Skip to main content
. 2022 Sep 8;40(4):1241–1279. doi: 10.1007/s00354-022-00190-2

Table 2.

Comparative analysis of multi-disease prediction model with different meta-heuristic algorithms

TERMS PSO-EL-WRBM [45] WOA-JA-EL-WRBM [46] JA-EL-WRBM [47] GWO-EL-WRBM [44] ASR-CHIO-EL-WRBM
Dataset 1
 MCC 85.155501 85.595915 84.509656 84.945289 86.377275
 F1-Score 90.196078 90.483904 89.774030 90.058669 90.995191
 FDR 12.669838 12.298030 13.172853 12.834088 11.655686
 NPV 96.509816 96.613101 96.335235 96.453264 96.806240
 FNR 6.743521 6.551892 7.072028 6.849982 6.189926
 FPR 6.764813 6.551892 7.049215 6.857586 6.188405
 Precision 87.330162 87.701970 86.827147 87.165912 88.344314
 Specificity 93.235187 93.448108 92.950785 93.142414 93.811595
 Sensitivity 93.256479 93.448108 92.927972 93.150018 93.810074
 Accuracy 93.242284 93.448108 92.943180 93.144949 93.811088
Dataset 2
 MCC 86.415733 86.723876 85.770467 86.251215 87.434403
 F1-Score 92.556252 92.723247 92.204440 92.463276 93.108797
 FDR 8.182084 7.983009 8.557636 8.220985 7.526409
 NPV 94.477172 94.590948 94.204322 94.359980 94.855463
 FNR 6.693440 6.559572 7.020675 6.842184 6.247211
 FPR 6.770013 6.600460 7.084898 6.794235 6.212910
 Precision 91.817916 92.016991 91.442364 91.779015 92.473592
 Specificity 93.229987 93.399540 92.915102 93.205765 93.787090
 Sensitivity 93.306560 93.440428 92.979325 93.157817 93.752789
 Accuracy 93.264353 93.417891 92.943925 93.184246 93.771696
Dataset 3
 MCC 80.877020 81.374946 80.138061 80.729688 82.398925
 Sensitivity 93.165217 93.486957 92.947826 93.139130 93.791304
 Specificity 93.239130 93.384783 92.921739 93.169565 93.815217
 Accuracy 93.224348 93.405217 92.926957 93.163478 93.810435
 FNR 6.834783 6.513044 7.052174 6.860870 6.208696
 Precision 77.502894 77.939684 76.651129 77.318992 79.128457
 FDR 22.497107 22.060316 23.348871 22.681008 20.871543
 F1-Score 84.615385 85.008302 84.016506 84.494932 858.38208
 NPV 98.200385 98.286277 98.137987 98.192316 98.372427
 FPR 6.760870 6.615217 7.078261 6.830435 6.184783
Dataset 4
 MCC 59.566585 59.934307 58.559462 58.795777 61.304260
 F1-Score 57.354759 57.783313 56.272838 56.548348 59.287532
 Specificity 93.252417 93.375849 92.984983 93.067270 93.746143
 FPR 6.747583 6.624151 7.015018 6.932730 6.253857
 FNR 6.827309 6.827309 72.28916 7.228916 6.425703
 NPV 99.626374 99.626866 99.603350 99.603699 99.650120
 Precision 41.428571 41.877256 40.384615 40.669014 43.389199
 F1-Score 57.354759 57.783313 56.272838 56.548348 59.287532
 Sensitivity 93.172691 93.172691 92.771084 92.771084 93.574297
 Accuracy 93.248532 93.365949 92.974560 93.052838 93.737769
 FDR 59.566585 59.934307 58.559462 58.795777 61.304260
Dataset 5
 F1-Score 93.545817 93.535515 93.216281 93.216281 94.014366
 FNR 6.677266 6.836248 7.154213 7.154213 6.359301
 Specificity 93.048128 93.226382 92.869875 92.869875 93.761141
 FDR 6.230032 6.089744 6.410256 6.410256 5.608974
 NPV 92.553192 92.402827 92.049470 92.049470 92.932862
 Accuracy 93.193277 93.193277 92.857143 92.857143 93.697479
 Sensitivity 93.0322735 93.163752 92.845787 92.845787 93.640700
 MCC 86.347008 86.351600 85.677429 85.677429 87.362855
 Precision 93.769968 93.910256 93.589744 93.589744 94.391026
 FPR 6.951872 6.773619 7.130125 7.130125 6.238859
Dataset 6
 Sensitivity 92.962357 93.126023 92.635025 92.962357 93.780687
 NPV 92.110092 92.321755 91.788321 92.110092 93.001842
 FDR 6.270627 5.794702 6.135987 6.270627 5.756579
 FPR 7.037037 6.481482 6.851852 7.037037 6.481482
 FNR 7.037643 6.873977 7.364976 7.037643 6.219313
 F1-Score 93.344289 93.662551 93.245470 93.344289 94.011485
 Accuracy 92.962641 93.310165 92.875760 92.962641 93.657689
 MCC 85.882382 86.585777 85.717729 85.882382 87.272230
 Specificity 92.962963 93.518519 93.148148 92.962963 93.518519
 Precision 93.729373 94.205298 93.864013 93.729373 94.243421