Skip to main content
. 2022 Aug 30;23(17):9869. doi: 10.3390/ijms23179869

Table 3.

PCA results. (A) Decomposition of the correlation matrix expressed as eigenvalues, difference between adjacent eigenvalues, proportion of variance explained by each component and cumulative variance. (B) Component pattern (loadings). Each loading corresponds to the correlation coefficient between original variables (samples) and corresponding component.

(A)
Component Eigenvalue Difference Proportion Cumulative
1 9.874 9.832 0.987 0.987
2 0.042 0.017 0.004 0.991
3 0.025 0.010 0.003 0.994
4 0.015 0.003 0.002 0.996
(B)
Sample PC1 PC2 PC3 PC4
PKH26+1 −0.317 0.156 −0.272 0.336
PKH26+2 −0.317 0.065 −0.151 0.255
PKH26+3 −0.317 0.100 −0.221 0.166
PKH26+4 −0.316 −0.038 0.694 0.478
PKH26+5 −0.314 −0.799 −0.040 0.087
PKH261 −0.316 0.347 0.353 −0.396
PKH262 −0.317 0.143 −0.363 −0.013
PKH263 −0.317 0.121 −0.262 −0.157
PKH264 −0.317 0.233 0.208 −0.163
PKH265 −0.316 −0.336 0.057 −0.591