, as this task easily requires the assessment 

of more than 109 pairs simultaneously [29]. Prior attempts have approximated binding 

affinity by implementing statistical scores calculated from docking algorithms [28]. These 

scores are trained using examples of generic protein binding and thus lose the unique aspects 

of the TCR-peptide interactions.

To deal with this challenge, we develop a systematic TCR-p-MHC prediction strategy, which 

we refer to as the Rapid Coarse-grained Epitope TCR (RACER) model, for rapid and 

accurate assessment of TCR specificity capable of differentiating self- and foreign-antigens. 

This approach can evaluate 109 similarly MHC-restricted TCR-peptide pairs. This method 

employs supervised machine learning on known TCR-peptide structures and experimental 

data to derive a coarse-grained, chemically-accurate energy model governing TCR-p-MHC 

interaction. This strategy was adapted from earlier efforts to predict protein folding [30, 

31, 32, 33, 34, 35] and to screen the binding of small molecules [36, 37]. Confining 

our predictions to TCRs with a given MHC restriction enables the transferability of the 

method to TCRs that are not included in the training set, but our approach could be 

generalized with the use of additional training data. This strategy provides a tractable 

means for affinity predictions based on similarly restricted TCR-peptide primary sequences. 

We show that RACER accurately distinguishes binding peptides across various TCRs and 

validation tests. Lastly, we simulate thymic selection and show agreement with previously 

established estimates of T-cell binding distributions and peptide recognition rates [38, 39]. 

Our in silico results share several features observed in experimental data including the 

degree to which post-selection TCRs recognize foreign antigen and TANs, in addition 

to the sequence diversity of epitope-specific TCRs. [40, 20]. Taken together, our results 

demonstrate RACER’s utility in learning the interactions relevant for high-throughput TCR-

epitope binding predictions.

2 Results

2.1 Distinguishing peptides based on binding affinity

The RACER optimization protocol (Fig. 1a) utilizes high-throughput deep sequencing 

data on TCRpeptide interactions across a large peptide library [19], together with known 

physical contacts between TCRs and peptides obtained from deposited crystal structures 

[41]. The training data comes from cases where all the peptides are displayed by the same 

allele of the mouse MHC-II molecule. The binding energy between TCRs and peptides, 

calculated based on a solvent-averaged coarsegrained pairwise model [35], was used as 

the metric to assess the TCR-peptide binding affinity. The interaction parameters for this 

solvent-averaged energy model were reoptimized here for recognizing strong TCR-peptide 

interactions. Adapting an approach previously implemented for studying protein folding [42, 

34], the RACER optimization strategy trains a pairwise energy model which maximizes 

TCR-peptide binding specificity. The energy model was optimized by maximizing the Z-

score defined to separate the affinities of experimentally determined strong-binding peptides, 
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called “strong binders” hereafter, from computationally generated, randomized decoys (The 

Z-score is defined as the difference between the average binding energies of strong binders 

versus decoys, divided by the standard deviation of the decoy energies. Throughout this 

manuscript, we report the absolute value of the calculated Z-score, except for Fig. 5c.). The 

optimized residue type-dependent energy model is used to evaluate the binding energies of 

an ensemble of new TCR-peptide systems. As will be shown below, we performed three 

different levels of test (Fig. 1b), and find the predicted binding energies can differentiate 

strongly binding peptides from weak ones, provided they are displayed by the same MHC 

allele as that of the training set. Crucially, accurate predictions can be made even without 

knowledge of the actual crystal structure, although the predictions are improved when this 

additional information is available.

Fig. 2 summarizes RACER’s predictive performance for a specific TCR (Case I in Fig. 

1b). For this fixed TCR, pre-identified strong binding peptides and decoy peptides with 

randomized sequences were used to train the energy model (Methods). Another set of 

peptides independently verified experimentally as weak binders constitutes the testing set. 

The resulting energy model was then applied to calculate binding energies for the strong 

binders in the training set as well as the peptides in the testing set. This approach was 

repeated on three independent TCRs that are associated with the IEk MHC-II allele: 

2B4, 5CC7 and 226 (TCR Details in Table S1). Although the experimentally identified 

weak binders were omitted from the training set, RACER effectively resolves binding 

energy differences between experimentally determined strong and weak binders having 

Z-scores, calculated in an analogous way as above by replacing decoys with experimentally-

determined poor binders, larger than 3.5 in all cases (Fig. 2a), thus highlighting the 

predictive power of this approach.

Despite their relative sparsity in antigen space, strong binders play a central role in T-cell 

epitope recognition. It is more difficult to predict strong binders than weak binders. To test 

RACER’s ability to identify strong binders, we performed a leave-one-out cross-validation 

(LOOCV) test, using data from TCR 2B4 as an example. For each test iteration, one known 

strong binder was withheld from the training set of 44 strong binders. Our optimization 

protocol was applied to train the energy model by using the remaining 43 peptides and then 

predicting the binding energy of the withheld peptide. This prediction was then compared 

to predicted binding energies of known weak binders, and the procedure was repeated for 

each of the 44 peptides. Our model is able to accurately distinguish the withheld strong 

binder in 43 cases (Fig. 2b). This is in contrast to a cluster-based attempt at strong binder 

identification based on peptide sequences alone, which at best correctly identifies 19 out 

of 44 strong binders (Supplementary note S1). The same LOOCV test was performed for 

TCR 5cc7 and 226, which correctly identified 120 out of 126 strong binders of 5cc7, and 

267 out of 274 strong binders of 226. To further test the limit of RACER in detecting 

strong binders that have a more diverse sequence coverage, we performed a more demanding 

set of hold-out tests on an extended data set from [19]. RACER can recognize peptides 

sharing little sequence identity (∼0.3) with the native peptide (Figs. S1, S2), and is still 

able to recognize strong binders when a substantial portion of the training data is withheld 

(Supplementary note S2, S3 and Fig. S3, S4).
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In order to further characterize RACER’s predictive power, an independent set of Kd values 

measured by surface plasmon resonance (SPR) [19] were compared with predicted affinities. 

The SPR experiments were performed on 9 independent peptide tests for each of the 

aforementioned three TCRs. RACER was used to predict the binding energies of each of 

those TCR-peptide pairs, each modeled with the structure of the corresponding TCR as the 

template. The free energies, kBT log(Kd), were compared with calculated binding energies 

from RACER as a quantitative test of binding affinity prediction accuracy. Lower binding 

energies indicate stronger binding affinity so that a positive correlation between the kBT 
log(Kd) values and calculated binding energies implies a successful prediction. As shown in 

Fig. 2c, RACER’s prediction of binding affinities for these 9 peptides correlates well with 

experimental measurement, with an average Pearson correlation coefficient of 0.74. The 

predicted order of binding affinities is also consistent with those from the experiment, with 

an average Spearman’s rank correlation coefficient of 0.65.

2.2 Optimized specific interactions for TCR-peptide recognition

The data utilized by RACER includes strong binders and an input crystal structure, as well 

as TCR and peptide primary sequences, which determine an interaction pattern that was 

then used to construct a system-specific force field. To illustrate this, we focus on the 2B4 

TCR as an example (Fig. 3). The crystal structure of TCR 2B4 (Fig. 3a) reveals that there 

can be many threonine (T) and asparagine (N) residues on the CDR loops region of the 

TCR. In the strong binder set, these residues tend to interact with specific peptide residues 

such as alanine (A), as seen for the specific peptide given in the figure. This notion can be 

formalized by showing the matrix of observed probabilities of close proximity of specific 

residue pairs. Thus, we see that certain pairs such as A-T and A-N are significantly enriched 

in the set of strong binders, while much less so in the decoy set (Fig. 3b). This leads to 

strongest attractions between the A-T, A-N residue pairs in the optimized energy model (Fig. 

3c). In contrast, the TCR tryptophan (W) residue frequently interacts with alanine (A) in 

both strong binders and decoy peptides. As a result, the optimized energy model does not 

favor the A-W interaction.

This energy model is rather distinct from those typically used for studying protein 

folding. In order to compare the RACER-derived energy model to well-established 

force fields described in the protein folding literature, we substitute for our energy 

model either the standard AWSEM [35] (optimized on deposited folded proteins) force 

field or the Miyazawa-Jernigan (MJ) statistical potential [43] (constructed using the 

probability distribution of contacting residues from deposited proteins) and calculate the 

corresponding binding energy predictions for the TCR 2B4 peptides. We find that neither 

of them effectively resolves these groups, with Z-scores of 0.69 and 1.28, respectively 

(Supplementary note S4 and Fig. S5). Similar trends were observed utilizing the peptides 

corresponding to the 5CC7 and 226 TCRs, demonstrating the necessity of RACER’s de novo 
identification of pertinent structural information for studying the TCR-peptide system.

2.3 Predicting TCR-peptide binding affinity given the same MHC allele

Given RACER’s accuracy in resolving test peptides presented to the specific TCR used for 

training, we next explored the feasibility of extending predictions to additional TCR-peptide 
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pairs albeit with the same MHC restriction. Toward this end, we next assessed whether 

the physical contacts implicitly encoded in RACER’s optimized force field were conserved 

within IEk-restricted TCR-peptide pairs. The three IEk-restricted TCRs considered in our 

analysis all have been tested with peptides bound to the IEk mouse MHC molecule. 

The available crystal structures have a significant degree of structural similarity at the 

TCR CDR3-peptide binding interface (Fig. 5 of [19]). We further quantified the TCR 

CDR3-peptide contacts for each pair, constructing a contact map based on their crystal 

structures (Methods). Our results suggest that, despite differences in TCR and peptide 

primary sequences, similarly MHC-restricted TCR-peptide pairs share common structural 

features. In contrast, these contact maps are not preserved across different MHC alleles (Fig. 

S6).

We next examine RACER’s ability to predict binding peptides of other MHC-restricted 

TCRs. Toward this end, we apply the energy model optimized using binding data for 

one of the three TCRs to predict the TCR-peptide binding energies of the remaining two 

holdout TCRs (Case II in Fig. 1b). To do this, we initially use a known structure for 

each of the holdouts, and the energy model learned from the training TCR to predict the 

binding energies of the experimentally determined strong and weak binders of those holdout 

TCRs. Although the Z-scores measured for these alternate TCRs are lower than those found 

previously in Sec 2.1, RACER still successfully distinguishes a majority of strong binders 

from weak binders, with an average Z-score of 1.8 (Fig. 5a). Further incorporation of target 

TCR structural information in the optimization step improve RACER’s predictive accuracy 

(Supplementary note S5, Fig. S7).

To provide an additional test and to quantify our discrimination capability, we used an 

independent dataset from [44]. Four independent TCRs (PDB ID: 3QIB, 3QIU, 4P2Q, 

4P2R) from their curated benchmark dataset are associated with the IEk allele; note that 

three of these overlap with the TCRs in [19]. To test the performance of RACER for 

different TCR-peptide pairs, we used the energy model trained based on 2B4 (3QIB) to 

predict the binding energies of both strong and weak binders for the three remaining TCRs. 

This calculation again uses the structure found for the one strong binding peptide for each 

of the 3 TCRs. Our calculation re-emphasizes that RACER can successfully distinguish 

strong binders even when it is trained based on a different TCR (Fig. 5c), with an AUC 

of 0.89. As a more comprehensive test of RACER’s transferability, we included other TCR-

peptide pairs from [44]. RACER capably recognizes most strong binders across same MHC 

allele-restricted TCRs with different Vα and Vβ genes, and does so more effectively when 

there are multiple copies of TCR-peptide pairs available for training (Supplementary note 

S6, Fig. S8). Of note, when we tested data from the same study involving TCR-p-MHCs 

with different MHC alleles, RACER could not isolate strong binders, presumably due to the 

substantially different TCR-peptide interacting patterns (Fig. S6).

Next we examine the necessity to have at least one TCR-p-MHC crystal structure in order 

to use the optimized energy model for identifying other strong binders (Case III in Fig. 

1b). Of course to evaluate the binding energy we must have a structure; the alternative to 

having a measured structure for a new sequence is to thread that new CDR3 sequence into 

the crystal structure used for the training data, which potentially introduces an uncertainty 
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in registration. For the cases at hand, this issue arises only for the CDR3α chain as the 

β chains for all three TCRs all have 12 residues and there is no residual ambiguity. We 

tested the simplest possible assumption, where all three α chain are aligned to the left [45]. 

Fig. 5b shows that this procedure again leads to successful discrimination between strong 

and weak binders, with an average Z-score of 2.36. As a comparison, the best performance 

of a recent sequence-based predictor trained by using artificial neural networks [26] can 

recognize the strong binders of TCR 5CC7, but not TCR 2B4 and 226 (Supplementary note 

S7 and Fig. S10). Similar tests were also performed for the TCR-peptide pairs from [44]. 

RACER still capably recognizes the strong binders across TCRs with different Vα and Vβ 
genes (Supplementary note S6, Fig. S9). Thus, we conclude that the MHC-restricted TCR 

structures are sufficiently similar so that not only can we use the energy model derived from 

a single TCR training set for other TCRs but we can also use the same structure. This then 

allows us to make estimates at the repertoire scale without creating extremely large numbers 

of TCR-p-MHC structures.

2.4 RACER-optimized representation of thymic selection

We apply RACER’s ability to reasonably assess binding strengths using a single crystal 

structure and associated energy model to study statistical properties of the high-throughput 

TCR-p-MHC binding observed in thymic negative selection. Using the 2B4 TCR-peptide 

crystal structure, we simulate 105 TCRs and 104 self-peptides by uniform randomization 

of the CDR3 and peptide sequences over amino acid space. To avoid registration issues, 

simulated TCRs were chosen to have the same number of α and β chain residues as TCR 

2B4. This was repeated with 2000 TCRs and 104 selfpeptides, this time weighing CDR3-

peptide interactions by each of the the three contact maps in Fig. 4. The same approach 

was applied to a model that assumes a strictly diagonal contact map (motivated by previous 

analytical work [12]) with randomization of the TCR sequence taken over each non-null 

position in the contact map.

Using this framework, a given TCR survives only if it binds every self-peptide below 

a fixed activation threshold. The maximum binding interaction over all self-peptides for 

each TCR defines a selection curve (Fig. 6a), which describes the percentage of negatively-

selected T-cells as a function of the cutoff activation threshold. Selection curves for the 

three TCR sets using Fig. 4 contact maps and RACER energy model compare reasonably 

to the diagonal contact map motivated by previous analytical work (Fig. 6b red curve). 

Here, variances are similar in each case with mean-shifts correlated directly with the 

number of peptide-CDR3 contacts (Fig. 4). These findings reinforce the relevance of TCR-

p-MHC-specific structural interactions encoded in the RACER-derived energy potential for 

binding prediction and T-cell repertoire generation. Although empirical estimates of TCR 

thymic selection survival rates vary (20%−50%) [46, 47], we assess recognition across all 

survival rates, restricting our analysis to 50%, when applicable. Given these assumptions, 

we demonstrate that RACER-generated thymic selection makes reasonable use of available 

self-peptides (Supplementary note S8, Fig. S11a) and generates a sensible regime of optimal 

selection, consistent with previous analytical estimates [12] (Supplementary note S8, Fig. 

S11c).
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One key issue influencing adaptive immune recognition of tumor-associated neoantigens 

(TANs) is the recognition of peptides closely related to self (e.g. point-mutants) relative to 

foreign peptide recognition. The fact that T-cells can in fact recognize tumors suggests that 

thymic selection leaves intact the ability to strongly bind TANs. Post-selection individual 

TCR’s exhibit minor recognition differences between foreign peptides and TANs (Fig. 

6b) with overlapping variances in line with previous theoretical estimates (Fig. S11B). 

Moreover, the recognition capacity of the MHCrestricted post-selection T-cell repertoire 

demonstrates that this minimal difference is maintained at the aggregate immune level 

(Fig. 6c). These findings explain the ability of the immune system to target cancers in 

a manner dependent on their mutational load. Moreover, comparisons of RACERderived 

post-selection T-cell maximal binding energy to the immunogenicity scores for empirically 

observed thymic self-peptides, foreign peptides, and TANs [40] demonstrates RACER’s 

ability to capably classify TANs having immunogenicity intermediary to those of foreign 

and self-peptides with their distribution closer to the foreign group (Fig. 6d). Additional 

assessments of RACER-derived TCR repertoire CDR3 sequence similarity recapitulate 

key features observed in experimentally studied repertoires [20] (Supplementary note S8, 

Fig. S12). Collectively, our results reinforce RACER’s utility for performing realistic post-

selection T cell repertoire-level analyses.

3 Discussion

TCR-p-MHC structures encode a system-specific energy model, whose identification can 

uncover the rules underlying TCR-antigen specificity. The preserved sequence and structural 

features of TCR-peptide systems [18, 19, 20] limit the physiochemical space explorable 

by TCR-peptide interface. When optimized on TCR-peptide pairs, the arrangement of the 

residue contacts between TCR and its cognate peptide (Fig. 4) leads to an energy model 

(Fig. 3) distinct from the traditional hydrophobic-hydrophilic interaction patterns [48] used 

for studying protein folding, such as the MJ potential [43]. This system-specifc energy 

model enables RACER to identify strong binders of corresponding TCRs (Fig. 2) while 

standard protein-folding energy models fall short (Fig. S5).

RACER offers an approach for developing models that incorporate available protein 

structural information. Prior investigations have applied artificial neural networks for 

predicting strong binders of TCR [25, 26] and MHC [49] molecules based only on 

the primary sequences. Although deep learning can implicitly account for higher-order 

interactions, such approaches may still be limited by available sequences. RACER alleviates 

the high demands for sequences by including existing crystal structures in a pairwise 

potential. To comprehensively characterize RACER’s predictive power, our training set 

was limited to cases that had pre-identified TCR-peptide pairs given their known crystal 

structure [19, 44]. While limited by the diversity of experimentally determined strong 

binders, RACER correctly resolves most of the strong binders even in the most challenging 

training scenario (Fig. 5b, S7). While the pairwise potential of RACER maintains reasonably 

high predictive accuracy, it can be further improved by including entropic contributions to 

affinity (Supplementary note S9).
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In cases with available crystal structures, contact map analysis revealed a largely conserved 

interaction pattern for a variety of TCR-peptide pairs associated with the IEk MHC-II allele 

(Fig. 4), providing an explanation for the transferability of RACER-derived interactions 

when trained on a particular crystal structure. Moreover, these results contributed to variety 

in the selection behavior of individual TCRs in that TCR-peptide systems having more 

interactions in their corresponding contact map were correlated with systematic shifts in 

their mean binding energies, which subsequently correspond to differences in their post-

thymic selection inclusion probability (Fig. 6). Previous investigations have characterized 

the probability distribution for generating particular TCR sequences in VDJ recombination, 

and have even suggested that the a posteriori observed post-selection TCRs had greater 

generation probabilities [50, 51], with so-called “public” TCR sequences being observed in 

multiple individuals. Incorporation of contact maps into our generative model contributes 

to variations in T-cell survival probability, and may offer a physical interpretation of why 

public repertoires survive thymic selection at higher rates[52], in addition to providing an 

explicit means of estimating post-selection T-cell prevalence within a given MHC-class 

restriction.

RACER’s application to CDR3 α, β chains obtained from T-cell sequencing, together 

with possible TAN lists generated by cancer deep sequencing could provide a rapid and 

reliable method of generating clinically actionable information for cancer specific TCRs in 

the form of putative TCRTAN pairs, provided those TANs are similarly presented on the 

original MHC [38, 39]. While we focused our analysis on a single MHC restriction, our 

approach could also be applied to the crystal structure of another TCR-p-MHC pair, together 

with several known strong and weak binder candidates. In the future, RACER’s predictive 

accuracy can be further improved by incorporating additional strong binders and structural 

data as they become available (Fig. 5b).

The relative efficacy of targeting TANs remains an important question with significant 

clinical implications. Our findings suggest that thymic selection affords little to no 

recognition protection of peptides closely related to self, thus supporting the notion that T-

cells undergoing central tolerance to thymic self-peptides are essentially memorizing a list of 

antigens to avoid. Given that a large class of TANs are generated via point-mutations in self-

peptide, our results provides a quantitative argument for the efficacy of immunotherapies 

which target point-mutated neoantigens. We expect that RACER’s ability to identify a 

diverse set of antigen-specific TCRs within high-dimensional CDR3 sequence space will 

accelerate therapeutic T-cell discovery by providing a quick and inexpensive screening tool 

that can then inform more costly confirmatory TCR repertoire sequencing and affinity tests. 

Currently, we have focused on predicting binding affinities of TCR-peptide pairs restricted 

to a particular MHC allele, offering a proof-of-principle for epitope identification. This 

procedure can in general be repeated for other MHC alleles and could be applied to a broad 

set of clinical scenarios by training on a relatively small number of the most common MHC 

Class-I alleles, each having ample available crystal structure data.

While important, TCR-p-MHC pairwise interactions are only one factor influencing adaptive 

immune system recognition. Signaling between other adaptive immune elements and 

intracellular factors influence antigen generation, abundance, and availability also affect 
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recognition rates. We propose our optimized framework as a tool for understanding general 

questions regarding the interactions between the T-cell repertoire and relevant antigen 

landscape. Although we calculate static antigen recognition probabilities, the temporal 

tumor-immune interaction leads to dynamic co-evolution [16] reliant on the quality, 

abundance, and systems-level signaling of antigens [53]. The availability of time series 

assessments of immune cell repertoires, self-peptides, and tumor antigens will enable the 

development of optimized immunotherapeutic treatments by uncovering the T-cell-tumor-

antigen specificity map.

4 Methods

4.1 Protocol of RACER model

The optimization of RACER (Fig. 1a) starts from a series of TCR binders obtained from 

the deepsequencing experiments [19], as well as the corresponding TCR-p-MHC crystal 

structures deposited in the database [41]. The sequences of the strong binders, as well as 

the generated decoy binders from randomizing the non-anchoring sequences of the strong 

binders, are collected for parameterizing a pairwise energy model which maximizes the 

energetic gap between the strong binders and a randomized set of decoys. The resulting 

energy model can be used to quickly evaluate the binding affinities of an ensemble of 

TCR-peptide interactions at the population level. The calculated binding affinities can be 

used for simulating the negative selection process in the thymus, as well as measuring the 

recognition probability of the post-selection TCRs. Finally, this kind of ensemble study can 

be used for immunogenic applications that require input from an entire T-cell repertoire.

4.2 Energy model

To evaluate the binding energies on the basis of a structurally motivated molecular energy 

model, the framework of a coarse-grained protein energy model, AWSEM force field [35], 

was utilized for calculating the binding energies between the T-cell receptors (TCRs) and 

the peptide displayed on top of a MHC molecule. AWSEM is a coarse-grained model with 

each residue described by the positions of its 3 atoms – Cα, Cβ and O atoms (except for 

glycine, which does not have Cβ atoms) [35]. We used the Cβ atom (except for glycine, 

where the Cα atom was used) of each residue to calculate inter-residue interactions. The 

original AWSEM energy includes both bonded and nonbonded interactions.

V total = V bonded + V nonbonded (1)

Since those residue pairs that contribute to the TCR-peptide binding energy, specifically 

those from the CDR loops and peptides, are in separate protein chains, only non-bonded 

interactions are considered. Vnonbonded is composed of three terms:

V nobonded = V pairwise + V burial + V database (2)

Among them, Vburial is a one-body term describing the propensity of residues to be buried 

in or exposed on the surface of proteins. Vdatabase is a protein sequence-specific term that 
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uses information from existing protein database, such as secondary and tertiary interactions, 

to ensure locally accurate chemistry of protein structure. Since the TCR-p-MHC system 

features pairwise interactions between a TCR and its corresponding peptide, only the term 

Vpairwise is used for this study.

The pairwise energy of AWSEM potential describes the interactions between any two 

nonbonded residues and can be further separated into two terms:

V pairwise = V direct + V mediated (3)

Vdirect captures the direct protein-protein interaction of residues that are in between 4.5 and 

6.5 Å. The functional form of Vdirect is

V direct =
i ∈ TCR

j ∈ peptide

γij aj, aj Θij′
(4)

in which Θij
I = 1

4 1 + tanh 5.0 ⋅ rij − rmin
I 1 + tanh 5.0 ⋅ rmaxI − rij  is a switching function 

capturing the effective range of interactions between two residues (here taken between 

rmin
I = 4.5Å and rmaxI = 6.5Å). Thus, two residues are defined to be “in contact” if their 

distance falls between 4.5 Å and 6.5 Å. γij(ai,aj) describes the residue-type dependent 

interaction strength, and is the most important parameter that enters the optimization of 

RACER. Vmediated describes the longer range interactions of two residues and is not used in 

this study.

4.3 Maximizing specificity of TCR-peptide recognition

For each interaction type, the γij(ai,aj) parameters constitute a 20-by-20 matrix of 

parameters that describes the pairwise interaction between any two residues i, j, each with 

one of the 20 residue types, ai, aj. Guided by the principle of minimum frustration [32], 

γij(ai,aj) was previously optimized self-consistently to best separate the folded states from 

the misfolded states of proteins. Distilled into mathematical details, the energy model was 

optimized to maximize the functional δE/∆E, where δE is the energy gap between folded 

and misfolded proteins, and ∆E measures the standard deviation of the energies of the 

misfolded states. An energy model was optimized based on a pool of selected protein 

structures [54], where a series of decoy structures were generated by either threading the 

sequences along the existing crystal structures, or by biasing the proteins into molten globule 

structures using MD simulations [34]. The resultant γ parameter thus determines an energy 

model that facilitates the folding of proteins with given sequences.

Motivated by this idea, RACER was parameterized to maximize the Z-scores for fully 

separating TCR strong binders from weak ones. Strong binders were chosen to be those 

top peptides that survive and were amplified to contain to at least 50 copies after four 

rounds of experimental deep sequencing processes (details in Section Data used in our 

analyses) [19], together with the peptides present in the deposited crystal structures [41]. 

In the experiment of [19], to ensure the correct display of peptides on the MHC, limited 
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diversity was introduced for most distal residues and anchoring residues of peptides. The 

decoy binder sequences were generated by randomizing the non-anchoring residues of each 

strong binder thereby generating 1000 copies, and excludes the strong-binder sequences. 

The γ parameters were then optimized to maximize the stability gap between strong and 

randomized set of decoy binders, δE = ATγ, and the standard deviation of decoy energies, 

∆E2 = γTBγ, where the vector A and matrix B are defined as:

A = ϕdirect
db − ϕdirect

sb

B = ϕdirectϕdirect
db − ϕdirect

db ϕdirect
db (5)

In the above Eq. 5, “direct” stands for the interaction type, Vdirect. ɸdirect is the functional 

form for Vdirect. ɸdirect also summaries the probability of contacts formation (interaction 

matrix) between pairs of amino acids in a specific TCR-peptide system. The subscripts “db” 

stands for “decoy binders” and “sb” stands for “strong binders”. The first average is over 

the 1000 decoy binders generated from one specific strong binder. The second average is 

over all the strong binders. The maximization of δE /ΔE = ATγ / γTBγ can be performed 

effectively by maximizing the functional objective R(γ) = ATγ − λ1∆, where ∆2 = γTBγ. 

The solution of this optimization gives γ ∝ B−1A. A is a vector containing the difference in 

the number of interactions of each type in the strong and decoy binders. B is a covariance 

matrix, which contains information about which types of interactions tend to co-occur in the 

decoy binders. Finally, γ is a vector that encodes the optimized strengths of the interactions. 

The dimension of the vector A is (1, 210), that of the matrix B is (210, 210), and that 

of the vector γ is (210, 1). To aid visual presentation, we reshape the γ vector into a 

symmetric 20 by 20 matrix in Fig. 3c. Finite sampling of decoy binders introduces noise in 

the optimization process, particularly in B. As such, a filter is applied to reduce the effects 

of the noise. The filtering scheme was performed by first diagonalizing the B matrix such 

that B−1 = PΛ−1P−1, where P is composed of the eigenvectors of B and Λ is made up of B’s 

eigenvalues. The first N modes of B (sorted in descending order by eigenvalue) are retained 

and the other (210 - N) eigenvalues in Λ are replaced with the Nth eigenvalue of B. The 

final result is robust to the choice of N. In practice, N is chosen so that no eigenvalue is 

close to zero. The Wolynes group performed this optimization in an iterative way where 

the optimized parameters were used for generating a new set of decoy protein structures 

[55]. In this study, since different peptides are structurally degenerate on top of MHC as 

observed from experiments [19], only one round of optimization was performed. Since 

the optimization leaves a scaling factor as a free parameter, throughout this manuscript, 

the binding energies are presented with reduced units. To obtain binding energies that 

have physical units, the scaling factor can be further calibrated to fit the experimentally 

determined binding affinities, such as the Kd values measured by SPR experiments (Fig. 2c).

4.4 Data input

A deep-sequencing technique was developed to assess the binding affinity of a diverse 

repertoire of MHC-II-presented peptides towards a certain type of TCR [19]. Specifically, 

3 types of TCRs: 2B4, 5CC7 and 226, were used for selecting peptides upon four rounds 

of purification. The peptides that survived and enriched with multiple copies bind strongly 
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with the corresponding TCR. In contrast, the peptides present initially but become extinct 

during purification represent experimentally determined weak binders. For each of the 3 

TCRs, the peptides that end up with more than 50 copies after the purification process, 

together with the peptides presented in the crystal structures, were selected as strong binders. 

1000 decoy sequences were generated for each of the strong binders by randomizing the 

non-anchoring residues. Both strong binders and decoys were included in the training set. In 

addition, to test the performance of RACER, peptides having at least 8 copies initially but 

disappearing during purification were selected as experimentally determined weak binders 

and were assigned to the test set for each TCR. To test the transferability of the model, we 

used weak-binding peptides of two different TCRs (e.g., 5CC7 and 226) as additional test 

sets distinct from the TCR used in training (e.g., 2B4).

When structural data for a specific TCR-peptide pair of interest is unavailable, we built 

the structure by homology modeling [45], based on a known TCR-peptide crystal structure 

incorporating the same TCR. Since potential steric clashes after switching peptide sequences 

may disfavor the strong binders used in our training set, we used Modeller [45] to refine the 

structures located at the TCR-peptide interface of strong binders before including them in 

the training process. Likewise, the binding energies of the experimentally determined weak 

binders were also evaluated after structural relaxation. The structural relaxation adds several 

seconds of computational time for each TCRpeptide pair, and thus poses a challenge for 

large scale repertoire analysis. However, the coarsegrained nature of RACER framework 

may significantly reduce the probability of side-chain clashes after switching peptide 

sequences. To test the accuracy of our model prediction without structural relaxation, we 

calculated the binding energies of strong and weak binders of TCR 2B4 by only switching 

the peptide sequences, omitting any structural adjustment. Our result (Fig. S13) shows 

comparable accuracy in separating strong from weak binders, similar to that reported in 

Fig. 2a. In the same vein, the transferability of RACER was also maintained without 

structural relaxation (Fig. 5b). Encouraged by the accuracy of our coarse-grained model 

without relaxation, we modeled large pairwise collections of TCR-peptide interactions by 

only altering their corresponding sequences.

For an additional independent test of the transferability of RACER under the same MHC 

allele, we used the benchmark set reported in [44]. Four crystal structures are curated 

in their benchmark set, including three TCRs: 3QIB (2B4), 3QIU (226), 4P2Q (5CC7) 

and 4P2R (5CC7). Each of them have one strong-binding peptide presented in the crystal 

structure, and 4 weakly binding peptides. All the TCR-peptide pairs are associated with 

MHC-II allele IEk, and three of them overlap with the main dataset reported in [19]. We 

therefore used the energy model previously trained from TCR 2B4 to test its transferability 

for the other three TCR-peptide pairs. The calculated binding energies were converted into 

a Z score by referencing to a set of 1000 randomized peptides of corresponding TCRs: 

Z =
Ebinding − Edecoys

σ Edecoys
, with σ(Edecoys) being the standard deviation of Edecoys. The ROC 

curve and AUC score were calculated by scanning through different thresholds of the Z 

score. A further test by including more examples from [44] is available at Supplementary 

note S6, Fig. S8 and S9.
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4.5 Testing the transferability of RACER without target TCR-peptide structure

To test the transferability of RACER without requiring any measured structure for a new 

TCR, we threaded the sequences of the CDR3 loops of the new TCR on the TCR structure 

used in our training. The length of CDR3β chain is the same among three TCRs (2B4: 

ASSLNWSQDTQY; 5cc7: ASSLNNANSDYT, 226: ASSLNNANSDYT), but the length 

of CDR3α chain is different (2B4: AALRATGGNNKLT; 5cc7: AAEASNTNKVV; 226: 

AAEPSSGQKLV). In order to accommodate such difference when threading the CDR3α 
sequences, we used a simple approach: aligning them based on the first two AA residues, 

leaving two gaps for TCR 5cc7 and 226. Modeller[45] was used to build the new loop 

structure based on these aligned new sequence, using the single structure in the training 

set as the template. These homology-modeled structures were then used for calculating the 

binding energies of the strong and weak binders of the new TCRs, using the trained energy 

model. We also omitted the step of structural relaxation when replacing a new peptide 

sequence on the built structure. Such approach is unlikely to reduce RACER’s performance, 

as demonstrated in Fig. S13.

4.6 The leave-one-out cross validation

The Leave-one-out cross validation (LOOCV) was used to test the predictive power of 

RACER on its ability to identify strong binders. Specifically, one of the 44 strong binders 

of TCR 2B4 was removed from the training set, and its predicted binding energy Epred 

was compared with the experimentally determined weak binders. If the median of the 

weak binders’ binding energies is larger than Epred (a larger binding energy is associated 

with smaller affinity), the testing strong binder is successfully identified. Similar tests 

were performed for TCR 5cc7 and TCR 226. The performance of RACER is compared 

with that from the clustering of peptide sequences using the algorithm from CD-Hit [56] 

(Supplementary note S1).

4.7 Comparing results from SPR experiments

Surface plasmon resonance (SPR) was performed to assess the binding affinities of the 

three TCRs towards 9 selected peptides [19]. The correlation between the predicted 

binding energies from RACER and the dissociation constant Kd evaluated from the SPR 

experiments thus constitutes a separate set of tests for the accuracy of RACER. We first 

built a relaxed structure with Modeller [45] for each of those TCR-peptide pairs, using the 

corresponding TCR structure as the template. We then used the optimized energy model 

of the corresponding TCR to evaluate the binding energy of each of those TCR-peptide 

pairs. The Kd values were obtained from fitting the SPR titration curves (Fig. S4f of 

[19]) using equation Req =
C ⋅ Rmax
C + Kd

 with C, Kd and Rmax as free parameters. The Pearson 

correlation coefficient and the Spearman’s rank correlation coefficient between kBT log(Kd) 

and predicted binding energies were used to quantify this correlation.
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4.8 Evaluating contact residues of TCR-peptide pairs

The contact map of a given TCR-peptide structure was constructed by measuring the 

proximity Wi,j between each residue of peptide (residue i) and CDR loops (residue j) based 

on their mutual distance, using a smoothed step function:

W ij = 1 − tanh d − dmax
2 , with dmax = 6.5Å (6)

Only Cβ atoms were included in our calculation (except for glycine, where the Cα atom was 

used). The CDR3 loops were utilized as defined in the IEDB database [57]. The constructed 

contact map represents those residues that are spatially close to each other in the given 

crystal structure.

4.9 Evaluation of different TCR-p-MHC interactions used for statistical study

To assess the statistical behavior of the inferential model, we calculated the pairwise 

binding interactions between a simulated T-cell population of size Nt and collection of 

Nn = 104 thymic self-peptides. For this proof-of-principle study, we used TCR 2B4 as an 

example, uniformly varying the 104 amino acids of the peptides, as well as those residues 

from the TCR that are in spatial contact with the peptide. TCR-peptide pairwise energies 

were calculated for Nt = 105 randomized TCR sequences using the RACER energy model 

optimized for TCR 2B4, and Nt = 2000 for each of the TCR-p-IEk systems given in Fig. 

4 using energies weighted according to their contact maps, along with a model using a 

contact map with diagonal interactions (Fig. 6a). Substitution of TCRpeptide sequences 

with the newly generated ensemble yielded a total of Nt∗Nn (109 in the 2B4 case; 2∗107 

for each of the cases involving the TCR-p-IEk and diagonal contact maps) TCR-peptide 

pairs representing interactions occurring during thymic selection. Given our previous results 

(Fig. S13), we avoid the computationally expensive task of structural relaxation, and instead 

calculate pairwise interactions with the original structure, requiring 5,000 CPU hours on an 

Intel(R) Xeon(R) CPU E5–2650 v2 for the large-scale 2B4-optimized simulation.

4.9.1 Thymic selection—Each T-cell survives if the maximal interaction over all 

self-peptides does not exceed some upper threshold. Selection thresholds were chosen to 

achieve 50% [7]. In all cases, the RACER-optimized energy model was used for energy 

assignment. Thymic selection was performed for each of the TCR-p-IEk examples and their 

corresponding contact maps given in Fig. 4 (Fig. 6a). For each TCRp-IEk example, Nt = 

2000 pre-selection TCRs were created by varying uniformly the original TCR CDR3 α and 

β sequences over amino acid space, keeping the sequence lengths unchanged. A similar 

randomization yielded Nn = 104 randomized peptide sequences representing self-peptides. 

For each of the 2000 randomized TCRs, binding energies were calculated against the 104 

self-peptides by selecting the corresponding entries in the RACER-optimized energy model 

weighted by the original TCR-p-IEk contact maps, and the maximum energy was recorded. 

The fraction of TCRs whose maximal binding energy exceeded the selection threshold En 

traces the survival curves. This procedure, utilizing the RACER-optimized energy model, 

was repeated for a simplified model that utilizes only adjacent contacts (i.e. a strictly 

diagonal contact map with each entry having weight one) in the TCR-peptide interaction. 
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The number of diagonal elements in the diagonal contact model was taken to be 20 (10 for 

each of the CDR3α-peptide and CDR3β-peptide pairs).

4.9.2 Self-peptide potency—Most self-peptides present in thymic selection are 

expected to participate in the deletion of selfreactive T-cells. Thus, a reasonable model 

of thymic selection would feature a majority of selfpeptides contributing to the selection 

of immature T-cells. A rank order of these self-peptides based on their ability to recognize 

unique T-cells, or potency, characterizes the extent to which each selfpeptide is utilized in 

thymic selection. The rank order of potency was created for the RACER model utilizing 

the crystal structure of the 2B4 TCR (PDB ID: 3QIB) and its corresponding energy model 

derived from the set of experimentally determined strong binders. The thymic selection 

process using 104 self-peptides and 105 TCRs for the 2B4-optimized RACER model 

described above generates a total of 109 pairwise binding energies. The negative selection 

threshold En was selected to yield 50% selection, resulting in ∼ 5 · 104 deleted TCRs. 

The number of TCRs deleted by each self-peptide was recorded. The peptide deleting 

the most TCRs defines the most potent self-peptide. TCRs recognized by this peptide are 

removed from the list of total TCRs, and this peptide is similarly removed from the list of 

self-peptides. This process is repeated on the smaller TCR and self-peptide list to determine 

the second most potent peptide. Additional iteration until no TCRs remain provides the rank 

order of self-peptides in decreasing order of potency. The cumulative fraction of deleted 

relative to total TCRs is plotted in decreasing order of peptide potency.

4.9.3 Antigen recognition probabilities for individual T-cells and T-cell 
repertoires—Utilizing the same post-selection T-cell repertoire from the previous section, 

post-selection T-cells were quantified for their ability to recognize random non-self-antigens 

and tumor neoantigens that differ from the Nn thymic self peptides by one residue. 50% 

selection of TCRs result in approximately 5 · 104 surviving, for which pairwise interactions 

are generated against 103 random and 103 point-mutated self-peptides, representing foreign 

and tumor-associated neoantigens, respectively (randomly generated peptides were checked 

to ensure non-membership in the set of thymic selfpeptides). Estimates of individual TCR 

recognition probability were calculated by averaging the 5 · 104-by-103 indicator matrix, 

having values of 1 (resp. 0) corresponding to recognition (resp. no recognition). The 

previous quantity estimates an individual TCR’s antigen recognition ability. Estimates of 

the corresponding recognition probability for the entire post-selection MHC-restricted T-cell 

repertoire was calculated by assessing the 1-by-103 vector indicating the presence or absence 

of at least 1 recognizing TCR. The post-selection individual and repertoire T-cell recognition 

probabilities of random and point-mutant antigens were then compared with previously 

derived analytic results for two random energy models [12].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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6 Data Availability

The data comprised of the peptides recognized by the three TCRs, used for RACER 

training and testing, are available from [19]. An extended data set of these three TCRs 

were uploaded at Github: https://github.com/XingchengLin/RACER.git. The additional data 

used for training and testing on different MHC-II TCRs can be found in [44]. All other 

output from this study are available from the corresponding author upon reasonable request.
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Figure 1. 
Summary of the modeling approach employed in this study. a. The protocol of RACER 

optimization (Methods). b. Three tests were conducted to evaluate the performance of 

RACER. Case I: the training set includes one TCR-p-MHC structure and multiple peptide 

sequences. The test set includes the same TCR structure and a separate set of peptide 

sequences. Case II: the training set includes one TCR-p-MHC structure and multiple peptide 

sequences. The test set includes two different TCR structures (restricted on the same MHC 

allele) and two separate sets of peptide sequences. Structures for the two additional test 

TCRs are included in predictions. Case III: The training set includes one TCR-p-MHC 

structure and multiple peptide sequences. The test set includes only the sequences of two 

different TCRs (restricted on the same MHC allele) and two separate sets of peptides. Only 

the structure from the original training TCR was used in prediction (The interactions of 

interest are indicated by double-sided arrows between TCR and p-MHC).
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Figure 2. 
RACER identification of TCR-specific strong and weak binders. a. Probability density 

distributions of the predicted binding energies of experimentally determined strong (brown, 

with mean depicted in red) and weak (grey, with mean depicted in black) binders of three 

TCRs (2B4, 5CC7 and 226). b. Summary of the predicted binding energies from the leave-

one-out-cross-validation tests using TCR 2B4. Each test case represents one example using 

one of the 44 strong binders (green or black), as well as the experimentally determined weak 

binders (brown) as the test set and the other 43 strong binders as the training set (blue). Each 

box plot represents the lower (Q1) to upper (Q3) quartiles of the predicted binding energies, 

and with a horizontal line at the median. Withheld strong binders are depicted in green when 

being successfully recognized (binding energy lower than the median of the experimentally 

determined weak binders), and in black square otherwise. The whiskers are placed at the 

first and last datum points that fall within (m, M), where m = Q1 – 1.5IQR and M = Q3 + 

1.5IQR, IQR = Q3 - Q1 represents the interquartile range. c. In a completely independent 

testing data measured by surface plasmon resonance (SPR) [19], the calculated binding 

energies of testing peptides were compared with the binding affinity converted from their 

experimentally determined dissociation constant Kd. Best-fit linear regression is depicted 

for each case. Corr: Pearson correlation coefficient. S-Corr: Spearman’s rank correlation 

coefficient. The p-value of each correlation coefficient is reported in the parenthesis.
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Figure 3. 
The RACER-derived energy model a. The 3D crystal structure of the 2B4 TCR bound to a 

specific peptide (PDBID: 3QIB). The parts of the structure that are in contact between the 

TCR and peptide are color-highlighted as green (TCR) and orange (peptide). Also shown 

are residues alanine (blue), threonine (magenta) and asparagine (tan) which are discussed in 

the main text (CPK representation [51]). b. The probability of contact formation (interaction 

set) between each two of the 20 amino acids in the set of strong binders (left) and the set 

of randomized decoy binders (right) of TCR 2B4. c. The residue-based interaction strength 

(energy model) determined by RACER for TCR 2B4. A more negative value indicates a 

stronger attractive interaction between the corresponding two residues.
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Figure 4. 
Contact maps for MHC-II IEk-restricted TCR-peptide pairs. Contact maps are calculated 

using distances from each pairwise TCR-peptide amino acid combination using Eq. 6 for 

the following MHC-II IEk-restricted TCR-peptide pairs: 3QIB - peptide ADLIAYLKQATK 

with TCR 2B4 a. CDR3α (AALRATGGNNKLT) and b. CDR3β (ASSLNWSQDTQY) 

chains; 3QIU – peptide ADLIAYLKQATK with TCR 226 c. CDR3α (AAEPSSGQKLV) 

and d. CDR3β (ASSLNNANS-DYT) chains; 4P2R - peptide ADGVAFFLTPFKA with TCR 

5cc7 e. CDR3α (AAEASNTNKVV) and f. CDR3β (ASSLNNANSDYT) chains. Similarity 

in interaction topology across TCR-peptide pairs is observed by comparing the contact 

silhouette of interacting coordinates for the α (top row) and β (bottom row) TCR sequences.
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Figure 5. 
RACER predictive transferability across distinct TCRs. a. Probability density distributions 

of the predicted binding energies of experimentally determined strong (brown, with mean 

depicted in red) and weak (grey, with mean depicted in black) binders of each of the three 

TCRs (2B4, 5CC7 and 226), using another TCR for training. The title of each figure follows 

the format of “target training TCRs”, e.g., “2B4 5CC7” utilizes the energy model trained 

on TCR 5CC7 for predicting peptide binding affinities of TCR 2B4. b. Probability density 

distributions of the predicted binding energies of the same cases as in panel a, but without 

utilizing any new structure for the new TCR. The panel is formatted in the same way as 

in panel a. c. Upper panel: The energy model trained on TCR 2B4 is used to predict the 

binding energies of sequences from the other IEk-associated TCRs [44]. Z-scores of known 

strong binders (grey) and weak binders (orange) provided by [44] were calculated relative 

to a set of 1000 decoy peptides with randomized sequences (blue violin plot), with lower 

Z-scores indicating better predictive performance. Lower panel: The calculated Z-scores of 

each TCR were used to depict corresponding ROC curve and AUC score (0.89, lower panel).
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Figure 6. 
RACER-derived T-cell repertoire simulations of thymic selection and antigen recognition. a. 
Simulated thymic selection curves (T-cell recognition probability as a function of negative 

selection binding energy cutoff) incorporating the effects of non-adjacent contacts (given 

in Fig. 4) using Nn = 104 uniformly randomized self-peptides and Nt = 2000 randomized 

IEk-restricted TCRs. 4P2Q and 4P2R (purple) use T-cells generated by randomizing the 

CDR3 region of TCR 5cc7, while 3QIB (blue) randomizes the CDR3 of TCR 2B4, and 

3QIU (yellow) randomizes the CDR3 of TCR 226 (in all cases, randomized CDR3 lengths 

were unchanged from the original TCR) (red curve uses RACER energy using a diagonal 

contact map model whose study here is motivated by previous work [12]). b. Utilizing 

RACER-derived energy assessments from the 2B4 crystal structure, the probability of 

recognizing foreign and point-mutant antigens for individual post-selection T-cells is plotted 

as a function of the percentage of TCRs surviving negative selection (ordinate of the graph 

in panel a, simulations averaged over all post-selection TCRs with pairwise interactions 

amongst 103 random peptides and 103 point-mutant peptides). c. The recognition probability 

of foreign (black) and mutant (red) peptides by the entirety of the TCR repertoire is 

plotted as a function of pre-selection TCR repertoire diversity (the number of unique post-

selection TCRs), with negative selection thresholds giving 50% survival. d. RACER-derived 

immunogenicity of foreign, mutant, and self antigen. The distribution of maximum binding 

affinity over all post-selection T-cells for immunogenic random (gray) and point-mutated 

self-peptides (red) is compared to that of thymic self-peptides (blue) (There were 28 point-

mutated peptides that had at least one T-cell recognition event. To keep an equal number of 

peptides in each distribution, these were compared with the top 28 similarly ordered foreign 

peptides and 28 randomly chosen self-peptide groups).
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