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Abstract: To solve the pollution problem of electromagnetic waves, new electromagnetic shielding
materials should meet the requirements of being lightweight with high electrical conductivity. In this
work, the combination of silver (Ag) nanoparticles and nitrogen doping (N-doping) was expected
to tune the electromagnetic and physical properties of Ti3C2Tx MXene, and the Ag@N-Ti3C2Tx

composites were fabricated through the hydrothermal reactions. The nitrogen doped (N-doped)
Ag@Ti3C2Tx composites showed a hollow structure with a pore size of 5 µm. The influence of
N-doped degrees on the electromagnetic interference (EMI) shielding performance was investigated
over 8–18 GHz. Therefore, the controlled N-doping composites exhibited reflection-based EMI
shielding performance due to the electrical conductivity and the special three-dimensional (3D)
honeycomb-like structure. The achieved average EMI shielding values were 52.38 dB at the X-band
and 72.72 dB at the Ku-band. Overall, the Ag@N-Ti3C2Tx foam, due to its special 3D honeycomb-like
structure, not only meets the characteristics of light weight, but also exhibits ultra-high-efficiency
EMI shielding performance, revealing great prospects in the application of electromagnetic wave
shielding field.

Keywords: nitrogen doping; Ag@N-Ti3C2Tx composites; honeycomb-like structure; electromagnetic
interference; multi-reflections

1. Introduction

The development of telecommunication and portable electronic devices plays an im-
portant role in civilian and military applications; on the other hand, it has also been issued
to cause serious electromagnetic interference problems. It may even threaten the human
health. Hence, it is an urgent task to explore lightweight, efficient and environmentally
friendly electromagnetic interference shielding materials to solve this kind of problem [1–4].

Traditionally, the efficient electromagnetic interference (EMI) shielding materials are
made with intrinsic high electric conductivity or magnetics. Zeng et al. [5] synthesized
Ni@carbon nanotubes (CNTs) in situ by the solvothermal method, and subsequently ob-
tained PVDF/CNTs/Ni@CNTs composite films by solution casting and compression mold-
ing, which exhibited 51.4 dB of electromagnetic shielding performance. Younes et al. [6]
coated carbon nanostructured (CNS) mats with Fe3O4 particles and explored its effect on
electromagnetic shielding performance. Adding Fe3O4 to CNS mats, the electromagnetic
shielding performance increased from 46.09 dB to 60.29 dB. However, due to the high
density of metal and the shortcomings of easy agglomeration of carbon nanotubes, it does
not meet the requirements for new electromagnetic shielding materials. Compared with tra-
ditional electromagnetic shielding materials, such as metals and carbon nanotubes, Ti3C2Tx
shows great prospects for EMI applications owing to its super high intrinsic electrical
conductivity and chemically tunable properties. The EMI shielding performance of Ti3C2Tx
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was first reported by Yury et al. [7] in 2016. They found that pure Ti3C2Tx film exhibited
EMI effectiveness of 92 dB in the range of 8.2–12.4 GHz. The 60 wt% Ti3C2Tx/paraffin
composites presented the EMI shielding performance of 39.1 dB [8]. However, the applica-
tion of Ti3C2Tx in the field of electromagnetic shielding is often limited by the self-stacking
effect. By fabricating the lamellar structure into a 3D structure, the self-stacking effect
can be improved. Meanwhile, the transmission path of electromagnetic waves in the
porous network can be increased, thus enhancing the electromagnetic wave loss [9]. When
Zhang et al. [10] transferred the MXene film into MXene foam through the hydrazine-
induced foaming method, the EMI shielding performance was improved from 53 dB to
70 dB. The increasing EMI shielding values were due to the high attenuation efficient of
the electromagnetic wave in the three-dimensional cellular MXene foam. Wu et al. [11]
prepared lightweight MXene/sodium alginate (SA) aerogel and obtained an EMI shielding
performance of 70.5 dB.

These findings have prompted the exploration of MXene 3D structured composites
to further enhance the intrinsic EMI shielding performance of MXene through building
3D microporous structures [12]. Based on previous work, 3D MXene based composites
cannot only improve the electromagnetic shielding performance but also exhibit a good
mechanical properties and high stability [13]. For example, the EMI shielding performance
of 3D MXene/reduced graphene oxide (rGO)/polyurethane containing Diels-Alder bounds
(PUDA) composite hardly changed after 5000 bending cycles [14]. MXene/AgNWs/Epoxy
aerogel material obtained an EMI shielding performance of 94.1 dB and exhibited excellent
thermal conductivity [15].

Recently, researchers reported that increasing the electrical conductivity of MXene
through nitrogen doping could advance the electromagnetic absorption performance [16].
For example, a specific capacitance of Ti3C2Tx (201 F/g) could be increased by nitrogen
doping to 340 F/g [16]. Li et al. [17] obtained −59.20 dB absorption performance of N-doped
Ti3C2Tx at 10.56 GHz by N2 plasma treatment method on Ti3C2Tx. Since the absorption
loss is essential to the electromagnetic shielding performance, we intended to explore the
electromagnetic shielding performance of N-doped 3D MXene based composites.

Inspired by these studies and based on our previous work [18,19], we employed a
facile and stable route to fabricate a honeycomb-like N-doped Ag@Ti3C2Tx foam. While
not destroying its microscopic morphology, high electrical conductivity can also be ob-
tained and, at the same time, it can meet the characteristic of light weight. The uniform
distribution of Ag particles and successful doping of nitrogen could significantly increase
the conductivity of Ti3C2Tx MXene. Meanwhile, the constructed 3D cellular structure
contributes to multiple reflections of electromagnetic wave in the inside channels. In terms
of these effects, 3D Ag@N-Ti3C2Tx foam exhibited an improved electromagnetic shielding
property (72.72 dB at the Ku-band). This provides a new prospect for the development of
advanced EMI shielding materials.

2. Experimental
2.1. Materials

The materials used in this work were listed in Table 1. All of them were used without
further purification.

Table 1. List of materials used in this work.

Materials Purity/Grain Size Manufacturers

Ti3AlC2 MAX ≥99% 11 Technology Co., Ltd.
Hydrochloric acid (HCl) 36–38 wt% Aladdin Biochemical Technology Co., Ltd.

Lithium fluoride (LiF) ≥99% Macklin Biochemical Co., Ltd.
Polymethyl methacrylate (PMMA) 5 µm Dongguan Kemai New Material Co., Ltd.

Ethanol analytical reagent Aladdin Biochemical Technology Co., Ltd.
Silver nitrate (AgNO3) ≥99.8% Sinopharm Chemical Reagent Co. Ltd.

Sodium hydroxide (NaOH) ≥96% Macklin Biochemical Co., Ltd.
Ammonia (N2H4·H2O) ≥98% Aladdin Biochemical Technology Co., Ltd.
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2.2. Synthesis of Honeycomb-like Ag@Ti3C2Tx Composites

Ti3C2Tx MXene suspension was prepared using the etching method as previous re-
ported [20]. In the process of preparing honeycomb-structured Ag@Ti3C2Tx composites,
the Ti3C2Tx/PMMA pellets were first fabricated by adding 0.04 g of PMMA (5 µm) into
a 40-mL Ti3C2Tx suspension (1 mg/mL) and stirring for 1 h at room temperature. Subse-
quently, 0.1 M NaOH was added to the mixture until the pH value was 11. Then, 20 mL of
AgNO3 solution (1.8 mM) was gradually added and stirred for 30 min. Next, the mixture
was heated in a microwave (200 W) for 1 min. Subsequently, the mixture was cooled at
room temperature, washed and filtered through a microporous monolayer membrane
(Celgard 3501, 11 Technology Co. Ltd. Changchun). Finally, to remove the PMMA template,
the composite membrane was annealed at 400 ◦C for 0.5 h in an argon atmosphere, and the
self-supporting honeycomb-structured Ag@Ti3C2Tx composites were obtained [19].

2.3. Synthesis of 3D Honeycomb-like Ag@N-Ti3C2Tx Foam

To investigate to effect of nitration degree on the physical property of MXene, the as-
prepared honeycomb Ag@Ti3C2Tx samples were immersed into 40 mL of hydrazine hydrate
in an oil bath at 75 ◦C and stirred for 0 h, 12 h, 18 h and 24 h, respectively. During this
process, hydrazine hydrate decomposed into NH3 that would replace the functional groups
on the surface of Ag@Ti3C2Tx. The obtained suspension was centrifuged at 5000 rpm for
5 min, and this process was repeated three times. The final products of Ag@N-Ti3C2Tx
were obtained by vacuum filtration and drying.

2.4. Characterization

The crystal structure of Ag@N-Ti3C2Tx composites was characterized using X-ray
diffraction (XRD) coupled with Cu-Kα radiation (λ = 0.15418 nm). The scanning electron
microscopy (SEM, JSM-7200F, JEOL, Tokyo) and transmission electron microscope (TEM,
FEI Talos F200X, Waltham, America) were used to observe the microscopic morphologies
and structures of samples. The surface chemical composition and valence states were
measured using a X-ray photoelectron spectroscopy (XPS) spectrometer (Thermo Scientific
Escalab 250Xi, Waltham, America). The conductivity of the composites was measured by a
four-probe tester (RTS-8).

The paraffin-based Ag@N-Ti3C2Tx composites with a mass fraction of 50% were
prepared for the evaluation of their EMI shielding performance. They were pressed into a
ring shape with an inner distance of 3.04 mm and an outer diameter of 7.00 mm. The EMI
shielding performance was calculated using the scattering parameters tested by the Vector
network analyzer (MS46322B, Anli Co., Ltd., Kanagawa, Japan) at X-band (8–12 GHz)
and Ku-band (12–18 GHz). All the formulas used for calculation of the EMI shielding
performance could be found in the supporting information [21].

3. Results and Discussion

The fabrication process of the 3D honeycomb-like Ag@N-Ti3C2Tx foam is shown in
Figure 1. Based on our previous work [18,19], the prepared honeycomb-like Ag@Ti3C2Tx
composites were further nitrogen doped in an oil bath with hydrazine hydrate as a nitrogen
source. During this process, hydrazine hydrate decomposed into NH3 that would replace
the functional groups on the surface of Ag@Ti3C2Tx, and the Ag@N-Ti3C2Tx foam was
successfully prepared.
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Figure 1. Schematic diagram of the preparation process of Ag@N-Ti3C2Tx composites with
honeycomb-like structure.

The XRD patterns of the prepared composites are shown in Figure 2a. The results
showed that the (002) characteristic peak of Ti3C2Tx was slightly left shifted from 6.42◦ to
5.23◦. In the N-doped treatment of Ti3C2Tx was further left shifted [16]. For the Ag@N-
Ti3C2Tx composites, the peak at 38◦ corresponds to the (111) crystal plane of fcc Ag. The
surface chemical information was recorded in the XPS spectra of Figure 2b. As shown in
the survey spectra, we could detect the elemental signals of F, Ti, O, C, Ag and N from
the Ag@N–Ti3C2Tx composites. Compared to pure Ti3C2Tx, the characteristic peak of N
1s at around 400 eV appears after the N-doped treatment. The reason for the appearance
of N-Ti3C2Tx is that hydrazine hydrate decomposes to produce NH3, and the functional
groups on the surface of Ti3C2Tx react with NH3 or are replaced. Thus, during the doping
process, part of the NH3 is attached to the surface of Ti3C2Tx to form the N-Ti3C2Tx. The
signal of N 1s from the N-doped honeycomb-like Ag@N-Ti3C2Tx is weaker due to the
presence of the Ag peak at 370 eV. The above results demonstrate the successful N-doping
and preparation of honeycomb-like structured Ag@N-Ti3C2Tx composites.
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Figure 2. (a) XRD patterns and (b) XPS survey of Ti3C2Tx, N-Ti3C2Tx and Ag@N-Ti3C2Tx composites.

The high-resolution XPS spectra of Ti 2p, C 1s, O 1s, N 1s and Ag 3d are given in
Figure 3. With the N-doping, it shows Ti-N bonds at the binding energies of 456 eV and
462 eV (Figure 3a) [16]. In Figure 3b, the peaks centered at 282 eV, 283 eV, 285 eV, 287 eV
and 289 eV, corresponding to C-Ti-Tx, C-C, C-N, C-O and C=O, respectively [22]. The
deconvoluted peaks of the O 1s at 530 eV, 531 eV, 532 eV and 535 eV are assigned to Ti-O-Ti,
Ti-OH, O-N and -COO, respectively (Figure 3c). It can be seen that after N-doping, there
were the C-N and O-N peaks [23], and the five deconvoluted peaks at 396.8 eV, 398.5 eV,
399.6 eV, 401.2 eV and 402.4 eV in the N 1s spectrum are assigned to N-Ti, pyridine-N, C-NH,
C-NH2 and oxidized-N, respectively (Figure 3d). The above analyses further indicate the
successful doping of N in Ti3C2Tx foam. Moreover, the high resolution of Ag 3d spectrum is
displayed in Figure 3e. Compared to the N-Ti3C2Tx composites (Figure S1), the two peaks
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at the binding energies of 368 eV and 374 eV, linked to the formation of Ag◦ 3d3/2 and Ag◦

3d5/2, respectively, which further confirmed that the Ag particles exist in the composites.
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Ag@N-Ti3C2Tx composites.

The morphologies of N-Ti3C2Tx lamellae and honeycomb-like Ag@N-Ti3C2Tx foam
were characterized by SEM, as shown in Figure 4a–e. There are wrinkles in the N-Ti3C2Tx,
which is due to the lattice distortion caused by N-doping in the pristine Ti3C2Tx layer [24].
The prepared honeycomb-like Ag@Ti3C2Tx was nitrided in hydrazine hydrate to obtain
honeycomb-like Ag@N-Ti3C2Tx foam, and the honeycomb-like structure was retained even
after N-doping. The measured pore diameter of Ag@N-Ti3C2Tx composites was about
4 µm, and the diameter of an N-Ti3C2Tx thin shell was about 10 nm (Figure 4b–e).
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To further observe the elemental distribution in the samples, an energy spectrum
surface scan of N-Ti3C2Tx was performed. As shown in Figure 4f–i, the EDS mapping
confirmed the uniform distribution of Ti, C, O and N elements in the N-Ti3C2Tx composite,
which indicates the successful doping of N elements as well.

The microstructure of N-Ti3C2Tx and Ag@N-Ti3C2Tx foam was further characterized
by TEM. As shown in Figure 5a, the N-Ti3C2Tx retains the flake-like structure of two-
dimensional materials. The high-resolution TEM (HRTEM) image (Figure 5b) of the N-
Ti3C2Tx composites showed the corresponding lattice fringes from (006) of Ti3C2Tx [25].
The SAED diagram (Figure 5c) confirms the hexagonal structure of parent Ti3C2Tx MXene
phase was maintained in the N-Ti3C2Tx. In Figure 5d, the original honeycomb-like structure
had not collapsed even after being N-doped, and the Ag nanoparticles were closely attached
to the Ti3C2Tx shell (Figure 5d). The HRTEM image (Figure 5e) presents the corresponding
lattice fringes of (111) of Ag and (006) of N-Ti3C2Tx. Figure 5f presents a variety of
diffraction rings, confirming that the polycrystalline phase at the interface of the Ag and
Ti3C2Tx and the spacing of diffraction rings correspond to the (111) of Ag and (100) (110) of
Ti3C2Tx, respectively.
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Figure 5. TEM image of (a) N-Ti3C2Tx flakes, (b) HRTEM image of N-Ti3C2Tx flakes, (c) SAED
patterns of N-Ti3C2Tx flakes, (d) TEM image of Ag@N-Ti3C2Tx 5 µm, (e) HRTEM image of Ag and
Ti3C2Tx and (f) SAED patterns of Ag and Ti3C2Tx. (g) TEM image of Ag@N-Ti3C2Tx, (h–l) EDS
mappings of Ti, C, O, N and Ag elements.
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The elemental distribution on the surface of the prepared honeycomb-like structured
Ag@N-Ti3C2Tx 5 µm was shown in Figure 5h–l. The EDS pattern confirms the coexistence
of Ti, C, O, N and Ag components in Ag@N-Ti3C2Tx 5 µm composites, and the distribution
of each element is relatively uniform, which further confirms the N doping in Ag@N-
Ti3C2Tx composites.

As described in the introduction, the conductivity of materials is crucial to the EMI
shielding performance. We measured the electrical conductivity of the Ti3C2Tx, N-Ti3C2Tx
and Ag@N-Ti3C2Tx with N-doping treated at varying hours (Figure 6). The N-doped
Ti3C2Tx has an electrical conductivity of 350 S/cm, which is about 1.7 times higher than
that of pure Ti3C2Tx. In the presence of silver particles, the electrical conductivity of
the honeycomb-like Ag@Ti3C2Tx composites was 500 S/cm. As nitriding Ag@Ti3C2Tx
composites for 12 h, 18 h and 24 h, the electrical conductivity of the honeycomb-like Ag@N-
Ti3C2Tx composites was 520, 570 and 540 S/cm, respectively. This is mainly due to the
great conductivity of sliver and the electron-giving effect of element N [26]. However, the
silver effect was much more significant than the nitrogen doping effect. Moreover, as extra
N doped into Ti3C2Tx, the increasing internal free electron concentrations indeed increase
the conductivity of Ti3C2Tx nanosheets [27], the over doping of nitrogen may make the
Ti3C2Tx oxidized and then generate TiO2.
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The frequency dependent EMI shielding performance of the Ag@N-Ti3C2Tx compos-
ites was shown in Figure 7a. The average EMI SE total of pure Ti3C2Tx, N-Ti3C2Tx and
honeycomb-like structured Ag@Ti3C2Tx 5 µm at the X-band was 23.50 dB, 30.54 dB and
51.15 dB, respectively, while at the Ku-band, the values were 30.33 dB, 31.97 dB and 56.64 dB,
respectively. With the N-doping treatment at 18 h, the average EMI SE total of the Ag@N-
Ti3C2Tx 5 µm honeycomb-like was 52.38 dB over the X-band and 72.72 dB over the Ku-band,
which was higher than other samples in the frequency range of 10–18 GHz (Figure S2b).
In addition, its reflectivity was the lowest in the Ku-band compared to other absorbers
(Figure S2a). This phenomenon may be due to the N-doping and the electric conductivity.

In addition, at 12 GHz the SE totals of Ti3C2Tx, N-Ti3C2Tx and 18 h Ag@N-Ti3C2Tx
5 µm were 26.41 dB, 31.27 dB and 60.10 dB, respectively (Figure 7c), while at 18 GHz the
SE total values of Ti3C2Tx, N-Ti3C2Tx and 18 h Ag@N-Ti3C2Tx were 29.96 dB, 33.91 dB
and 75.27 dB, respectively (Figure 7d). Overall, the 18 h Ag@N-Ti3C2Tx 5 µm composites
exhibit the best EMI shielding performance with an average EMI SE total of 64.58 dB. The
improvement in absorption loss has significantly contribution to SET with a negligible
improvement in reflection loss.
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The electromagnetic shielding mechanisms of the honeycomb-like Ag@N-Ti3C2Tx
composite are summarized in Figure 7b. As fabricating the two-dimensional Ti3C2Tx
into a three-dimensional honeycomb-like structure, the propagation paths of electromag-
netic waves diameter increase [28]. The transmissivity of pure Ti3C2Tx was obviously
decreased (Figure S2c). The multiple reflections of electromagnetic waves occurring in
the honeycomb-like foam thus improve the electromagnetic shielding performance of
Ag@N-Ti3C2Tx composites [29]. Moreover, the special honeycomb-like structure provides
high specific surface area. The measured values for N-Ti3C2Tx and Ag@N-Ti3C2Tx are
49.89 and 67.47 m2/g, respectively, and the Ag nanoparticles distributed at the interfaces
could generate the interfacial polarization relaxation loss. The charges then accumulate
at these interfaces, leading to a strong interfacial polarization effect. The other factor can
be attributed to the conduction loss. The conduction loss is related to the conductivity of
the material. The higher the conductivity, the greater the macroscopic current caused by
the carriers (including the current caused by the change in the electric field and the eddy
current caused by the change of the magnetic field), which is conducive to the conversion
of electromagnetic energy into heat energy. Both the introduction of Ag particles and
the N-doping increase the electrical conductivity of the MXene material [26,30,31]. The
increasing conductivity makes the skin depth (δ =

(√
π f µσ

)−1
) become smaller, thus, the

electromagnetic wave cannot penetrate the material, and then electromagnetic shielding
performance can also be improved. Hydrazine hydrate provides a reducing environment
as a nitrogen source to avoid oxidation. However, the long nitriding time would lead to the
generation of NH3 gas from hydrazine hydrate and cause the Ti3C2Tx to be oxidized into
TiO2. The generation of TiO2 will lead to a decrease in its own conductivity and affect the
electromagnetic shielding performance of the material.

4. Conclusions

In this research, honeycomb-like Ag@N-Ti3C2Tx with different degrees of nitridation
was prepared by using hydrazine hydride nitridation. Even after N-doping, the Ag@N-
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Ti3C2Tx composite still retained its original honeycomb-like structure in the same size.
In the nitridation for 18 h, the electrical conductivity of Ag@N-Ti3C2Tx composites was
500 S/cm. The electromagnetic shielding performance was significantly improved by
N-doping and the decoration of Ag particles. The average electromagnetic shielding
performance was 52.38 dB, covering the whole X-band, and 72.72 dB over the Ku-band.
The excellent electromagnetic shielding property of Ag@N-Ti3C2Tx composites comes from
its own conductivity loss, the interfacial polarization between Ag nanoparticles and the
N-Ti3C2Tx shell, the dipole polarization at the N dipole polarization at the defects, and
multiple reflections and scatterings caused by the hollow honeycomb-like structure of
the composite.
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N-Ti3C2Tx and Ag@N-Ti3C2Tx composites.
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