Table 1.
Author; Year | Animal Model | BPA Dose | Natural Product/Natural Compound and Its Dose | BPA Induced Toxicity | Mechanism of Actions |
---|---|---|---|---|---|
Ishtiaq et al., 2020 [157] | Sprague Dawley rats | 100 µg/kg B.wt/day |
Pistacia integerrima— 200 mg/kg B.wt/day |
Cardiotoxicity | Neutralizing the oxidative stress through Ubc13/p53 pathway |
Kaur, S., and Sadwal, S. 2020 [171] | Mice (BALB/c) | 1 mg/kg B.wt/day | Fenugreek seed extract—200 mg/ kg B.wt/day |
Testicular damage | -Antioxidant effects |
Friques et al., 2020 [174] | Wistar rats | 100 μg/kg B.wt/day | Kefir—0.3 mL/100 g B.wt/day | Hypertension and vascular toxicity | -Antioxidant effects -Increasing NO bioavailability |
Abdou et al., 2022 [179] | Wistar rats | 50 mg B.wt/day/kg | Grape seed proanthocyanidins—200 mg/kg B.wt/day |
Neurotoxicity | -Anti-inflammatory effects -Antioxidant effects |
Zaid et al., 2021 [190] | Sprague Dawley rats | 10 mg/kg B.wt/day | Ficus deltoidea—100 mg/kg B.wt/day | Female reproductive toxicity (Uterus) | NA |
Zaid et al., 2018 [191] | Sprague Dawley rats | 10 mg/kg B.wt/day | Ficus deltoidea—100 mg/kg B.wt/day | Female reproductive system (ovary) | NA |
Revathy et al., 2017 [193] | Sprague Dawley rats | 200 mg/kg B.wt/day | Ipomoea batatas—400 mg/kg B.wt/day | Male reproductive toxicity | NA |
Kazmi et al., 2018 [199] | Sprague Dawley rats | 25 mg/kg B.wt/day | Quercus dilatata Lindl. ex Royle—300 mg/kg B.wt/day | Hepatotoxicity | Antioxidant effects |
Mohamad Zaid et al., 2015 [204] | Sprague Dawley rats | 10 mg/kg B.wt/day | Tualang honey—200 mg/kg B.wt/day | Uterine toxicity | -Normalizing ERα, ERβ, and C3 expression and distribution -Reducing lipid peroxidation |
Zaid et al., 2014 [205] | Sprague Dawley rats | 10 mg/kg B.wt/day | Tualang honey—200 mg/kg B.wt/day | Ovarian toxicity | Antioxidant effects |
Eweda et al., 2020 [209] | Albino Wistar rats | 30 mg/kg B.wt/day | Sesame lignans—20 mg/kg B.wt/day | Hepatotoxicity and cardiotoxicity | -Antioxidant effects -Improving lipid profile |
Abo et al., 2020 [210] | Sprague Dawley rats | 25 and 50 mg/kg B.wt/day | Sesame oil—10 mL/kg B.wt/day | Cardiotoxicity | Antioxidant effects |
Soliman et al., 2021 [216] | Albino rats | 500 mg/kg B.wt/day | Propolis—50 mg/kg B.wt/day | Lung injury | Anti-inflammatory and antioxidant effects |
Sujan et al., 2019 [220] | Swiss albino mice | 50 mg/kg B.wt/day | Nigella Sativa oil— 1 mL/kg B.wt/day |
Hyperlipidemia and obesity | Antioxidant effects |
Sujan et al., 2020 [221] | Swiss albino mice | 50 mg/kg B.wt/day | Nigella Sativa oil— 1 mL/kg B.wt/day |
Blood and reproductive organ | Antioxidant effects |
Fadishei. et al., 2021 [222] | Albino Wistar rats | 10 mg/kg B.wt/day | Nigella Sativa oil— 21, 42, 84 μL/kg B.wt/day Thymoquinone—0.5, 1, 2 mg/kg B.wt/day |
Metabolic disorder | Antioxidant effects |
Abdel-Wahab et al., 2014 [223] | Sprague Dawley (SD) rats | 10 mg/kg B.wt/day | Thymoquinone—10 mg/kg B.wt/day | Hepatoxicity | Antioxidant effects |
Mohsenzadeh et al., 2021a [230] | Wistar rats | 10 mg/kg B.wt/day | Green tea— 25, 50, and 100 mg/kg B.wt/day Epigallocatechin gallate—10, 20, and 40 mg/kg/day |
Vascular toxicity | Antioxidant effects |
Mohsenzadeh et al., 2021b [231] | Albino Wistar rats | 10 mg/kg B.wt/day | Green tea— 25, 50, and 100 mg/kg B.wt/day Epigallocatechin gallate—10, 20, and 40 mg/kg/day |
Metabolic disorders | -Anti-inflammatory effects -Regulating the metabolism of lipids -Improving insulin signaling pathways |
Veissi et al., 2018 [234] | NMRI mice | 100 μg/kg B.wt/day | Soy extract— 60, 150 mg/kg B.wt/day |
Metabolic disorder | Antioxidant effects |
Patisaul et al., 2012 [235] | Wistar rats | 1 mg/L | Soy rich diet | Anxiogenic behavior | Estrogen receptor beta, melanocortin receptors, oxytocin/vasopressin signaling pathways |
Fawzy et al., 2018 [238] | Swiss albino mice | 50 mg/kg B.wt/day | Pumpkin seed oil—1 mL/kg B.wt/day | DNA damage in the liver and testes | Decreasing DNA damage |
El Tabaa et al., 2017 [245] | Wistar rats | 250 mg/kg B.wt/day | Ginkgo biloba extract— mg/kg B.wt/day | Neurotoxicity | -Increasing biogenic amines release -Antioxidant effects adiponectin pro-secretory effects |
Lee et al., 2020 [253] | CD-1 mice | 200 mg/kg B.wt/day | Korean red ginseng—1.2 g/kg/day | Inflammation in liver and uterus | Anti-inflammatory effects |
Park et al., 2020 [254] | ICR mice | 800 mg/kg B.wt/day | Korean red ginseng—1.2 g/kg/day | Increased lipid profile | Regulating lipid metabolic process-related genes |
Saadeldin et al., 2018 [255] | Albino rats | 150 mg/kg B.wt/day | Ginseng—200 mg/kg B.wt/day | Reproductive toxicity | Modulating mRNA transcripts of STAR, HSD17B3, and CYP17B, via AKT/PTEN pathway |
Kaur et al., 2020 [261] | BALB/c mice | 1 mg/kg B.wt/day | Murraya koenigii—200 mg/kg B.wt/day | Testicular toxicity | -Antioxidant effects -Antiapoptotic effects |
Poormoosavi et al., 2018 [100] | Wistar rats | 10 mg/kg B.wt/day |
Asparagus officinalis— 200 mg/kg B.wt/day |
Hepatic and renal toxicity | Antioxidant effects |
Behmanesh et al., 2018 [269] | Wistar rats | 20 μg/kg B.wt/day | Aloe vera gel—300 mg/kg B.wt/day | Testicular toxicity | Antioxidant effects |
Munir et al., 2017 [273] | Sprague Dawley rats | 25 mg/kg B.wt/day | Tribulus terrestris L. —20 mg/kg B.wt/day | Testicular toxicity | NA |
Sirasanagandla et al., 2022 [155] | Apo E mice | 1 μg/ml | Resveratrol—20 mg/kg B.wt/day | Atherosclerosis | Autophagy modulation |
Rameshrad et al., 2018 [182] | Albino Wistar rats | 35 mg/kg B.wt/day | Resveratrol—100 mg/kg B.wt/day Grape Seed Extract—3, and 12 mg/kg B.wt/day |
Vascular toxicity | Antioxidant effects |
Rameshrad et al., 2019 [183] | Wistar rats | 35 mg/kg B.wt/day | Resveratrol—25, 50, and 100 mg/kg B.wt/day Grape seed extract—3, 6, 12 mg/kg B.wt/day |
Metabolic syndrome and insulin resistance | -Promoting insulin signaling -Increasing ABCG8 expression in the liver -Antioxidant activity |
Shih et al., 2021 [278] | Sprague Dawley rats | 50 μg/kg B.wt/day | Resveratrol butyrate esters— 30 mg/kg B.wt/day |
Obesity | Modulatory activity in intestinal microbiota |
Fouad et al., 2021 [279] | Wistar rats | 20 mg/kg B.wt/day | Resveratrol— 20 mg/kg B.wt/day |
Uterine damage | -Antioxidant activity -Antiapoptotic effects |
Cetin et al., 2021 [280] | Wistar albino rats | 130 mg/kg B.wt/day | Resveratrol—100 and 200 mg/kg/day Apigenin—100 and 200 mg/kg B.wt/day |
Salivary gland cytotoxicity | -Antioxidant effects -Antiapoptotic effects |
Bordbar et al., 2021 [281] | Sprague Dawley rats | 50 mg/kg B.wt/day | Resveratrol—100 mg/kg B.wt/day | Hepatotoxicity | NA |
Hsu et al., 2019 [160] | Sprague Dawley rats | 50 μg/kg B.wt/day | Resveratrol—50 mg/L | Developmental programming of hypertension | -Increasing NO bioavailability -Antioxidant effects -Suppressing the AHR signaling pathway |
Liao et al., 2021 [284] | Sprague Dawley rats | 50 μg/kg B.wt/day | Resveratrol butyrate esters—30 mg/kg B.wt/day | Hepatic toxicity | -Antioxidant effects -Modulating gut microbiota |
Rahmani-Moghadam et al., 2022 [286] | Sprague Dawley rats | 50 mg/kg B.wt/day | Resveratrol—100 mg/kg B.wt/day | Oral mucosa and tongue toxicity | NA |
Alekhya Sita al., 2019 [293] | Wistar rats | 250 mg/kg B.wt/day | Luteolin—100 and 200 mg/kg B.wt/day | Nephron toxicity | Nrf2/ antioxidant response element (ARE)/HO-1 pathway regulation |
Adesanoye et al., 2020 [294] | Drosophila melanogaster (Canton-S strain) | 0.05 mM | Luteolin—150 and 300 mg/kg B.wt/day | Oxidative stress, locomotor deficit, reduction in offspring emergence rate, cell viability, inhibition of acetylcholinesterase activity |
-Antioxidant and chemo-preventive properties |
Faheem et al., 2021 [299] | Albino Wistar rats | 50 mg/kg B.wt/day | Lycopene—10 mg/kg B.wt/day | Lung injury | -Anti-inflammatory effects -Antioxidant effects -Antiapoptotic effects |
Abdel-Rahman et al., 2018 [300] | Wistar rats | 10 mg/kg B.wt/day | Lycopene—10 mg/kg B.wt/day | Hepatotoxicity | -Antioxidant effects -Antiapoptotic effects |
Ma et al., 2018 [301] | Kunming mice | 500 mg/kg B.wt/day | Lycopene—20 mg B.wt/day/kg | Reproductive toxicity | NA |
Elgawish et al., 2020 [302] | Wistar rats | 10 mg/kg B.wt/day | Lycopene—10 mg/kg B.wt/day | Metabolic syndrome | -Antioxidant effects -Anti-inflammatory effects |
El Morsy et al., 2020 [303] | Albino rats | 50 mg/kg B.wt/day | Lycopene—10 mg/kg B.wt/day | Hippocampal neurotoxicity and defective memory function | -Antioxidant effects -Activation of MAPK/ERK pathway -Antiapoptotic effects |
Essawy et al., 2021 [304] | Sprague Dawley rats | 125 mg/kg B.wt/day | Astragaloside IV—80 mg/kg B.wt/day A. spinosus saponins-100 mg/kg B.wt/day |
DNA damage and Neurotoxicity | -Antioxidant effects -Anti-inflammatory and anti-apoptotic effects -Reducing DNA damage -Regulating the BDNF and NR2A and NR2B gene expression |
Abd Elkader et al., 2021 [310] | Sprague Dawley rats | 125 mg/kg B.wt/day | Astragaloside IV—80 mg/kg B.wt/day A. spinosus saponins-100 mg/kg B.wt/day |
Long-lasting anxiety-like behavior and depression in schizophrenia | -Neuroprotective activity |
Khodayar et al., 2020 [314] | Wistar rats | 50 mg/kg B.wt/day | Naringin—40, 80, and 160 mg/kg B.wt/day | Cardiotoxicity | -Lipid-lowering properties -Antioxidant effects -Decreasing lipid peroxidation |
Mahdavinia et al., 2019 [315] | Wistar rats | 50 mg/kg B.wt/day | Naringin—40, 80, and 160 mg/kg B.wt/day | Cognitive impairment and oxidative damage | -Antioxidant and neuroprotective effects |
Rezaee-Tazangi et al., 2020 [321] | NMRI mice | 0.8 mmol/mL | Taurine—5, 10, 30, and 50 µmol/L | Mitochondrial toxicity and impaired sperm quality | Antioxidant effects |
Mahdavinia et al., 2019 [108] | Wistar rats | 250 mg/kg B.wt/day | Quercetin—75 mg/kg B.wt/day | Hepatotoxicity (liver) | -Antioxidant effects -Preventing mitochondrial damage |
Pradhan et al., 2021 [322] | Zebrafish | 17.52 μM | Taurine—63.9233 μM | Neurotoxicity | Antioxidant effects |
Shirani et al., 2019 [326] | Wistar rats | 250 mg/kg B.wt/day | Quercetin—75 mg/kg B.wt/day | Nephrotoxicity (through uric acid and creatinine) | Antioxidant effects |
Jahan et al., 2016 [327] | Sprague Dawley rats | 50 mg/kg B.wt/day | Quercetin—50 mg/kg B.wt/day | Testicular toxicity | NA |
Sahoo et al., 2020 [328] | Zebrafish | 17.52 μM | Quercetin—2.96 μM | Neurotoxicity | Antioxidant effects |
Sangai et al., 2014 [330] | Swiss albino mice | 120 and 240 mg/kg B.wt/day | Quercetin—60 mg/kg B.wt/day | Hepatotoxicity and nephrotoxicity | Antioxidant effects |
Bernardo et al., 2015 [333] | Sprague Dawley rats | 25 and 250 μg/kg B.wt/day | Genistein— 5.5 mg/kg B.wt/day |
Reproductive organs | Antitumor effects |
Betancourt et al., 2014 [335] | Sprague Dawley rats | 250 μg/kg B.wt/day | Genistein— 250 mg/kg B.wt/day |
Cancer | Anticancer and chemoprotective effects |
Uzunhisarcikli and Aslanturk, 2019 [341] | Wistar rats | 130 mg/kg B.wt/day | Curcumin—100 mg/kg/day Taurine—100 mg/kg B.wt/day |
Hepatotoxicity | Antioxidant effects |
Panpatil et al., 2020 [342] | Wistar NIN (WNIN) rats | 0, 50 and 100 ug/kg B.wt/day | Turmeric in diet 3% (wt/wt) | Liver and kidney | Decreasing DNA migration and genotoxicity |
Apaydin et al., 2019 [343] | Albino rats | 130 mg/kg B.wt/day | Curcumin—100 mg/kg B.wt/day Taurine—100 mg/kg B.wt/day |
Cardiotoxicity | Antioxidant effects |
Kalender et al., 2019 [344] | Wistar rats | 130 mg/kg B.wt/day | Curcumin—100 mg/kg B.wt/day Taurine—100 mg/kg B.wt/day |
Testicular toxicity | Antioxidant effects |