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Abstract: Reconstruction of defects in the maxillofacial region following traumatic injuries, cranio-
facial deformities, defects from tumor removal, or infections in the maxillofacial area represents a
major challenge for surgeons. Various materials have been studied for the reconstruction of defects
in the maxillofacial area. Biodegradable metals have been widely researched due to their excellent
biological properties. Magnesium (Mg) and Mg-based materials have been extensively studied for
tissue regeneration procedures due to biodegradability, mechanical characteristics, osteogenic capac-
ity, biocompatibility, and antibacterial properties. The aim of this review was to analyze and discuss
the applications of Mg and Mg-based materials in reconstructive oral and maxillofacial surgery in
the fields of guided bone regeneration, dental implantology, fixation of facial bone fractures and soft
tissue regeneration.

Keywords: magnesium; biodegradable metals; maxillofacial surgery; guided bone regeneration;
bone fracture

1. Introduction

Reconstruction of defects in the maxillofacial region following traumatic injuries,
craniofacial deformities, defects from tumor removal or infections in the maxillofacial area
represents a major challenge for surgeons. The maxillofacial region has a significant impact
on patients’ well-being, and any facial deformity or dysfunction has a devastating effect on
the patients’ quality of life [1,2]. Reconstruction or augmentation of craniofacial bones is one
of the most frequent surgical procedures in maxillofacial surgery. After blood transfusion,
bone grafting is the second-most common tissue transplantation procedure worldwide [3].
Extensive clinical research on bone grafting and augmentation with autografts, allografts
and xenografts has been performed. Autografts taken from the same patient are considered
the gold standard for bone reconstruction, since no immune reaction is expected. However,
the need for additional surgical intervention, donor site morbidity, limited bone availability
and significant graft resorption emphasized the need for different bone substituents [4,5].
Allografts taken from genetically non-identical members of the same species carry the risk
of pathogen transfer and immune system rejection [6]. Xenografts, usually bovine-derived,
are most often used to augment intraoral bone defects [7]. However, the application of
animal-derived materials to humans has certain limitations concerning patients’ religion,
dietary restrictions and ethical controversy [7]. To overcome these drawbacks, extensive
research on bone tissue engineering using bio-mimicking, resorbable and biocompatible
bone substitutes has been performed in the past years. These synthetic bone substitutes
serve as an artificial extracellular matrix to promote bone healing until they are partially or
completely replaced by newly formed bone [8,9]. Biodegradable polymers are extensively
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studied as bone scaffolds and have proven osteoconductive properties as well as excellent
biocompatibility [8,9]. However, low mechanical strength, unstable rates of degradability
and immune reaction to products of polymer degradation limit their use in clinical prac-
tice [10]. Titanium (Ti) is the most commonly used non-biodegradable metal in maxillofacial
surgery for stabilization of fractures or osteotomies, dental implantation procedures and
guided bone regeneration (GBR). However, Ti-based materials are bioinert, and secondary
surgical intervention is often needed to remove the Ti materials from the organism mainly
due to discomfort or surgical site infection, which may occur in up to 33% of cases [11].

Biodegradable metals have been extensively studied for tissue regeneration procedures
due to their biodegradability, mechanical properties, osteogenic capacity, biocompatibility
and antibacterial properties [12]. Magnesium (Mg)-based materials have been used in
medicine since the 19th century. Mg is an essential metal for the human organism, and
it is involved in more than 300 cell enzymatic reactions, mitochondrial activity, protein
translation, DNA synthesis and cell proliferation [13]. About 60% of Mg in a healthy adult
is deposited in bones [13]. Mg is resorbed from the intestines, and its homeostasis in the
organism depends on renal function [13]. Due to its mechanical properties, an elastic
modulus similar to human bones and its biosafety, Mg had been used in orthopedic surgery
in the early 20th century until it was replaced with Ti materials [14,15]. The elastic modulus
of Mg is about 45 GPa which is much closer to that of cortical bone (10–23 GPa) compared
to Ti [16]. The development of bioresorbable Mg-based materials prevents the need for
second-stage surgery for the removal of implanted material and associated comorbidities.

The aim of this review is to analyze and discuss the applications of Mg and Mg-
based materials in reconstructive oral and maxillofacial surgery. The review is divided
into subheadings about the use of Mg-based material in: (a) GBR, (b) dental implant
coatings, (c) immobilization of facial bone fractures, and d) soft tissue regeneration. Based
on the literary data, we will discuss possibilities and directions for future development and
applications of Mg-based materials in oral and maxillofacial surgery.

2. Biological Properties of Mg-Based Materials

The biodegradability of magnesium-based materials is the major advantage of Mg
materials. Mg corrodes in the physiological environment and releases species such as
Mg ions (Mg2+), alloying elements, H2 gas, and OH− [9]. In an alkaline environment,
magnesium hydroxide Mg(OH)2 is deposited on the Mg matrix and forms a protective
layer [10]. In the case of fast degradation and corrosion of Mg-based materials, a locally
high concentration of Mg ions disturbs calcium-mediated bone reparation and regeneration
processes. Products of corrosion of Mg-based materials such as magnesium hydroxide
and hydrogen gas may impair tissue healing due to the formation of gas cavities and
compression to surrounding soft tissues [17,18].

Due to the roles of Mg in major cellular functions, magnesium-based materials in the
forms of bone cement, bone scaffolds, and implant coatings were evaluated as promising
candidates for bone regeneration therapies. Various in vitro studies reported Mg ions
to have positive effects on bone cells, including enhanced proliferation, migration and
alkaline phosphatase activity, increased differentiation capacity of human osteoblast cells,
and increased proliferation of bone marrow-derived stromal cells (BMSCs) [17–19]. Having
in mind that Mg-based materials are biodegradable, the osteogenic effect of Mg ions is dose-
dependent. Concentrations of Mg ions in tissue ranging from 2.5–10 mM have a positive
effect on the proliferation and differentiation of human BMSCs [19,20]. However, higher
concentrations of Mg ions in the tissue were connected with decreased mineralization
capacity and matrix deposition of BMSCs [21,22]. The inhibitory effect on osteogenesis of a
high local Mg concentration in tissue was linked with alteration in calcium metabolism in
cells due to competition between calcium and magnesium ions for the same ion transporters
and the inhibition of expression of the calcium-sensing receptor [22,23]. This resulted in a
decreased intracellular calcium concentration and decreased calcium influx in cells [22,23].



Molecules 2022, 27, 5529 3 of 17

Investigations on the implementation of Mg-based materials found no adverse effects
on health. The resorption of Mg results in elevated local concentrations of ions, which
is rarely harmful to cells because cells can handle concentrations of Mg about 16-times
higher than the physiological ones [10]. Upon implantation in the organism, degradation
of Mg does not result in increased Mg deposition in lymph nodes [24]. In vivo studies
reported that there were no health risks following Mg implantation in rats with chronic
renal failure [25]. The results of an in vivo study indicated that Mg absorption, after
implantation of Mg alloy rods, at the degradation rate of 2.32 mm/yr did not lead to
dysfunction of the heart, liver, kidney, and spleen of the rabbits [26]. Moreover, Mg alloy
rods inserted in the femoral bone of the New Zealand rabbits did not cause changes in
the Mg serum levels, kidney and liver function, and histological structure of the vital
organs, like the heart and spleen [27]. Clinical trials following the implantation of Mg
screws for the treatment of orthopedic fractures found no signs of hypermagnesemia and
demonstrated normal levels of Mg blood concentration [3]. Also, no complications, such as
allergic reactions, liver/renal dysfunction, or an increase in Mg serum levels, were observed
after the application of Mg alloy compressive screws in patients undergoing corrective
orthopedic surgeries [28].

3. Bioresorbable Mg-Based Materials for Guided Bone Regeneration (GBR)
3.1. GBR Membranes

GBR in the maxillofacial region has been extensively studied over the past decades.
Loss of jaw bones due to periodontitis, tooth extractions, operation on tumors and cysts,
systemic diseases or infections results in different jaw abnormalities and changes to the
occlusion. GBR comprises the use of bone scaffolds or substituents and biomembranes in
order to augment bone defects and induce osteogenesis [29].

Biomembranes act as a barrier between hard and soft tissues. They prevent the soft
tissues from interfering with osteogenesis, thus providing enough space for the differentia-
tion of osteoprogenitor cells. Biomembranes used in clinical practice could be resorbable
based on synthetic (poly(lactic-co-glycolic acid) (PLGA), polyethyleneimine (PEI), poly(L-
lactic acid) (PLLA)) or natural (collagen, chitosan) polymers, non-resorbable (Ti mesh, or
polytetrafluoroethylene (e-PTFE)) (Figure 1).

Resorbable membranes are widely used due to their economic benefits, biocompatibil-
ity and easy manipulation. However, these membranes are often deformed due to rapid
degradation, which may impair bone regeneration, while their low mechanical strength
makes them unsuitable for larger bone defects [29]. On the other hand, the application of
non-resorbable membranes implies the need for second-stage surgery. Biomembranes with
Mg-based materials could combine the mechanical strength of metallic alloys, biocompat-
ibility and slow degradation in natural tissues as a promising solution for this problem.
Furthermore, the mechanical properties of Mg alloys allow the membrane to maintain the
space for osteogenesis and bone height in alveolar sockets or large bone defects [30]. The
good plasticity of Mg alloys is useful in handling and adapting membranes to complex
shapes of bony defects [31]. In addition, the antibacterial properties of Mg alloys reduce
the risk of bacterial infection and bone resorption [32].

Reports on the clinical application of Mg-based GBR membranes are scarce due to
difficulties in adapting their degradation rate to clinical expectations. A recent in vivo
study evaluated the Mg-alloy GBR membrane (Mg-2Zn-0.46Y-0.5Nd) for bone healing
in a critical-sized mandibular bone defect within a study with beagle dogs [33]. The
results of this research showed good biocompatibility, osteoconduction and osteogenic
potential of the membrane. However, the authors observed almost complete postoperative
resorption of the membrane within 3 months, which led to reduced osteogenic effect in
later phases. Similarly, the results of the in vivo study with a mineralized collagen/Mg–Ca
alloy combined scaffold designed to withstand the physiological forces in the mouth did
not achieve the desired restoration of alveolar bone defects in dogs [34].
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Figure 1. Guided bone regeneration membranes (GBR) for bone tissue regeneration.

In order to decrease the process of degradation, various coatings to Mg materials
were added. In an in vitro–in vivo study on the critical-sized defect of rabbit calvaria, the
Mg-Zn-Gd membrane coated with calcium-phosphate (Ca-P) showed superior osteogenic
and mechanical properties compared to the non-coated Mg-Zn-Gd membrane [35]. Surface
modification using plasma electrolytic oxidation and hydrothermal treatment on Mg mesh
resulted in decreased degradation and better quality of newly formed bone in calvaria
defects in rats during an in vivo experiment [36]. Complex hybrid membrane AZ31-PLGA-
demineralized bone matrix (DBM) had a strong ability to promote the proliferation of bone
marrow stem cells and resulted in excellent repair of the critical-sized calvaria defect model,
reported by in vivo research [37]. A similar in vitro–in vivo study showed that the addition
of pure Mg particles to the PLGA scaffold in order to overcome the low mechanical strength
of PLGA resulted in significant proliferation of BMSCs and significantly increased bone
formation in a canine premolar tooth socket [38].

Composite Mg-polymer membranes and materials showed promising results in
bone repair. Photo-cross-linkable collagen/polycaprolactone methacryloyl/magnesium
(Col/PCLMA/Mg) composite membranes demonstrated excellent mechanical properties
and elastic modulus, biocompatibility, and promoted cell attachment and osteoprogeni-
tor cell proliferation when implanted into calvaria bone defects of rats for 8 weeks in an
in vitro–in vivo study [39].

3.2. Mg-Based Scaffolds for GBR

Bone tissue is a natural composite mixture of organic (collagen fibers) and inorganic
substances (hydroxyapatite crystals) [2]. Composite scaffolds combining the advantages
of biodegradable polymers such as PLGA and PEI with hydroxyapatite (HA) ceramics
have been extensively studied because they resemble the natural bone structure, and its
mechanical and osteoconductive properties are enhanced by a thin biodegradable polymer
coating [4]. In vivo studies with composite HA–polymer scaffolds resulted in complete
repair of a critical-sized defect in rabbit’s calvaria, a large defect of rabbit’s ulna, as well a
critical size mandibular defect in swine [2,4,40]. However, due to the insufficient mechanical
properties of composite bone scaffolds, deformation and brittle fracture may occur [41]. For



Molecules 2022, 27, 5529 5 of 17

this reason, Mg-based materials with excellent biocompatibility and mechanical properties
were incorporated into HA to enhance their biological and physicochemical properties.
In vitro and in vivo experiments demonstrated significantly improved HA properties with
the addition of Mg [42]. The addition of Mg to HA resulted in improved chemical prop-
erties compared to stoichiometric HA, such as reduced crystallinity, high specific surface
area, and enhanced solubility in natural tissues. These factors lead to improved cell adhe-
sion, proliferation, and metabolic activity [43]. A mixture of HA and β-TCP doped with
Mg (magnesium-doped biphasic calcium phosphate) mimics the natural inorganic bone
matrix with excellent physicochemical properties [44]. Furthermore, the presence of Mg
ions during synthesis also improves the thermal stability of HA and produces a more
stable phase composition after heat treatment, which enables the production of porous or
granulated scaffolds for biomedical applications, including oral and maxillofacial surgery
and orthopedics [44,45]. Magnesium Hydroxyapatite (MgHA) scaffold was analyzed for
bone regeneration in alveolar critical-sized bone defects in several animal and human trials.
The results suggest that the MgHA scaffold could be a very effective bone substitute [46].
Various in vitro studies reported excellent biocompatibility for several cell lines [47–49].
Sartori et al. demonstrated in an in vivo study conducted on sheep that MgHA provides
osteoconductive structural support during the process of bone regeneration [50]. Santos
et al. concluded in an in vivo experiment that MgHA, when implanted in a critical bone
defect in rat calvaria, is a biocompatible and osteoconductive biomaterial [51]. A clinical
study by Grigolato et al. showed that MgHA, used as a bone substitute in a mandibular de-
fect due to ameloblastoma, exhibits excellent biological behavior and high osseointegration
potential [52]. MgHA is a relatively well-studied Mg-based bone substitute material, and
there are several commercial products researched for the reconstruction of maxillofacial
bone defects.

Teeth extractions cause significant changes in the dimensions of the alveolar ridge due
to resorption of the alveolar socket, which may impair dental implantation and prosthetic
reconstruction [53]. Resorption of the alveolar socket is rapid following tooth extraction
due to loss of function, and about 40–60% of bone is resorbed in the first two years [54]. The
preservation of the alveolar socket volume following tooth extractions and alveolar ridge
preservation or augmentation could be achieved using MgHA scaffolds. In a clinical study
by Crespo et al. a split-mouth design was used to compare histologic and histomorphomet-
ric results of MgHA and porcine bone grafts for the preservation of fresh dental sockets [55].
The results of this study showed similar biologic behavior in bone formation and resorption
processes. A similar clinical study that compared radiographic and histomorphometric
results of MgHA and calcium sulfate grafts in fresh sockets after tooth extractions found
a lower reduction of the alveolar ridge, more bone formation and more residual implant
material in the MgHA group [56].

A prospective 2-year clinical study evaluated the survival of dental implants loaded
14 weeks after vertical alveolar ridge augmentation with nano-structured MgHA covered
with Ti-polytetrafluoroethylene (e-PTFE) membrane [54]. The results of this study sug-
gested that vertical ridge augmentation around Ti implants using MgHA can be successful
in cases with early implant loading. However, an in vivo animal study with canines did
not find a significant effect of MgHA on alveolar socket preservation and osseointegration
of implants placed immediately into extraction sockets [57]. Recently, a clinical study
investigated the effectiveness of a biomimetic MgHA/collagen-based bone substitute for
alveolar socket preservation compared to deproteinized bovine bone matrix [58]. The
results after 6 months showed similar vertical and horizontal alveolar ridge resorption,
similar new bone formation between the groups and a significantly higher residual material
for deproteinized bovine bone matrix. Crespo et al. compared the use of MgHA and autol-
ogous bone graft for maxillary sinus lift procedures [59]. The results of this clinical study
suggested MgHA as a possible alternative to autologous bone graft for sinus lift operations.

There are promising results from using bovine bone grafts enriched with Mg for
bone regeneration. An in vivo study on the biological properties of bovine xenogeneic
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biomaterial enriched with Mg on the healing of critical-sized defects on rat calvaria showed
Mg biomaterial demonstrated osteoinductive properties and biodegradability during heal-
ing [60]. Similar results were reported for the rabbit calvaria defect repair in an in vivo
study [61].

Mg-based bone types of cement have been used in orthopedics for bone and tendon
repair [62]. The results of canine in vivo study that evaluated Mg-based bone cement for
bone grafting of immediate implantation of extraction sockets showed success at filling in
the bone defects without implant loss during the observation period [63]. However, the
use of Mg-based bone types of cement may be doubtful due to their 3D structure and lack
of porosity, which enables osteoconductive properties [10].

Zhang et al. developed 3D gel printing in an in vitro–in vivo study and used it to
prepare an Mg scaffold with a controllable pore structure, and its surface was modified
with a calcium phosphate coating [41]. The addition of calcium phosphate coating onto
the surface of materials improved biocompatibility and biosafety, osteogenic induction
and angiogenic ability; in addition, the degradation rate of materials can be effectively
controlled by adjusting the thickness of calcium phosphate coating [64].

4. Mg and Mg-Based Materials for Ti Implant Coating

Surface characteristics of Ti implants have a major impact on the process of implant
osseointegration, and research in the field of implant surface modification is important
despite good and predictable rates of implant success [65]. Various surface coatings on
dental implants were investigated in order to improve implant surface for stronger mi-
cromechanical retention and improved biological processes for osteogenesis [65,66]. Surface
coating with bioceramics such as hydroxyapatite, calcium phosphate, and bioactive glass
resulted in improved osseointegration. However, the practice has significant complications
due to poor mechanical strength, brittleness and bacterial infections around implants [67].

Mg and Mg-based materials were studied as possible implant surface coatings due to
elastic modulus of the material, osteogenic effect, biocompatibility and biodegradation of
these materials. Results of in vitro and in vivo studies found positive effects of Mg coatings
such as Mg carbonate, Mg fluoride, Mg oxide, Mg silicate, and HA incorporated with Mg
and Zinc (Zn) [65]. The results of in vitro studies demonstrated that Ti implants coated
with Mg-based coatings showed enhanced BMSCs proliferation and increased expression
of osteogenic markers (alkaline phosphatase, osteocalcin, osteopontin, bone sialoprotein,
RUNX-2), increased collagen type I deposition and antibacterial activity [68–74]. In an
in vivo animal study comparing antibacterial properties of Mg and Mg-Zn co-implanted,
Yu et al. showed both surfaces to have an excellent antibacterial effect against specific peri-
odontal pathogens, such as Porphyromonas gingivalis, Streptococcus mutans and Fusobacterium
nucleatum [68]. Additionally, another study found that MgO-HA and MgF2-HA coatings
had a significantly better antibacterial effect against Enterococcus spp., Micrococcus spp. and
Candida albicans than HA coatings [72].

New bone formation is quantitatively measured with the metrics of bone–implant
contact and bone area. The results of in vivo studies revealed improved osseointegration,
better new bone architecture, higher bone volume/total volume and bone-to-implant ratio
with Mg coatings than conventional Ti surfaces [75–78]. Cho et al. found in a study on
rabbits that the concentration of Mg ions had a significant effect on osseointegration since
implants coated with 9.24% Mg had remarkably better removal torque value, bone–implant
contact, bone fill area and new bone formation [75].

The results of in vitro studies clearly demonstrated Mg coatings had positive effects
on osteoblastic differentiation of BMSCs, and increased cell proliferation and induction of
osteogenesis to obtain implant osseointegration. In vivo studies showed that Mg coatings
resulted in increased new bone formation, higher values of new bone and better new
bone architecture [78]. Clinical studies are needed to confirm further clinical effects of Mg
surface coatings.
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5. Bioresorbable Mg-Based Materials for Osteosynthesis of the Facial Bone Fractures

Resorbable Mg-based materials have been extensively studied for use in orthopedic
surgery since the beginning of the 20th century due to their biological properties and the
elastic modulus similar to natural bone [79]. However, they were replaced by bioinert Ti
materials due to superior mechanical properties for the treatment of complicated and load-
bearing fractures. Since the implantation of Ti plates and screws for fracture immobilization
requires a secondary surgical intervention and removal of Ti material due to infection,
discomfort or plate exposure, bioresorbable Mg-based materials were de novo analyzed for
the treatment of traumatic bone injuries [11]. Pre-clinical and clinical studies were mostly
performed for the stabilization of orthopedic fractures, while limited data are available for
the treatment of maxillofacial injuries.

For orthopedic injuries, both pure Mg and its alloys were evaluated. The biological
and mechanical properties of Mg and its alloys are mainly influenced by material behavior
in the tissue following implantation. In the natural conditions in the tissue, Mg corrodes
and releases Mg ions and H2 gas into surrounding tissues and may cause significant
emphysema in the rapid corrosion process [79]. There are pieces of evidence that H2 may
induce osteogenesis and reduce osteoclastogenesis and thus benefit bone reparation [80].
The corrosion of Mg and Mg alloys depends on material structure (heterogeneity, metal
purity and microstructure of the alloy), mechanical loads, pH of the surrounding tissues
and vascularization [81–83]. The corrosion rate and degradation of Mg and its alloys are
the main factors influencing their clinical application [81–83]. Pure Mg (99.99%) has a
low corrosion rate and low mechanical strength [84]. However, pre-clinical studies found
pure Mg promotes osteogenesis and fracture healing on rabbit femoral condyle fractures
using Mg screws [84]. Mg alloys with rare earth elements (RE) such as scandium (Sc),
yttrium (Y), gadolinium (Gd), zirconium (Zr) and neodymium (Nd) were synthesized in
order to decrease corrosion and reduce degradation rate of 99.99% pure Mg. The most
widely studied Mg-based alloys comprise AZ (Mg-Al-Zn system) and WE alloys (Mg-RE-Zr
system) [85]. AZ alloys such as AZ31 (Mg-3Al-1Zn) and AZ91 (Mg9Al-1Zn) have excellent
mechanical properties, but the high degradation rate and local toxicity of aluminum limit
their clinical use [86]. On the other hand, WE43 alloy (Mg-4Y-3RE) is coated with a RE-oxide
layer, improving corrosion resistance and biocompatibility [87]. WE43 alloy (Mg-3.5% Y-
2.3% Nd-0.5% Zr, wt.%), MgYREZr alloy and Mg-Nd-Zn-Zr alloy were assessed in in vitro
and in in vivo studies for bone repair, which resulted in good bone repair when used as pins
or screws for bone fixation in orthopedic patients [88,89]. ZX00 (Mg-Zn-Ca alloy) is another
resorbable alloy that revealed good results in pre-clinical studies on bone regeneration [90].

Recent clinical trials investigating the use of Mg and its alloys for stabilization of
orthopedic fractures revealed excellent results in fracture reduction of displaced femoral
neck fractures, hallux valgus and medial malleolar fractures, with the bone regeneration
rates comparable to Ti screws [91–95]. Most of these trials investigated the use of MgYREZr
alloy screws to stabilize unstable fractures. Due to the release of H2 ions due to corrosion, a
radiolucent zone around screws was observed in the majority of postoperative radiological
exams. However, no severe complications were observed [96].

Reports on the use of Mg and its alloys in the treatment of facial bone fractures are
scarce. Traumatic injuries to the facial bones are among the most common injuries to the
body, mostly reported in traffic accidents and interpersonal violence. Fractures in the
maxillofacial area have a significant impact on patients’ appearance, speech and mastica-
tion [1,2]. The treatment of facial bone fractures requires the repositioning of fractured bone
fragments to the anatomical state and osteosynthesis with Ti plates and screws. Ti plates
and screws are used due to the excellent biocompatibility and biomechanical properties
of Ti and usually are left for life [11]. However, they sometimes need to be extracted due
to an infection or discomfort [66]. Biodegradable plates and screws may be beneficial
in avoiding second-stage surgery. Biodegradable materials for use in the maxillofacial
area must overcome some factors specific to this region. These include factors such as
significant masticatory muscle forces, presence of saliva and intraoral pathogens. This is
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because most of the surgical interventions are performed through an intraoral approach,
with different elastic modules of facial bones as well as various shapes of bones [80,97].
Biodegradable polymer fixation plates made from PLLA and PLGA have poor mechanical
properties and may cause an inflammatory reaction [98]. Mg-based materials possess good
mechanical strength and biocompatibility with proven clinical applications. However, the
compressive yield strength of Mg-based alloys is lower than Ti alloys which questions their
use for load-bearing fractures such as mandible fractures [99]. Pre-clinical studies revealed
Mg-based materials as promising candidates for maxillofacial bone osteosynthesis [99–110]
(Table 1).

Table 1. Magnesium (Mg)-based materials for osteosynthesis of maxillofacial bones.

Reference Study Materials Fixation Type Methodology Evaluation Results

Lee et al. [100] Finite element
modeling

Mg (pure)
Polymer
Ti

Screw

Bilateral
mandibular
ramus sagittal
split osteotomy

Stress dis-
tribution

Mg screws maintained
stability at osteotomy sites
superior to the
polymer material

Lee et al. [101] Finite element
modeling

Mg-Ca-Zn
alloy
Polymer
Ti

Screw

Bilateral
mandibular
ramus sagittal
split osteotomy

Stress dis-
tribution

Mg-Ca-Zn screws
maintained stability at
osteotomy sites and
displayed masticatory
loading superior to the
polymer material

Schaller et al.
[102]

Animal
experiment
(minipigs)

WE43 alloy Rivet Implantation on
mandibular angle

Histology
Micro-CT

Sufficient stability of the
rivets during 12–24 weeks

Naujokat et al.
[103]

Animal
experiment
(minipigs)

WE43 alloy Plate + screws
Unicortical
osteotomy at
mandibular angle

Histology
Micro-CT

Sufficient stability of the
plates and screws for
8 weeks, no side effects

Henderson et al.
[99]

Animal
experiment
(rabbits)

Mg
AZ31 alloy
Stainless steel

Screw Implantation on
mandibular angle

Histology
Micro-CT

Sufficient stability of the
screws, physiological
bone remodeling

Byun et al. [104]
Animal
experiment
(beagles)

WE43
Ti Plate + screws

Le Fort I
osteotomy of the
maxilla

Histology
Micro-CT

Sufficient stability of the
plates and screws for
24 weeks; significant gas
formation in the first
12 weeks

Byun et al. [105]
Animal
experiment
(beagles)

ZK60 coated
with PLLA Plate + screws

Le Fort I
osteotomy of the
maxilla

Micro-CT
Rapid biodegradation of
ZK60 resulted in
insufficient results

Schaller et al.
[106]

Animal
experiment
(minipigs)

WE43
Polymer
(PLGA)

Plate + screws

Osteotomy at
supraorbital rim
and zygomatic
arch

Histology
Micro-CT

Sufficient stability of the
plates and screws in the
midface region

Kim et al. [107]
Animal
experiment
(beagles)

WE43
polymer Plate + screws Osteotomy at

zygomatic arch
Histology
Micro-CT

Sufficient stability,
biocompatibility and
osteogenic activity of the
plates and screws in the
midface region

Naujokat et al.
[108]

Animal
experiment
(minipigs)

WE43
Ti Plate + screws Frontal bone

osteotomy
Histology
Micro-CT

WE43 sufficient stability of
the plates and screws in the
calvaria compared to Ti

Schaller et al.
[109]

Animal
experiment
(minipigs)

WE43
Ti Plate + screws Frontal bone

osteotomy
Histology
Micro-CT

WE43 sufficient stability of
the plates and screws in the
calvaria compared to Ti

Zhang et al. [110]
Animal
experiment
(canines)

Ca-P coated
Mg-Zn-Gd
scaffold
Ti

Mesh
Defect of the
medial orbital
wall

Histology
Micro-CT

Ca-P coated Mg-Zn-Gd
scaffold resulted in excellent
bone regeneration, no
gas formation

Mg—Magnesium; Ti—Titanium; Ca—Calcium; Zn—Zinc; Micro-CT—Micro-computed tomography; PLLA—
Poly(L-lactic acid); PLGA—Poly(lactic-co-glycolic acid); Ca-P—Calcium phosphate; Gd—Gadolinium.
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Mandibular fractures are the most common fractures in the maxillofacial area, and
their treatment consists of thick Ti plates and locking screws to restore the bone’s anatomical
shape along with occlusion, and avoid postoperative movement of the fragments by heavy
masticatory forces [102]. Only one animal study by Nujokat et al. used MgYZrRee (WE43)
custom-made fixation plates and screws for the stabilization of mandibular osteotomy
at the mandibular angle [103]. The results of this in vivo study proved good mechanical
stability at the osteotomy site. However, the performed osteotomy was monocortical and
did not represent a full bicortical fracture line. Mg screws were investigated in several
studies and reported better mechanical properties compared to the polymeric material
but lower mechanical and torsional strength than Ti controls [98–100]. Interesting are the
results of Mg screws for stabilization of osteotomy lines for bilateral ramus sagittal split
osteotomy (BSSO) performed for orthognathic surgery procedures where the mandibular
setback or advance is performed to correct maxillofacial deformities. The results of two
studies based on finite element modeling found the use of Mg or Mg-Ca-Zn screws could
stabilize the osteotomy lines even with masticatory loading [100,101]. Further pre-clinical
and clinical trials are needed in order to obtain an Mg-based fixation system for mandible
fractures and osteotomies to overcome current disadvantages regarding mechanical stress
and low torsional strength.

On the other hand, the results of animal studies on the fixation of the midface complex
fractures are more promising. Midface fractures, mainly fractures of the maxilla and
zygomatic bone, are load-shearing types of fractures where no significant masticatory
forces are implied to reduce the stability of the fracture line. The use of WE43 plates and
screws for the fixation of fractures in the midface resulted in good osteotomy lines stability,
biocompatibility, and osseointegration [103–106]. The gas formation was observed for
12 weeks postoperatively without side effects on bone regeneration and wound healing,
proposing that the material’s degradation rate is adequate. The use of PLLA-coated ZK60
plates and screws for fixation of Le Fort I osteotomy in beagles resulted in significant gas
formation and local inflammation due to the fast biodegradation of the material [107].
Although ZK60 plates showed good mechanical properties, it seemed that PLLA coating
failed to prevent the rapid absorption of the alloy due to micro-cracks on the surface [107].
Further research is needed to obtain alloys with more predictable rates of biodegradation
and mechanical properties for these types of fractures. Fixation systems based on Mg
materials used in these studies were thicker and had a bigger volume compared to Ti
fixation systems, although there was no significant discomfort to the subjects

Promising results of pre-clinical studies have been published regarding the use of
WE43 plates and screws for the fixation of fractures in the frontal bone [108,109]. The
stability of the plates and biocompatibility were comparable to the Ti fixation system.

The repair of orbital fractures represents a significant challenge to the surgeons due
to the proximity of intracranial structures, paranasal sinuses, the poor blood supply of
the bones and osteoprogenitor cell insufficiency [110]. The thin bony walls of the orbit,
especially the inferior and medial walls, are the most prominent locations for fractures.
Blow-out fractures of the orbital floor are the most common fracture of the orbit. Current
materials used for fracture reduction and reconstruction of the orbital volume are bioinert
Ti meshes, plates, and polyethylene meshes. Zhang et al. developed Ca-P coated Mg-Zn-Gd
scaffold to reconstruct a large defect of the medial orbital wall in a canine model [110]. The
results showed excellent osteoconductivity, angiogenesis and bone regeneration with the
scaffold. The authors observed no gas formation and orbital emphysema.

Only two clinical studies by Leonhardt et al. reported the effectiveness of Mg-based
materials for the treatment of fractures in maxillofacial surgery [111,112]. These studies
reported repositioning and fixation of mandibular condyle fracture with Magnezix® CS
2.7 mm screw (MgYREZr alloy). The authors reported excellent stabilization of fragments
and complete restoration of temporomandibular joint (TMJ) function. Gas formation
around screws was reported and seen as radiolucent areas on control CBCT exams. One
year follow-up was uneventful, and there was no need for screw removal (Table 2).
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Table 2. Clinical studies on magnesium (Mg)-based material for stabilization of fracture of the
mandibular condyle.

Reference Study Fracture Pattern N Material Results Complications

Leonhardt et al.
[111] Case series

Displaced fractures of
the condylar head with
a loss of height on the
mandibular ramus, and
clinical signs such as
pain, malocclusion, and
jaw movement,
limited excursions

4 patients with
unilateral
fractures
1 patient with
bilateral
fracture

Magnezix® CS 2.7
mm screw
(Syntellix AG,
Hanover,
Germany)

Stabilization of
fracture, restored
function of TMJ, no
gass formation
during 3 months

One accidental
fracture of the
screw which
was replaced

Leonhardt et al.
[112]

Retrospective
observational
study

Displaced fractures of
the condylar head with
a loss of height on the
mandibular ramus, and
clinical signs such as
pain, malocclusion, and
jaw movement,
limited excursions

6 patients

Magnezix® CS 2.7
mm screw
(Syntellix AG,
Hanover,
Germany)

Restoration of
occlusion and
function of TMJ, gas
lacunas visible for
6 months
afterwards filled
with bone, partial
resorption of screws
in first year

none

TMJ—Temporomandibular joint.

6. Mg-Based Materials for Soft Tissue Regeneration

The application of Mg and Mg-based materials for bone tissue regeneration is well-
known. Several studies revealed Mg has a positive impact on the regeneration of soft tissue
in the maxillofacial region.

Mg scaffolds induce cell proliferation, migration, and osteogenic differentiation of
human dental pulp cells and participate in the process of pulp repair [113–115].

Mg ions have positive effects on the migration and adhesion of human fibroblasts and
oral mucosa regeneration [116,117]. The effects of Mg on fibroblast activity could have a
promising effect on the alteration of the Ti implant surface and promote soft tissue healing
around the neck of the implant [118,119]. In an in vitro study by Okawachi et al. [120],
hydrothermal treatment of Ti with an Mg solution improved the integration of gingival
epithelial cells and fibroblasts with the Ti surface. Furthermore, Mg has antibacterial
properties against common periodontal pathogens [78].

Previous studies reported biomimetic scaffolds with Mg nanoparticles combined with
polymers had promising results for cartilage regeneration [86]. This scaffold may positively
impact the treatment of TMJ disorders. Having in mind the joint cartilage is mainly
fibrous, lacks blood supply, and has limited self-repair, as well as that the properties of Mg
include anti-inflammatory effect, enhanced synthesis of the cartilage matrix, promotion
of chondrocyte proliferation, and enhanced chondrogenic differentiation of hBMSCs, the
application of Mg-based materials may be a promising new strategy in the treatment of
chronic TMJ conditions [121–123].

It is known that Mg ions are involved in neurotransmission through the n-methyl-
D-aspartic acid receptor and the inhibition of the production of glutamatergic excitation
signals [124]. Several pre-clinical studies showed that Mg supplementation positively
affected sciatic nerve regeneration and repair [125,126]. One animal study revealed that
oral or intravenous Mg might reduce the signs of trigeminal neuralgia [127]. Sensory nerve
neuropathies in the maxillofacial area may cause significant impairment to patients’ quality
of life. Primary trigeminal neuralgia is a form of chronic neuropathic pain that affects
branches of the trigeminal nerve. Current treatment procedures involve therapeutic drugs,
and surgical interventions when drug treatment is ineffective. Peripheral nerve branches
in the maxillofacial area may be injured during surgical interventions: great auricular
nerve during parotidectomies, inferior alveolar nerve during operation of cysts or tumors
in the lower jaw, and infraorbital nerve during surgical procedures in the maxilla. Mg
supplementation may be beneficial in the treatment of these neuropathic conditions [124].
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In addition, the trauma to the peripheral motoric branches of the facial nerve during
parotid gland surgery or mastoidectomy can result in facial paralysis. Restoring the function
of motor nerves is much more difficult and uncertain compared to sensory nerves [128].
Gougoulias et al. reported in an in vivo study that subcutaneous injection of Mg in neonatal
rats reduced motor neuron death after sciatic nerve axotomy [129]. In vitro studies showed
Mg ions could promote the proliferation of neural stem cells [130]. Further studies are
needed to evaluate the role of Mg in sensory and motor nerve repair.

Table 3 summarizes application areas of Mg-based materials in reconstructive oral and
maxillofacial surgery.

Table 3. Overview of applications of magnesium (Mg)-based materials in reconstructive oral and
maxillofacial surgery.

Application
Study

Advantages Disadvantages Future Directions
In vitro In vivo Clinical

Fracture
reduction

Mandible
fracture + + + -biocompatibility

-degradation
-elastic modulus
-mechanical properties
-no second
stage surgery

-low resistance to
masticatory stress

-improvement of
mechanical resistance for
load-bearing fractures
-development of Mg
alloys with predictive
degradation rate

Midface
fracture + + − -uncontrolled

degradation rate

Frontal bone
fracture + + − -uncontrolled

degradation rate

GBR

Scaffolds + + +

-biocompatibility
-osteoconductivity
-bone repair -low porosity -improvement of 3D

porosity

Membrane + + −

-biocompatibility
-degradation-
mechanical properties
-osteogenic effect
-small and large
bone defects
-antibacterial activity

-uncontrolled
degradation rate

-improvement of
mechanical properties
and degradation rate

Oral implantology + + −

-biocompatibility
-degradation-
osteoblastic
differentiation
-antibacterial activity

-degradation rate

-need for clinical trials
-development of
techniques for
Mg coating

Soft tissue
regeneration

TMJ + − − -protective effect
on cartilage

-no data on
TMJ regeneration

-no trials on the possible
use on TMJ
cartilage regeneration

Dental pulp + − − -dental pulp repair -no trials on the
preclinical or clinical use

Oral mucosa + − −
-fibroblast activation
-mucosa regeneration
-antibacterial properties

-possible use in
dental implantology

Nerve tissue + + − -nerve regeneration -possible use in sensitive
nerve neuropathy

GBR—Guided bone regeneration; TMJ—Temporomandibular joint.

7. Conclusions

Mg-based materials have been extensively studied for their use in biomedicine in the
past decade. Mg-based materials represent a very promising group of biomaterials for
application in reconstructive medicine. Mg has an essential role in cell metabolism, and it
is involved in more than 300 enzymatic processes. Mg-based materials are biodegradable,
biocompatible, with elastic modulus similar to that of bone and with a positive effect
on bone regeneration. In the field of reconstructive oral and maxillofacial surgery, its
positive effects were reported in the areas of guided bone regeneration, improvement
of dental implant osseointegration, fixation of facial bone fractures and regeneration of
soft tissues. Due to the positive effect on bone repair and differentiation of osteoblasts,
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Mg-based materials were successfully evaluated in clinical studies for guided regeneration
of jaw bones. In vitro and in vivo studies reported improved osseointegration when Mg
coating was applied to the Ti implant surface. Clinical studies on the application of Mg-
based materials for the treatment of maxillofacial fractures have been published, and
further research is needed to develop the Mg alloy with adequate mechanical strength
and degradation rate. Further research is still needed to improve the characteristics of
Mg-based materials for application in the maxillofacial area.
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