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Abstract: Aggregation is among the most critical parameters affecting the pharmacological and safety
profile of peptide Active Pharmaceutical Ingredients (APIs). For this reason, it is of utmost importance
to define the exact aggregation state of peptide drugs, particularly when the API is marketed as a
ready-to-use solution. Consequently, appropriate non-destructive techniques able to replicate the
peptide environment must be employed. In our work, we exploited Asymmetrical Flow Field-Flow
Fractionation (AF4), connected to UV, dRI, fluorescence, and MALS detectors, to fully characterize
the aggregation state of Liraglutide, a peptide API used for the treatment of diabetes type 2 and
chronic obesity. In previous studies, Liraglutide was hypothesized to assemble into hexa-octamers in
phosphate buffer, but no information on its behavior in the formulation medium was provided up
to now. The method used allowed researchers to work using formulation as the mobile phase with
excellent recoveries and LoQ/LoD, discerning between stable and degraded samples, and detecting,
when present, aggregates up to 108 Da. The native state of Liraglutide was assessed and found to be
an association into pentamers, with a non-spherical conformation. Combined to benchmark analyses,
the sameness study was complete and descriptive, also giving insight on the aggregation process and
covalent/non-covalent aggregate types.

Keywords: FFF-multidetection; flow-field flow fractionation; native aggregation state; sameness;
therapeutic peptides; Liraglutide; active pharmaceutical ingredient (API); finished dosage form (FDF);
reference listed drug; RLD

1. Introduction

Therapeutic peptides represent a huge area of interest in the pharmaceutical industry.
So far, more than 50 candidates have been approved as therapeutics and many others are
undergoing clinical trials [1–3]. Compared to small molecule drugs, such as higher specificity,
low toxicity, and high tolerance by the human body [4]. Moreover, advances in manufacturing
strategies, primary structure modifications, and computational strategies in formulation
development facilitate investment in the development of these kind of drugs [5,6].

Peptide candidates can be produced either with chemical or recombinant strategies
(upstream process), according to the length of the sequence and from the presence of
non-proteinogenic amino acids in the primary structure [7,8]. In both cases, the crude
peptides obtained require a purification step (downstream process) to achieve the quality
target requested by the national regulatory authorities, using ion exchange and size exclu-
sion chromatography, precipitation, and extraction, even though the reference technique
remains ion pair reversed-phase liquid chromatography [9,10]. Once the peptide Active
Pharmaceutical Ingredient (API) is produced and purified, and usually lyophilized, it un-
dergoes formulation to reach its Finished Dosage Form (FDF). This phase comprises a series
of studies: pre-formulation (evaluation of physicochemical properties before and after

Molecules 2022, 27, 5485. https://doi.org/10.3390/molecules27175485 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27175485
https://doi.org/10.3390/molecules27175485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8742-3708
https://orcid.org/0000-0002-7083-2211
https://orcid.org/0000-0003-4202-1136
https://orcid.org/0000-0003-1060-2921
https://orcid.org/0000-0001-6971-5360
https://orcid.org/0000-0001-7865-0474
https://doi.org/10.3390/molecules27175485
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27175485?type=check_update&version=1


Molecules 2022, 27, 5485 2 of 14

combination to excipients), analytical profiling (structural characterization and impurity
determination), and evaluation of pharmaceutical properties [11,12]. Commercialization of
protein drug candidates has to further face many road barriers: changes in external and/or
internal variables, including temperature, pH, and chemical environment, may lead to
processes such as denaturation, aggregation, or precipitation, causing destabilization of the
protein structure and affecting its functioning [13].

Among all these physical and chemical deterioration pathways, peptide aggregation,
which is known to potentially trigger immunogenicity in patients, represents one of the
most critical attributes of the peptide FDFs. This undesired phenomenon is usually fought
during drug development by adopting suitable and appropriate formulation buffers or by
modifying the native peptide primary sequence [14]. Further evidence of the importance of
this aspect is the request set by the Food and Drug Administration (FDA) for the aggregation
properties of the generic version of already commercialized peptides [15], that must show
“sameness” with the product already present in the market (Reference Listed Drug, RLD).
Even though this 2021 FDA guidance refers only to a small number of generic peptides that
are manufactured by alternative methods (synthetic vs. recombinant), this guidance is now
considered a standard approach for the evaluation of all generic commercialized peptides.

There are many techniques for monitoring peptide aggregation, widely used also
for protein aggregation evaluation; in fact, though peptides are considerably smaller than
proteins, they can also aggregate into high MW species which can be detected with the same
approach. Traditional methods are, for example, microscopy and turbidimetry. However,
the former is time-heavy and requires sample drying while turbidimetric results cannot
give precise information on the type of aggregate formed [16]. Historically, determination
of aggregation in peptide pharmaceuticals has relied upon size-exclusion chromatography
(SEC). While SEC can be an effective tool in terms of sensitivity, precision, and throughput,
there are some significant technical limitations of SEC that can lead to erroneous estimates
of aggregate levels in peptide products. SEC is, in fact, characterized by a limited size
resolution range which does not exceed 107 Da (corresponding to an upper size limit
near 100 nm) [17]. The results can also be misleading due to the limitations imposed on
mobile phase composition, which has to be compatible with the stationary phase of the
column (analysis not in native conditions). Moreover, it is possible to observe adsorption
and/or dissociation processes caused by the interaction of the sample with the stationary
phase [18]. For this reason, regulatory bodies, such as the FDA and the EMA (European
Medicinal Agency), currently require the use of techniques orthogonal to SEC, such as
Sedimentation Velocity Analytical Ultracentrifugation (SV-AUC) and Asymmetrical Flow
Field-Flow Fractionation (AF4), to verify SEC data.

While SV-AUC is limited by comparable size range to SEC, the AF4 methods can
cover a measurement range from 1 nm up to 1 µm [19]. AF4 also works with an empty
channel which prevents adsorption and dissociation problems due to the stationary phase.
This makes this technique also very flexible since mobile phase can be tuned on samples
requirements and it is often possible to work in native conditions [19–22].

AF4, along with the other Field Flow Fractionation (FFF) techniques, is exploited to
analyze different biological matrices, such as serum proteins [23] and antibodies [24,25], to
simplify serum [26] and isolate lipoproteins, also in its miniaturized variants. These tech-
niques are also used in the analysis of DNA and in the QC steps of various pharmaceutical
compounds [25,27]. The importance of AF4 systems coupled with dRI and MALS detec-
tors (AF4-multidetection) to properly detect high molecular weight species is remarked
upon in several scientific works. AF4-multidetection was used for size characterization
of drug-delivery systems and other supramolecular systems involving protein-mediated
aggregation [19,28–30]. Last, aggregation studies of proteins and mAbs comparing AF4
and SEC [31] also remarked the value of AF4 in correctly detecting bigger aggregates and
work in more flexible conditions.

Within this framework, we focused our attention on Liraglutide, a peptide API used
in the treatment of diabetes Type 2 and chronic obesity with the brand names Victoza
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and Saxenda, respectively [32,33]. Liraglutide FDF is available as an injectable solution
composed by the API at a concentration of 6 mg/mL, phenol, propylene glycol, and sodium
phosphate to adjust pH to about 8.15. Furthermore, Liraglutide is one of the peptides listed
in the FDA 2021 guidance; for this reason, any generic candidate needs a deep charac-
terization of the aggregation properties and an extensive comparison with the RLD to
guarantee “sameness” and safely access the market [15]. However, although the phar-
macological properties of Liraglutide have been established, there is a lack of knowledge
concerning the aggregation tendency of Liraglutide, even for the product currently present
in the market (RLD). In fact, only few works are currently present in the literature, mainly
focused on how the pH of the environment influences the aggregation of the peptide
and its kinetics [34–36]. Steensgaard et al. [37] showed that Liraglutide oligomerizes in
a concentration-independent manner forming, predominately, heptamers in the concen-
tration range 0.004–4.501 mg/mL. Insights were also given by circular dichroism [38].
Frederiksen et al. [39] instead performed molecular dynamic simulation studies to estimate
the most stable aggregation levels of Liraglutide and compared the results with the ones
obtained through Small-Angle X-Ray Scattering (SAXS) and FFF-UV-DAD analysis. These
measurements, performed on the Liraglutide commercialized product (brand name: Vic-
toza) and using PBS as mobile phase, described a hexameric structure for the aggregates.
On the other side, the theoretical studies estimated hexa-, hepta-, and octameric structures
as the most likely ones. All these studies lack several key aspects concerning the Liraglutide
analytical problem: (a) none of them is performed with the API dissolved in the diluent
present in the Victoza/Saxenda FDF (aqueous solution at pH around 8.15 with phenol
and propylene glycol); (b) most Liraglutide samples are not commercial products but are
derived by a purified standard; and (c) none of the studies worked at the concentration of
the FDF (6 mg/mL) but on more diluted systems. Thus, these kinds of results, aside from
being a helpful stepping-stone in this field, have no practical use for the characterization of
the already existing products and for the establishment of a general analytical tool for the
evaluation of the aggregation properties between peptide samples.

For these reasons, in this work we performed measurements on several Liraglutide
samples in formulation with a double aim: (1) performing a sameness study while pre-
serving the native state of the samples in the diluent used for the FDF; and (2) evaluate
the aggregation state of the peptide in solution before the lyophilization step and after the
formulation step. To achieve our goals, we exploited an AF4 platform coupled to UV, fluo-
rescence, refractive index (dRI), and multi-angle light scattering detection, which showed
excellent recovery and LOD and allowed a thorough characterization (mass- and size-wise),
also overcoming technical limitations caused by working with formulation as a mobile
phase. A set of samples, including pre-lyophilization API in solution, a FDF produced
internally, and two RLD, namely Victoza and Saxenda, were selected and characterized
in their native state. The results from FDF and RLD were evaluated also to the light of
SEC-MALS analysis to obtain a complete scenario regarding Liraglutide in suspension.
This approach is able to answer to FDA recommendations and is, auspicably, a starting
point for further studies of drug peptides aggregation, to ensure representative results and
product safety.

2. Results and Discussion
2.1. Method Development and Optimization of Detection Parameters

The AF4-multidetection method developed in this work used Liraglutide formulation
as the mobile phase. If, on one side, this approach is able to correctly represent the
aggregation state of the peptide in suspension, on the other, it is more difficult to find
optimal separation and detection conditions, since the mobile phase is not optimized
towards the instrumental setup. Therefore, the use of a set of different, uncorrelated
detectors is recommended to overcome the limitations of the single techniques, such as
signal interferences from the absorbents in the mobile phase and baseline drift due to eluent
viscosity. In the case of Liraglutide formulation (see materials and methods), the presence
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of phenol in the mobile phase caused absorption and emission in the same wavelength
ranges of the conventional values used for proteins and peptides (280 nm absorption and
excitation, 340 nm emission). The presence of ethylene glycol increased mobile phase
viscosity, inferring baseline drifts to the concentration detectors (UV, dRI) during the
separation methods, which are subject to flow and pressure changes. For this reason,
absorption at 280 nm could not be exploited because of the high noise/signal ratio and
the lack of a relative maximum, and the 290 nm wavelength was preferred. Contrarily to
UV and dRI, fluorescence is unaffected by pressure and flow changes and can be a reliable
source, also for detection of different populations. Excitation at 280 and at 290 nm were,
thus, explored to gain a reliable signal for recovery study. The UV absorption spectrum
of Liraglutide in formulation buffer and the emission spectra upon excitation at 280 and
290 nm are shown in Figure 1.
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Figure 1. (a) Absorption spectrum of Liraglutide in formulation buffer analysed in Focus-FIA.
Dashed line: absorption at 280 nm. (b) Overlay of UV absorption at 280 (blue) and 290 (red) nm.
(c) Comparison between fluorescence signals at optimal wavelength upon excitation at 280 nm
(blue) or 290 nm (red). (d,e) Emission spectrum of Liraglutide upon excitation at 280 nm (d) and
290 nm (d,e). Dashed line: emission signal at 340 nm.

Absorption below 280 nm (Figure 1a) is completely covered by interferences, whereas
signal at 290 nm (red trace, Figure 1b, compared to absorption at 280 nm, blue trace) is
intense and baseline noise is low. With this information in hand, we proceeded to scan
for emission upon excitation at these two wavelengths, obtaining the relative emission
spectra (Figure 1d,e). Baseline noise was found acceptable at 400 nm emission (Figure 1d,
dashed line) and after 340 nm (Figure 1e, dashed line), i.e., where the noise/signal ratio was
the lowest in the two cases. The corresponding emission profiles are shown in Figure 1c.
Interestingly, though absorption at 280 nm is not performing, its emission showed the
lowest LOD and LOQ observed, which resulted to be 2.1 nmol and 7 nmol, respectively.

The following steps of method development involved the selection of the channel
membrane and recovery calculation: for this purpose, a Polyethersulfone (PES) membrane
with a molecular weight cutoff (MWCO) of 1 kDa was chosen, since other materials and
variants could not ensure a cutoff below the peptide molecular weight. Recovery, calculated
in triplicate, was evaluated both for BSA as standard protein and for all Liraglutide samples
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(API, FDF, RLD, and aggregated API; see Table 1). BSA showed quantitative recovery
(>99.9%), whereas recovery for Liraglutide, while optimal, ranged between 98 and 100%.
As shown in Figure 2, higher recovery was observed for the API samples (aggregated
or untreated) while a slightly lower value was found for FDF and commercial products
(between 98 and 99%), probably due to the different aging time between the API samples
(freshly suspended in the formulation media at the time of the experiment) and the FDF
and RLD ones (already suspended in the formulation buffer at the beginning of the product
shelf life).
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a FIA.

A focus flowrate of 1.50 mL/min (inject flow: 0.2 mL/min) and a longitudinal flowrate
of 0.50 mL/min were selected; different focus flowrates and focusing times did not influence
recovery but worsened the baseline drift. The crossflow velocity was then scanned in the
1.0–2.5 mL/min range using API1-W as a test sample: only the highest crossflow rate
applied resulted in a good separation from the void peak, while higher flowrates could
not be employed due to pressure limits of the system. To shorten analysis time, and allow
possible highly-aggregated species to be eluted before the field is released, the method
was further modified to a gradient decreasing crossflow rate to zero in 20 min. After six
minutes from the start of the run, when the flow control switches from focus to elution, a
system peak appears in all analyses (blank included), due to the change in system pressure.
Applying the crossflow also showed the baseline drifts above-mentioned, both for the dRI
and UV detector, while fluorescence remained unaffected in all cases. The applicability of
the developed setup was also confirmed by injections of BSA, whose mass was correctly
calculated using dRI as a concentration source (Figure 3).

The developed method adhered to the standards a validated method must satisfy
according to the harmonized guideline ICHQ2R1 and ISO/TS 21362 [40,41] and was,
therefore, considered a standardized method and used to characterize all samples.

2.2. Characterization of API and Aggregated API

The API samples were characterized with the AF4-multidetection method, both af-
ter resuspension in water and in formulation at the concentration of 6 mg/mL. In both
cases, Liraglutide was eluted with a single peak at 7.8 min, with API1 and API2 resulting
overlapped and identical in profile and molar mass distribution (Figure 4a).
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The molar mass obtained from light scattering was found between 19 and 20 kDa for all
samples (API1-W: 19.6± 0.4; API1-F: 19.8± 0.2; API2-W: 19.2± 0.8; and API2-F: 19.7 ± 0.5 kDa),
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whereas no evidence of monomer was observed also from the fluorescence profile. The v value
calculated (as obtained from a conformation plot, see Section 3) averaged 0.78, indicating a
non-spherical, non-compact conformation [42].

The capability of the method to discern different forms of Liraglutide was moni-
tored by the analysis of a sample of thermally stressed, aggregated API: in this case, no
species are observed before 9 min elution time, where a band is eluted with a broad mo-
lar mass distribution averaging 73.7 kDa and corresponding to aggregates of >20 units
(Figure 4b). The found v value was negative, meaning that a mass increase corresponds
to a size decrease [43] and the structure is extremely compact, possibly due to irreversible
denaturation and covalent aggregation. In this case, a second population is detected by
fluorescence (9 ± 1% of fluorescence area) at 26 min, corresponding to the field release (i.e.,
zero crossflow), with an estimated molar mass up to 108 Da.

2.3. Characterization of FDF and RLD Samples

The FDF and the RLD (Victoza, Saxenda) samples were also submitted to the same
method. The FDF sample appeared as a single band, with the same retention time (7.8 min)
and molar mass distribution (19.9 ± 0.4 kDa) as previous samples; likewise, both the
Victoza lots and the Saxenda lot analysed contained a single population corresponding to
Liraglutide oligomers (Victoza1: 19.2 ± 0.7 kDa; Victoza2 20.1 ± 0.4 kDa; and Saxenda:
19.9 ± 0.3 kDa). All samples are overlaid in Figure 5.
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Like previous samples, the calculated v values corresponded to 0.7, indicating a
branched/extended conformation; no trace of monomer or higher MW oligomers
was detected.

2.4. Mass Comparison and Sameness Evaluation

All samples are grouped together and showed as histograms representing their molar
mass in Figure 6. Statistical evaluations (performed through one-way ANOVA) confirmed
that there is no significant difference between all samples, apart from the aggregated API
(p < 0.0001 against all other samples), confirming the identity between commercial and
R&D products.
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Interestingly, sameness was also assessed for freshly dissolved APIs (API1-W, and
API2-W), suggesting that the aggregation of Liraglutide in formulation is a fast process
which yields a single aggregate type, which then stabilizes the structure and prevents
further aggregation. This information was further verified by lowering the focusing time
and confirming that no difference in the molar mass distribution was detected.

The associated form found for Liraglutide in formulation is numerically equal to 5.2 units,
indicating the main presence of a pentamer. When the sample is subjected to heating (API-
aggr), the thermal stress imposed to the sample generate a stable aggregation, likely through
unfolding, leading to a very compact denaturated aggregates averaging 20 units.

2.5. HPLC Analyses

The aggregation state of Liraglutide, together with the sameness evaluation of the
finished product and the commercial products, was also conducted through HPLC-MALS
as benchmark technique. In this case, due to the limitations in the stationary phase compo-
sition, the analyses were conducted in a mobile phase containing 30% acetonitrile.

The results present a main peak at 19 min for all the samples tested, followed by two
minor peaks at 16 and 17 min, respectively. At 23 min the peak corresponding to phenol
(contained in the formulation medium) is eluted (Figure 7a).

Mass calculation (Figure 7b) results in a slight under-estimation of the monomer
weight, an effect (that of MW deviation) observed with the use of a mixed solvent due
to preferential solvation [44]. The species detected correspond to monomer, dimer, and
tetramer (n = 3), and the two preparations show the same peaks, retention time, and molar
mass distributions. In terms of relative abundance, the amount of monomer is above
99.5% for both preparations (Figure 8a,b), though some differences could be detected
between samples. We observed that for lots closer to the expiration date, the percentage of
monomer measured was lower, suggesting that aging of the sample is linked to the amount
of irreversible aggregation.

Interestingly, SEC analyses are able to revert the aggregation state found in FFF
analyses and highlight the main presence of the monomer, confirming the non-covalent
nature of the pentamer. Moreover, the size of the aggregates can give information on
the aggregation pattern (e.g., dimer–dimer, dimer–monomer combining) or can indicate
sample deterioration, which could follow the same process but be irreversible.
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The combination of unprecedented FFF data in formulation to SEC analyses is crucial
to satisfy FDA requirements for peptide drug commercialization. Indeed, ANDA appli-
cants are encouraged to apply orthogonal analytical methods to characterize—among the
rest—secondary structure and oligomer/aggregation and “demonstrate that the proposed
synthetic peptide’s active ingredient is the ‘same as’ the active ingredient in the RLD” [15].
Because the afore-mentioned properties may be affected by the formulation of the drug
product, an applicant should evaluate them carefully and in an environment as close as
possible to the real one.

The use of AF4 and SEC represent a suitable approach for this kind of study since the
first portrays the real aggregation state in native conditions, and the second removes labile
aggregation. Together, they show that Liraglutide is not polymerized, but aggregated in
stable non-covalent oligomers (pentamers) which are removed in SEC conditions. Further-
more, since the reversed elution order between the two techniques favors the use of FFF
for High MW species, the 108 Da species found for the aggregated API sample would go
undetected in SEC analyses, thus lacking a critical information for the understanding of
the aggregation properties of Liraglutide and posing an unknown health risk. At the same
time, FFF is necessary also for low MW species for its ability to accurately representing the
native state, where the monomer is not present. Moreover, FFF analyses can be performed
in formulation buffer since there are very few limitations on choice of mobile phase, there-
fore adhering to the most recent requirements imposed by the FDA for the aggregation
and molecular conformation comparative study between the peptide samples (sameness
studies). Together, SEC and FFF represent a complete picture of the native aggregation
state (FFF) and aggregate type (SEC) of Liraglutide.

3. Materials and Methods
3.1. Samples

Bovine Serum Albumin (BSA, Merck KGaA, Darmstadt, Germany); aggregated Li-
raglutide: AF00195I and AF00195L, 6 mg/mL; API: ALICEP 00136C and API MC 00291D,
lyophilized and resuspended to 6 mg/mL in water or formulation; finished dosage form
sample: FDF lot #33124-46, 6 mg/mL; RLD (Fresenius Kabi): Victoza Lot #HS65J01 and
Lot #KS6AH74, 6mg/mL. RLD (Novo Nordisk): Saxenda Lot #JP54138, 6mg/mL. The
composition of formulation buffer is as follows: disodium phosphate dihydrate, 0.476 g/L;
propylene glycol, 0.47 g/L; phenol, 1.8 g/L; and water for injection. The lyophilized sam-
ples were resuspended to the same concentration of the FDF and RLD. The Liraglutide
sample names, concentration, dilution media, and codename are listed in Table 1.

3.2. AF4-UV-FLD-RI-MALS Analysis

AF4-MALS was performed by using a 1100 Series HPLC system (Agilent Technologies,
Palo Alto, CA, USA), connected to a module to control AF4 flow rates and operations
(Eclipse 3, Wyatt Technology Europe, Dernbach, Germany). On-line detection of the
eluted species was performed with an Agilent 1100 DAD UV/Vis spectrophotometer, an
Agilent 1200 Fluorescence detector, a MALS DAWN HELEOS detector (Wyatt Technology
Corporation, Santa Barbara, California), and an Optilab rEX refractive index detector (Wyatt
Technology Corporation, Santa Barbara, California). Carrier solutions were degassed using
an on-line vacuum degasser Agilent, 1100 series (Agilent Technologies).

The separation device is a flat channel (Wyatt Technology Europe) with a trapezoidal
shape and capillary height. For analysis, sample solutions are injected in the channel and
focused, allowing the sample to concentrate in a narrow band. When the elution starts,
separation is gained by the combination of a longitudinal and a perpendicular hydrodynamic
field. The channel was 152 mm long, equipped with a polyethersulfone (PES) membrane
(Nadir), with 1 kDa molecular weight cutoff. The channel spacer was 350 µm thick, with
trapezoidal shape (upstream width b0 = 16 mm; downstream width bL = 4 mm).
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Table 1. Sample list.

State Concentration Medium Name Injection
Volume (µL)

API
(Lot #ALICEP-001-36C) lyophilized 6 mg/mL Water,

formulation
API1-w
API1-f 30

API
(Lot #MC-002-91D) lyophilized 6 mg/mL Water

formulation
API2-w
API2-f 30

Finished dosage form
(FDF)

(Lot #33124-46)
solution 6 mg/mL Formulation FDF 30

Victoza
(Lot #HS65J01)

(Lot #KS6AH74)
solution 6 mg/mL Formulation Victoza1

Victoza2 30

Saxenda
(Lot #JP54138) solution 6 mg/mL Formulation Saxenda 30

Stressed API
(Lot #AF-001-95L) solution 3 mg/mL Formulation APIaggr 60

Finished dosage form
(FDF)

(Lot #33387-18)
solution 6 mg/mL Formulation 30

Saxenda
(Lot #JP54138) solution 6 mg/mL Formulation 30

All chemicals were purchased from Merck KGaA, Darmstadt, Germany.

The flow rate program was set up as follows: 1 min focus flow (1.5 mL/min) was
applied to equilibrate the flows in the channel. Then 5 min injection in focus mode was
applied in order to allow the sample to reach the channel. After the focus step, the elution
starts with a gradient cross-flow step starting from 2.5 mL/min into 0 mL/min linearly in
20 min. Elution medium was formulation buffer.

Prior to size characterization, recovery was evaluated with a Flow-Injection Analysis
(FIA) and a Focus-FIA. A FIA is a shortened, non-separative method: the sample is injected
into the channel in absence of cross/focus flow and it reaches the detector without separa-
tion. It allows evaluating the signal related to 100% recovery of sample. A Focus-FIA is a
FIA with an additional preliminary focusing step, where the sample is subject to the focus
flow and narrowed in a thin band at the beginning of the channel [45,46]. In FIA, the entirety
of the sample reaches the detector, while in Focus-FIA the sample components smaller than
the membrane cutoff are filtered out, and only the colloidal portion of the sample goes
through the detector. The ratio between the areas under signal curve obtained in Focus-FIA
and FIA (%Focus-FIA/FIA) gives direct calculation of sample recovery [47]. Method pre-
cision was assessed both on retention times and on signal intensity by performing three
independent replicates for BSA and Liraglutide. The same number of replicates (n = 3)
were carried out for the analysis of each Liraglutide sample. The method reproducibility
was verified in the method development step to ensure robustness. The limit of detection
was calculated as the injected amount (nmol) at which the signal is three times the baseline
standard deviation of the baseline, and the limit of quantification (LOQ) was calculated as
the injected amount (nmol) at which the signal is 10 times the standard deviation of the
baseline. Linearity was verified by Mandel’s fitting test within the concentration range
explored in the performed analyses ± 50%. Multi-angle light scattering (MALS) was used
to calculate the molar mass of eluted species, using Zimm model. It allows for the absolute
determination of particle radius of gyration (Rg) by measuring the net intensity of light
scattered by such particles at a range of fixed angles and, given the dn/dc and absorptivity
values of the analysed molecules, the molar mass value of the eluted species [29]. The
correlation between Rg and molar mass distributions provides information on the particle
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conformation in suspension through the calculation of a scaling exponent v, or v value.
The v value is the slope in a double logarithmic logMW - logRg plot, and is theoretically
defined for spheres as v = 0.33, random-coil v = 0.5–0.6, branched polymers = 0.7–0.8, and
rod-like structures v 1 [48,49]. Data were processed by GraphPad Prism.

3.3. HPLC-UV-dRI-MALS

HPLC analyses were carried out with a Shodex HPLC Protein KW-802.5, 300 × 8.0 mm,
5 µm. The mobile phase used was 1 g/L L-Arginine: Acetonitrile: acetic acid, 35:50:15
(isocratic, 0.5 mL/min). Molar mass was calculated using dRI as the concentration source.
The samples used were Liraglutide FDF Lot #33387-18; Saxenda Lot #JP54138, both available
already in suspension, 6 mg/mL.

4. Conclusions

Proper measurement of the native aggregation state of peptide APIs is crucial for their
safety and pharmacological profile. This aspect is also confirmed by the requests from the
worldwide regulatory agencies to Pharma companies to fully characterize their peptide
API and demonstrate sameness with the product in the market (RLD), when the API is
a generic. Working in formulation is necessary to appropriately represent samples state.
In our work, we addressed the characterization of Liraglutide, a Glucagon-like peptide 1
(GLP1) agonist, by working with an AF4 analytical platform, including UV, fluorescence, re-
fractive index, and multi-angle light scattering detection. The developed method managed
to correctly identify Liraglutide aggregation state and provided excellent LoQ and recovery
notwithstanding the drawbacks of working with a high-absorbing, high-viscosity eluent.
The analysis of a purposely degraded sample confirmed the ability to discern different
Liraglutide aggregates in terms of retention and conformation. The developed method was
able to identify the association state of Liraglutide in native conditions, which resulted to
be pentameric, and was used to perform a sameness study, which confirmed the identity
between commercial RLD samples, finished dosed form, and APIs. The developed tech-
nology expands the toolkit available for the characterization of the aggregation properties
not only of the peptides API, but of protein drugs in general, with the unique advantage
of measuring the aggregation behavior in their formulation environment in a native state,
since no additional physical medium is used to perform the analysis.
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