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ABSTRACT:
Recent studies have advocated for the use of connected speech in clinical voice and speech assessment. This

suggestion is based on the presence of clinically relevant information within the onset, offset, and variation in

connected speech. Existing works on connected speech utilize methods originally designed for analysis of sustained

vowels and, hence, cannot properly quantify the transient behavior of connected speech. This study presents a non-

parametric approach to analysis based on a two-dimensional, temporal-spectral representation of speech. Variations

along horizontal and vertical axes corresponding to the temporal and spectral dynamics of speech were quantified

using two statistical models. The first, a spectral model, was defined as the probability of changes between the energy

of two consecutive frequency sub-bands at a fixed time segment. The second, a temporal model, was defined as the

probability of changes in the energy of a sub-band between consecutive time segments. As the first step of demon-

strating the efficacy and utility of the proposed method, a diagnostic framework was adopted in this study. Data

obtained revealed that the proposed method has (at minimum) significant discriminatory power over the existing

alternative approaches. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0012734
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I. INTRODUCTION

Voice and speech are the primary methods for commu-

nicating ideas, thoughts, and emotions and degradation in

their perceived quality by the listener can significantly

reduce a person’s communicative effectiveness and quality

of life.1–3 In instances where a voice abnormality exists,

comprehensive evaluation is an integral part of the clinical

assessment4 with auditory-perceptual assessments and

acoustic measures serving as the primary methods of voice

evaluations.5,6 However, auditory-perceptual assessment is a

subjective index that is prone to high degrees of inter-rater

and intra-rater variability.7 Conversely, acoustic measures

are objective approaches which are robust to factors such as

human bias and variability that can provide a fast, auto-

matic, and low-cost tool for voice assessment.

Acoustic measures can be categorized into four main

groups. First, perturbation measures quantify the cycle-to-

cycle variations in the amplitude and frequency of vibration

of the vocal folds with shimmer and jitter being the most

well-known examples, respectively.8 Second, noise parame-

ters quantify the irregular component of the voice. Some

examples from this category are signal-to-noise ratio,9

harmonic-to-noise ratio,10 and energy of the noise in differ-

ent sub-bands.11 Third, cepstral and spectral measures cap-

ture spectral characteristics of the acoustic signal with

cepstral peak prominence (CPP),12 long-term average spec-

trum (LTAS),13 and temporal-spectral dynamics of speech14

being the most common methods. Fourth, non-linear mea-

sures such as the largest Lyapunov exponent15 and parame-

ters of the shape of phase-space have also been used.16

Considering the type of token, acoustic measures can be

applied to either sustained vowels or connected speech (i.e.,

spoken phrases or sentences). Sustained phonation is mini-

mally affected by intonation, speech rate, and dialect,17 as

the phonatory mechanism is less variable during its produc-

tion which may lead to more reliable measures.18 Also, its

production requires less instruction from the clinician,19 and

thus, sustained vowels have traditionally been the stimulus

of choice for acoustic analysis. Conversely, connected

speech is associated with variations in frequency, intensity,

intonation, prosody, phonation onsets and offsets, and other

temporal and spectral variations. Ecological validity has

been among the primary reasons for advocating the usage of

connected speech for acoustic analyses of the voice.20,21 For

example, using sustained vowels rather than connected

speech may lead to more severe auditory-perceptual rat-

ings,19,22,23 a finding that may lead to bias during voice

assessment. Additionally, non-stationary characteristics of
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speech (e.g., onsets) are a significant source of information

for voice assessment24 and connected speech is the more

likely context for manifestation of certain voice disorders

that result in dysphonia.25

At present, several different approaches are available

for the evaluation of connected speech.9,21,26–33 One possi-

bility is to use perturbation measures,26,30,32,34 however, per-

turbation requires accurate estimation of the fundamental

frequency (F0) which is increasingly unstable for dysphonic

vowels35 and the dynamic nature of connected speech would

make such an application even more challenging.

Additionally, intonation and prosody are inherent character-

istics of running speech, and hence perturbation measures in

connected speech would be higher. However, distinguishing

between normal and dysphonia-induced perturbations is not

a trivial task and may perform inferiorly in comparison to

spectral and noise measures.26

Despite several disadvantages, other widely used measures

for evaluation of connected speech are LTAS13,26,29,31–33 and

CPP and its smoothed version (CPPs).20,21,27,28,31 The underly-

ing assumption behind CPP and CPPs is the existence of a voic-

ing component, whereas connected speech includes both voiced

and unvoiced phonemes. One remedy is to detect the voiced

segments and then concatenate them for the analysis.13,26,32–34

However, because the unvoiced segments are removed, artifi-

cial sharp transitions are introduced into the stimuli being ana-

lyzed. More importantly, this evaluation does not give a full

representation of the speech sample. Second, LTAS, CPP, and

CPPs only provide the general (i.e., the long-term and average)

characteristics of the speech sample, while spectral and tempo-

ral dynamics of speech (e.g., onsets, offsets, pitch, and intensity

variations) are the main distinguishing factors between con-

nected speech and sustained vowels. Unfortunately, to date,

none of these methods have been designed to capture and

model these non-stationary phenomena.

Continuing our seminal work14 this study proposes a

novel non-parametric approach for quantification of the

dynamics and variation of connected speech in temporal and

spectral domains with possible clinical applications. However,

given the “methodological” computational nature of the cur-

rent study we have adopted a diagnostic framework as the first

step of validating the proposed method and demonstrating that

it has (at minimum) significant discriminatory advantages

over existing alternative acoustic measures.

II. MATERIALS AND METHODS

The acoustic speech signal is often displayed as a time-

dependent amplitude signal. This one-dimensional (1D) rep-

resentation has a perfect time resolution. However, it is pos-

sible to exchange the temporal resolution and to derive a

two-dimensional (2D) temporal-spectral representation of

the signal. The potency of this approach for cryptanalysis of

scrambled speech was demonstrated recently36 and intelligi-

bility of 92.9% was reported for the recovered samples.37

This value was 50.9% higher than methods based on 1D rep-

resentation of the speech.37 Considering the inherent diffi-

culty of the cryptanalysis problem, this result suggests the

potential of the 2D representation of an acoustic signal. The

2D representation of speech makes the visual tracking of

the temporal-spectral variations possible. Owing to this

characteristic, spectrograms (which are 2D representations)

have been an important tool in voice science and phonet-

ics.38,39 The current study is based on a similar rationale and

proposes a novel approach for objective measurement of the

dynamics of connected speech from its 2D representation.

There are many benefits to this approach, for example, the

trade-off between temporal and spectral resolutions could be

adjusted to achieve the best result. Also, the conversion

from 1D to 2D representation is very flexible and could be

implemented based on filter banks in a suitable domain,40

short-time Fourier transform,37 and wavelet.41 Finally,

many image processing techniques become applicable to

acoustic signals. Figure 1 shows a block diagram of the pro-

posed method. First, the acoustic signal is transformed into

its 2D image representation, and then its variation and

dynamics along the x (time) and y (frequency) axes are mod-

eled. Supervised learning is employed for finding discrimi-

native patterns between dynamics of different classes.

A. Database

Based on our rationale, the performance of the proposed

method was evaluated using three different speech datasets.

Details of each data set are presented in Table I.

FIG. 1. (Color online) Block diagram of the proposed method.
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The first dataset was a two-class set, and it included

speech recordings from participants with amyotrophic lat-

eral sclerosis (ALS) with bulbar symptoms and age-matched

controls. The ALS group consisted of eight individuals

recorded over three sessions (baseline, 3 months, and

6 months later). The control group consisted of 12 vocally

healthy individuals recorded over two sessions (baseline and

6 months later). Due to dropout, some participants had

recordings only from some of the sessions. All participants

completed the Word-In-Phrase portion of the Speech

Intelligibility Test for Windows
VR 47 and the acoustic signals

were recorded using a head mounted microphone (AKG

C410) positioned 6 cm from the mouth at a 45� azimuth and

a digital recorder (Zoom H4N, 24-bit/96 kHz). For this task

57 target words were selected randomly and inserted into

the carrier phrase, “say [target words] again” and each sub-

ject was asked to read them using their typical pitch and

loudness. Severity of speech impairment was measured

from these stimuli as percent speech intelligibility;47 inter-

ested readers may refer to Refs. 48 and 49 for further infor-

mation about this dataset.

The second dataset was a two-class set that included

speech recordings from participants with Parkinson’s dis-

ease (PD) and controls. The PD and control groups consisted

of 57 and 33 participants, respectively. All participants were

asked to read the Grandfather Passage50 at a comfortable

pitch and loudness level. The Grandfather Passage contains

129 words and is a standard passage for the evaluation of

motor speech disorders. The acoustic signals were recorded

using a headset microphone (Shure SM150) positioned

15 cm from the mouth and a Tascam DA-P1 DAT recorder

(16 bit/48 kHz). Severity of speech impairment was mea-

sured using the Speech Intelligibility Test for Windows
VR 47

and interested readers may refer to Ref. 51 for further infor-

mation about this dataset.

The third dataset was a four-class set, and it included

speech recordings from participants with voice disorders

[adductor laryngeal dystonia (AdLD), unilateral vocal fold

paralysis (UVFP), and vocal hyperfunction (VHF)] and con-

trols. All participants were asked to read the first paragraph

of the Rainbow Passage52 at their comfortable pitch and

loudness. The Rainbow Passage is a standard passage used

for the evaluation of voice disorders and its first paragraph

contains 98 words. The acoustic signals were recorded using

a cardioid condenser microphone (SHURE PG81) posi-

tioned 15 cm from the mouth and a laptop running Kay-

Pentax Sona Speech II (16 bit/ 44.1 kHz). No perceptual

evaluation was available for this dataset; therefore, CPP12

was used as a corollate for the overall severity.

B. 2D image-representation

This study adopted a filter bank approach for creating the

2D representation of speech, as filters with different frequency

resolutions (e.g., Mel,42 R-Mel,40 uniform11) can be used. Also,

the output of each filter is expressed using a single number (i.e.,

energy) which would reduce the number of spectral measures

(the number of vertical pixels in the image). This is especially

useful for short recordings. Figure 2 represents the steps.

The audio signal was segmented and then multiplied

with a Hamming window. Fast Fourier transform (FFT) of

each segment was then multiplied with a set of filters con-

structed based on the Mel scale which provides high spectral

resolution at low frequencies and low spectral resolution at

high frequencies.40 Equation (1) shows the conversion of a

frequency f from Hz into Mel,

Mel ¼ 1127 ln 1þ f=700ð Þ: (1)

The number of filters in the bank determines the spectral

resolution (i.e., the number of vertical pixels) in the final

image. Detailed information regarding the construction of

the filter bank may be found in an earlier work.43 The

energy of each filter was computed by summing its output in

the frequency domain. A column of the image was created

by vertical concatenation of energy of all filters. Repeating

these steps for all segments results in the 2D representation

of the signal, where x and y axes correspond to temporal and

spectral domains, respectively. Let {Wy: y¼ 1,…,M} be a

bank of M filters, and F denotes the FFT. Also, assume that

the acoustic signal has been divided into N segments, with

sw(x,t) denoting segment x after applying the Hamming

TABLE I. Summary of the included datasets. M: Male, F: Female. The numbers reported before and after the 6 are mean and standard deviation. Amyotrophic

lateral sclerosis (ALS), Parkinson’s disease (PD), adductor laryngeal dystonia (AdLD), unilateral vocal fold paralysis (UVFP), and vocal hyperfunction (VHF).

Dataset Classes

Participants’ information Recording information

Severity scoreNumber Gender Age Number Length(s) Token

ALS-DB Control 12 6 M, 6 F 66.1 6 9.5 1197 1.6 6 0.3 Say [target words] again 98.5 6 0.7

ALS 8 4 M, 4 F 64.6 6 10.2 1197 1.8 6 0.5 72.7 6 12.1

PD-DB Control 33 15 M, 18 F 61.3 6 14.7 33 48.9 6 5.9 Grandfather Passage 98.5 6 0.8

PD 57 29 M, 28 F 68.7 6 9.0 57 55.4 6 16.5 89.9 6 10.6

VD-DB Control 32 16 M, 16 F 39.3 6 8.8 32 32.0 6 5.8 First paragraph of the Rainbow Passage 13.3 6 1

UVFP 24 10 M, 14 F 58.2 6 9.4 24 42.8 6 9.7 10.4 6 1.2

AdLD 20 4 M, 16 F 58.3 6 9.7 20 43.3 6 6.7 11.2 6 0.9

VHF 49 23 M, 26 F 44.2 6 10.9 49 37.0 6 6.9 11.9 6 1.6
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window. Equation (2) shows the relationship between these

variables, where J(x,y) is the output of Fig. 2 after log opera-

tion. Equation (3) shows the relationship between N, the

length of the signal (L), the segment length (q), and the

amount of overlap (k),

J x; yð Þ ¼ log
X
F sw x; tð Þ½ � �Wy

� �
;

1 � x � N; 1 � y � M; (2)

N ¼ L� k
q� k

� �
: (3)

J(x,y) is a 2D representation with real values. To use image

processing techniques, they should be mapped into a limited

set of numbers. This was done by applying a quantizer (Q)

on J(x,y),

I x; yð Þ ¼ Q J x; yð Þ
� �

; 1 � x � N; 1 � y � M: (4)

A scalar non-uniform quantizer with l levels was con-

structed by dividing the range of [0, 1] from the cumulative

distribution function (CDF) of J x; yð Þ into l equal-length

intervals. The values corresponding to those intervals were

selected as steps of the quantizer. Implications of different

values of l are discussed later in the simulations and results

section. Figure 3 shows an example.

C. Dynamics modeling

The image I(x,y) has N�M pixels, and given the depen-

dence of N on the recording length comparison between dif-

ferent recordings would require some temporal

normalization first. Additionally, evaluating individual pix-

els provides limited information and most of the information

is present at a larger scale. Therefore, the value of each pixel

with respect to its neighbors were quantified using their joint

distributions. The 1-neighborhood defined along x and y
axes would capture temporal and spectral variations of the

signal. The mathematical definition of temporal (WT) and

spectral (WS) models are shown in Eqs. (5) and (6), where d
denotes the Dirac delta function and 1 � i; j � l,

WT i; jð Þ ¼

XM

y¼1

XN�1

x¼1

d I x; yð Þ ¼ i; I xþ 1; yð Þ ¼ j
� �

M � N � 1ð Þ ; (5)

WS i; jð Þ ¼

XN

x¼1

XM�1

y¼1

d I x; yð Þ ¼ i; I x; yþ 1ð Þ ¼ j
� �

M � 1ð Þ � N
: (6)

It is worthwhile to elaborate on the interpretation of the

models. WT i; jð Þ ¼ k means that if the energy of a sub-band

at time t is equal to i, the energy of the same sub-band at

time tþ 1 would change to j with a probability of k.

WS i; jð Þ ¼ k means that if the energy of a sub-band at time t
is equal to i, the energy of the next sub-band at the same

time t would change to j with a probability of k. Figure 4

depicts the spectral model of a test sample on a logarithmic

FIG. 2. (Color online) Block diagram of image representation steps.

FIG. 3. (Color online) A non-uniform scalar quantizer with l¼ 10 levels.
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scale. The small values have been replaced with �10 for

better illustration.

D. Feature extraction procedure

The proposed approach yielded two statistical models

and their components (l2 values per model) can be used for

finding discriminative patterns, but they can only capture

simple phenomena. However, the holistic properties of the

model can capture more complex characteristics. Further,

the two models will produce 2l2 values. Training a classifier

with many features increases its computational complexity,

requires more training samples, and introduces the possibil-

ity of redundant or irrelevant features. Therefore, features

were extracted from the shape of the models instead. A

model with just diagonal values represents a static phenome-

non. Therefore, dispersion from the diagonal would be a

good holistic feature. The first rows of the model represent

low energy values and variation in that region is more likely

to happen and therefore less informative. Hence, dispersions

at higher energies were weighted more. Equation (7) shows

the formula for diagonal dispersion. Values of a ¼ 1=2 and

b ¼ 1=3 were used in this paper,

d ¼
Xl

i¼1

Xl

j¼1

W i; jð Þ � ji� jjð Þa � ib: (7)

A model with many zeros and just a few large values indi-

cate a predictable signal, whereas model with many small

values indicates a less predictable signal. Entropy can quan-

tify these and Eq. (8) shows its computation,44

H ¼ �
Xl

i¼1

Xl

j¼1

W i; jð Þ � log W i; jð Þð Þ: (8)

Diagonal dispersion and entropy provide macro-level infor-

mation of the models. To capture local information, values

of the mean (lr), standard deviation (rr), and inertia (J r)

for every row r of the models were also computed,

lr ¼
Xl

j¼1

W r; jð Þ=l; (9)

rr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXl

j¼1

1

l
W r; jð Þ � lrð Þ2;

vuut (10)

J r ¼
Xl

j¼1

W r; jð Þ � j2: (11)

In summary, 3lþ 2 features (a diagonal dispersion, an

entropy, l means, l standard deviations, and l inertias) were

extracted from each model.

E. Finding discriminative patterns

To find discriminative patterns between target classes, a

support vector machine (C-SVM) with radial basis function

(RBF) kernel was used. The kernel scale was set to auto in

MATLAB. Feature normalization could improve the perfor-

mance of classifiers.16 Equation (12) was used for this pur-

pose, where l and r denote the mean and standard deviation

of a feature f estimated from the training samples,

f̂ ¼ f � lð Þ=r: (12)

Finally, feature selection was used to remove the irrelevant

and redundant features. This step significantly reduces the

number of features in the final model and is a necessary step

for achieving the interpretability of the framework and

understanding the underlying differences between classes.

The present study used a genetic algorithm (GA) due to its

superior performance.16,45 This decision was made primarily

due to the fact that unlike sequential feature selection, GA-

feature selection directly works in the target sub-space and

can benefit from the existence of any high-dimensional

interaction between the selected features. Parameters of our

GA were as follows: accuracy of classifier as the fitness

function, 200 individuals, two-point crossover,46 tournament

selection, and mutation with a rate of 1%. The GA algorithm

was stopped if the fitness function did not improve after five

consecutive generations.

F. Cross-validation approach

Generalization of the outcomes on PD-DB and VD-DB

were evaluated using a stratified ten-fold cross-validation,

where all samples from each class were evenly and randomly

divided into ten disjoint sets. Each set constituted the testing

set of that fold, and all the remaining samples were included

into its corresponding training set. Referring to Table I, par-

ticipants from the ALS-DB had multiple speech tokens;

therefore, using a ten-fold cross-validation would lead to data

overlap between training and testing sets. Therefore, a leave-

FIG. 4. (Color online) Spectral model

of a test sample with l¼ 20 levels.
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one-subject-out method was used for ALS-DB. That is, for

control participants, recordings from both sessions (2� 57

samples) were excluded from their relevant training set and

only included in their relevant testing set. For participants

with ALS, however, each recording session was treated sepa-

rately and only 57 samples were excluded from the training

set and included in the testing set. The rationale for this

choice was that ALS is a progressive disease and the 3-month

gap between different recording sessions was leading to sig-

nificant degradation in the speech recorded during later ses-

sions. Investigating the intelligibility and speech rate of

participants with ALS over different sessions provided

confirmation.49

III. SIMULATIONS AND RESULTS

Four different experiments were conducted to demon-

strate the application and performance of the proposed

method.

A. Experiment 1: Dynamics models of synthetic
signals

To provide better insights into the proposed method,

temporal and spectral models of different synthetic signals

are shown in Fig. 5. The first signal was a series of finely

spaced harmonics with decreasing amplitudes at higher fre-

quencies. Its temporal model has values primarily on the

diagonal indicating little temporal variation. On the other

hand, its spectral model has a concave shape (i.e., values are

above the main diagonal), meaning that with high probabil-

ity the next sub-band has lower energy. Both observations

agree with the expectations for this signal. The second sig-

nal was an impulse train (i.e., fast temporal variation but a

constant spectrum). The temporal model shows large values

(yellowish color) for off diagonal entries, indicating that

with high probability a high-energy time segment is fol-

lowed by a low-energy time segment. In contrast, the spec-

tral model only has values on the main diagonal, revealing

similar energy between consecutive sub-bands. Both obser-

vations agree with the expectation for an impulse train. The

next two signals were white and pink noises, respectively.

White noise exhibits similar temporal and spectral models

which concur with visual inspection of the spectrogram. The

models also have Gaussian-like shapes. Samples of white

noise are independent and identically distributed, and ele-

ments of our models are constructed using a sum [Eqs. (5),

(6)]; therefore, the Gaussian-like peak was expected. Pink

noise has a much wider range of variations and, hence, its

models exhibit more dispersed patterns. Finally, the spectro-

grams of the last two signals are more complex which is

depicted in their temporal and spectral models. Finding dis-

criminative patterns for the last two examples are more chal-

lenging; therefore, machine learning was used for the

remaining experiments where the discriminative power of

the proposed method was investigated.

B. Experiment 2: Parameter tuning

This experiment demonstrates effects of parameters of

the proposed method and serves as a sensitivity analysis.

We started with 30 ms segments, 15 ms overlap, and 20 fil-

ters, and sequentially optimized a set of parameters at a

time. This experiment was conducted using the ALS-DB

with a forward feature selection16 due to its lower computa-

tional complexity and good performance.45 The number of

quantizer levels (l) determines the number of intensity levels

in the image, and hence the resolution of changes that can

be captured. A larger value of l leads to an image with more

temporal-spectral details, which is desirable. However, it

also increases the number of entries in the models. The

value of l was changed from 10 to 80 levels in increments of

5. Table II presents the results for selected values of l.
Based on Table II, the performance of both models

improves as l increases, with the largest improvement occur-

ring around l¼ 60. However, the number of features

increases with l and longer recordings are also required for

FIG. 5. (Color online) Spectrogram, temporal, and spectral model of some synthesized signals. Diagonal of each model is represented with a red dotted line.
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reliable estimation of the joint distributions [Eqs. (5), (6)].

Hence, the value of l¼ 65 was selected.

The spectral resolution depends on the sampling fre-

quency (Fs) of the signal and the number of filters (M),

where Fs determines the bandwidth of the signal and M
determines how finely that bandwidth is divided into differ-

ent frequency bands. That is, we could increase the spectral

resolution of the produced image by increasing the value of

M. Alternatively, we can derive a high-resolution represen-

tation from the low-frequency regions of the signal (i.e., dis-

carding its high-frequency components) by keeping the M
constant and instead downsampling the signal from the orig-

inal Fs into a lower one. The value of target Fs (i.e., the

downsampled version) was changed from 8 to 44.1 kHz in

8 kHz-increments, and the value of M was changed from 5

to 40 in increments of 5. Figure 6 presents the results

smoothed by an averaging filter with the size of 2� 2.

Based on Fig. 6 performance of the spectral model gen-

erally improves with an increase in Fs, but the temporal

model is relatively robust to variations in Fs. Additionally,

both models perform better with a low number of filters.

The two models are independent of each other and could be

computed with different parameters, but for simplicity, the

same set of parameters (Fs¼28 000 Hz and M¼ 10) was

used for both models.

Segment length and the value of overlap determine the

temporal resolution and smoothness of the produced image.

The value of segment length was varied from 20 to 60 ms in

5 ms-increments, and the value of overlap was varied from

5% to 95% of the segment length in 5%-increments. Figure

7 presents the results smoothed by an averaging filter with

the size of 2� 2.

Based on Fig. 7, the spectral model has its best perfor-

mance at moderate values of segment length and overlap,

whereas a larger segment length with a small overlap is opti-

mum for the temporal model. The two models are indepen-

dent of each other and could be computed with different

parameters, but for simplicity, the same set of parameters

(45 ms and 35% overlap) was used for both models.

C. Experiment 3: Comparison with alternative
approaches

This experiment was conducted to compare the perfor-

mance of the proposed method with some existing alterna-

tives. Recently, LTAS was used for analysis of connected

speech of PD.33 We followed the same methodology and

extracted ten features from speech. CPP and CPPs12 are also

popular acoustic measures for evaluation of connected

speech. We used their mean, standard deviation, skewness,

and kurtosis as classification features. The distribution of F0

could be discriminative too, therefore, the same four statisti-

cal moments were also computed from the F0 of speech

samples. Computations of CPP, CPPs, and F0 have an

implicit assumption about the presence of a voicing compo-

nent in the speech. Therefore, these measures may be

extracted only from the voiced segments of the speech. This

routine has been recommended in some studies,20,32 while

others did not make such distinction.4,12,21,27 To account for

this discrepancy and to measure the effect of including

unvoiced segments on the performance of features, both

cases were investigated. Conversely, computation of the

LTAS does not have such assumption and it can be com-

puted from the whole signal. Yet, some studies have com-

puted LTAS only from voiced segments;13,26,33 therefore,

TABLE II. Effect of quantizer level on the accuracy of the classifier.

Number of selected features

l 1 2 3 4 5 6 7 8

WT 10 68.2 77.5 81.2 83.6 83.9 84.4 85 84.7

20 66.2 73.5 75.9 80.2 82.6 83.5 84.5 85.1

30 66.8 74.2 75.4 76.8 78.4 80.8 81.9 83.2

40 69.2 75.9 80.6 81.6 84.2 84.7 85.6 86.3

50 69.8 78.7 82.7 83.3 84.3 85.4 86.3 87

60 77.9 82.1 83.7 85.4 85.8 86.4 87.7 88

65 83.2 84.6 85.6 86.9 87.5 89.1 90.1 90.7

70 84.6 85.9 87.2 87.3 88.5 90 90.1 90.7

75 85.7 87.1 87.8 88.2 88.8 89.6 90.4 90.2

80 86.5 88.6 89.4 90.1 90.9 91.2 91.2 91.1

WS 10 57.8 63.2 69.3 72.7 75.6 77.2 78.7 79.4

20 59.7 47 56.1 63.8 65.1 65 67.2 71.5

30 63.3 55.3 67.4 73.1 77.5 79.7 80.8 81.4

40 66.2 62.5 73.9 78.8 81.5 82.8 83.6 83.9

50 66.1 73.2 77.3 79.6 82.4 84.2 84.6 85.6

60 75.7 83.8 85.9 87 87 88.4 89 89.2

65 81.4 84.5 86.6 86.7 87.7 88.6 88.9 89.4

70 84 87 88.1 88.3 88.5 89 89.1 89.2

75 84.1 87.3 87.3 87.5 88 88.8 89.6 89.6

80 85 87.8 88.1 89.3 89.2 89.7 90.3 90.5

FIG. 6. (Color online) Effect of spectral resolution when eight features are selected: (A) Spectral model, (B) Temporal model.
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the performance of both cases was investigated. Voiced seg-

ments were detected using a combination of zero-crossing

rate, energy, and autocorrelation.26 Wavelet analysis is

another method that had promising results on sustained

vowels,41 but it can also be applied to connected speech.

Features were computed as entropy and energy of all sub-

bands.41 Modulation spectra is another technique that is suit-

able for the analysis of connected speech and has already

been used for evaluation of PD.53 Features were computed

as the mean and standard deviation of modulation spectra

centroids and their energy.

Table III compares the performance of the proposed

method with some existing alternatives on three speech

datasets. It is noteworthy that, the main goal of classification

for ALS-DB was to discriminate between ALS and controls

and the proposed method used six features. The main goal

of classification for PD-DB was to discriminate between PD

and controls and the proposed method used four features.

Finally, the main goal of classification for VD-DB was to

discriminate among controls and the three groups of voice

disorders (Table I) and the proposed method used seven fea-

tures. A series of two-sample t-tests were used to compare

performance of the proposed method (SpectralþTemporal)

with Wavelet, which was the best existing alternative on all

three datasets. The proposed method significantly outper-

formed the Wavelet method on ALS-DB (p¼ 0.006,

t¼ 2.8), PD-DB (p¼ 0.0001, t¼ 5.4), and VD-DB

(p¼ 0.006, t¼ 3.1). These promising results confirm the

advantage of the proposed method.

D. Experiment 4: Effect of different classifiers

Experiment 4 was conducted to investigate robustness

of the proposed method to different classifiers. Features of

the proposed method were fed into different classifiers

including the naive Bayes, neural network, tree, and random

forest (Table IV). The overall observation supports the

robustness of the outcome for different classifiers. Naive

Bayes showed the largest degradation in performance while

random forest followed the performance of SVM closely.

IV. DISCUSSION

This study was motivated by the observation that exist-

ing approaches to clinical evaluation of connected speech

utilize methods that were originally designed for analysis of

sustained vowels, a method that is inadequate for quantifica-

tion of transient behaviors within the speech signal. Based

on the data obtained, some important observations can be made.

FIG. 7. (Color online) Effect of temporal resolution when eight features are selected: (A) Spectral model, (B) Temporal model.

TABLE III. Performance of different methods in terms of sensitivity (Sen.), specificity (Spe.), accuracy (Acc.), and balanced accuracy (BAcc.). The best

results are shown in boldface.

ALS-DB PD-DB VD-DB

Feature set Sen. (%) Spe. (%) Acc. (%) Sen. (%) Spe. (%) Acc. (%) Acc. (%) BAcc (%)

LTAS 72.0 6 23.7 73.1 6 19.3 72.4 6 21.9 93.0 6 12.0 24.2 6 23.7 67.8 6 7.8 39.8 6 10.0 31.1 6 11.8

LTASa 63.2 6 23.6 50.3 6 20.3 58.5 6 23.0 93.3 6 11.7 9.2 6 14.9 62.3 6 9.1 40.8 6 11.9 30.8 6 13.1

F0 51.1 6 27.4 34.6 6 14.2 45.1 6 24.6 82.0 6 18.2 9.2 6 14.9 55.4 6 14.1 37.0 6 10.7 31.8 6 13.0

F0a 46.4 6 23.9 36.9 6 23.2 43.0 6 23.8 91.3 6 12.1 27.5 6 22.2 67.7 6 13.3 29.7 6 9.7 22.0 6 13.0

CPP 60.4 6 18.6 50.3 6 12.6 56.7 6 17.2 91.3 6 9.2 18.3 6 16.1 64.7 6 8.7 46.6 6 8.2 42.0 6 5.6

CPPa 44.0 6 14.1 41.5 6 12.2 43.1 6 13.3 94.3 6 13.2 45.0 6 28.7 76.7 6 12.0 53.0 6 18.8 48.0 6 13.6

CPPs 61.5 6 21.8 47.8 6 22.6 56.5 6 22.7 87.7 6 12.8 3.3 6 10.5 56.5 6 8.9 43.6 6 15.3 40.8 6 21.4

CPPsa 51.0 6 22.5 47.8 6 16.6 49.8 6 20.3 90.3 6 19.3 33.3 6 17.1 70.1 6 12.7 48.8 6 9.1 44.5 6 10.6

Modulation spectra 80.5 6 23.4 62.4 6 30.9 73.9 6 27.4 87.7 6 15.0 44.2 6 31.9 71.2 6 15.7 47.8 6 15.2 44.4 6 13.9

Wavelet 85.0 6 23.3 80.3 6 21.3 83.3 6 22.4 82.7 6 8.0 75.0 6 25.5 79.2 6 9.9 57.0 6 13.7 51.3 6 12.6

Spectral 94.0 6 10.2 86.0 6 18.7 91.1 6 14.1 96.3 6 7.8 82.5 6 15.4 91.1 6 7.1 69.4 6 14.3 64.9 6 15.3

Temporal 96.2 6 5.7 90.3 6 13.4 94.1 6 9.5 96.3 6 7.8 100.0 6 0.0 97.8 6 4.7 72.8 6 6.7 66.9 6 8.4

SpectralþTemporal 96.8 6 4.7 92.1 6 13.0 95.1 6 8.8 98.3 6 5.3 97.5 6 7.9 97.9 6 4.7 73.0 6 8.9 65.8 6 10.8

aFeatures were extracted from only voiced segments of the speech.
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First, reviewing Table III the temporal models had better

discriminative power than their spectral counterparts. This

observation suggests that the temporal variation is the more

likely place to find more powerful measures for reliable

diagnosis and maybe even for a more accurate prognosis of

voice and speech disorders. Interestingly, this was true for

the voice disorder database which represents an impairment

of the larynx and the vibratory characteristics of the vocal

folds and not necessarily an issue with the vocal tract. This

conclusion is consistent with studies suggesting that con-

nected speech is the more valid context for the evaluation of

voice disorders.9,19–25 Second, when features from the tem-

poral model were augmented with features from the spectral

model, the discriminative power did not improve signifi-

cantly. This observation suggests that (at least in the pro-

posed method), the spectral information is redundant and

only the temporal information is required. This contrasts

with contemporary clinical voice and speech research that

has focused on the quantification of the spectral characteris-

tics of the signal. Third, the more conventional clinical

acoustic measures of LTAS, CPP, and F0 had the lowest dis-

criminative power. The average accuracy improvement of

the proposed method over these conventional measures was

35.1%. This finding highlights their limited statistical pow-

ers for research and clinical evaluation and supports the

need for the development and utilization of more robust

acoustic measures. Fourth, Table III does not show a mean-

ingful trend for computation of LTAS, CPP, and F0.

Specifically, computation of CPP and F0 from only the

voiced portions of samples increased their discriminative

powers only for some of the databases, whereas, for the

remaining ones it either did not change or decreased their

discriminative powers. The same observation is true for

LTAS features. Based on these data, we are not able to

establish a recommendation regarding the computation of

these commonly used features in clinical voice science

research. One reason for this behavior could be that the

commonly used technique of concatenation of the voiced

phonemes introduces abrupt and sharp transitioning at the

boundaries of phonemes, a process which would dilute com-

putation of the subsequent measures.

The proposed method is a non-parametric approach

without any implicit or explicit assumptions about the type

of stimuli being analyzed and, therefore, it offers a general

framework for the analysis of both connected speech and

sustained vowels. The proposed framework has several

potential applications and the present experiments offer

preliminary findings on its feasibility and discriminatory

powers. However, most aspects of the method are still unex-

plored. For example, the definition of the neighborhood is a

key factor of the proposed method, and it determines the

phenomenon that is being captured. This study used one-

neighborhood in the x and y directions which in turn led to

short-time temporal and spectral models of the speech.

However, it is possible to capture other phenomena of

speech by defining other appropriate neighborhoods. For

example, long-term spectral and temporal behaviors may be

captured using a higher-order neighborhood combined with

a vector quantizer, or the spectro-temporal interactions and

patterns (e.g., upward pitch-glides) may be captured by

defining proper diagonal neighborhoods. Another possible

part of the method that could be revised to provide more

granularity is its temporal model. Referring to Eq. (5), the

temporal model was defined as the overall variation of all

rows of the image along the x axis, meaning temporal varia-

tions in all sub-bands were treated equally and were mixed

together; this is probably why the temporal model of pink

noise in Fig. 5 had an elliptic shape rather than a circular

one. However, if different sub-bands have dissimilar tempo-

ral variations a separate temporal model could be computed

for each sub-band. The efficacy of this approach remains a

valuable question for future research. Finally, the perfor-

mance of the system may improve by using a different quan-

tization approach (e.g., vector quantization, or having

smaller step sizes for certain energy intervals) or more

sophisticated image processing techniques for capturing

more complex phenomena in future studies.

Deep networks such as convolutional neural networks

(CNNs) have been a recent mainstream in the machine

learning community with very promising results, yet the pre-

sent work did not consider such approaches. Those new

architectures do not require the application of hand-crafted

features (similar to those presented here) and also could

achieve better classification outcomes; however, their appli-

cations for clinical purposes and basic science research may

be limited. That is, clinical and basic science studies are

often hypothesis driven, whereas these new machine learn-

ing architectures seem to be incompatible with hypothesis-

driven research. Specifically, these networks learn the

“feature extraction” process based on the data and during

the learning phase itself. In contrast, in hypothesis-driven

research, a premise needs to be formed about the outcome

before conducting any analyses on the data. Lacking the

interpretability of the outcome is another disadvantage of

these new architectures. For example, the final features of a

CNN are the results of different kernels from different layers

propagated through many layers and mixed in a very com-

plex fashion with each other. Therefore, it is not clear (if

possible at all) to identify what the final features are captur-

ing. While each individual CNN kernel may be visualized

and “some of them” could be “approximated” with well-

understood operations (e.g., low-pass, high-pass), such real-

izations are only a very tiny fraction of the possible space

and most of the kernels will not be well-behaved and well-

TABLE IV. Performance of SpectralþTemporal model with different clas-

sifiers in terms of accuracy.

Classifier ALS-DB PD-DB VD-DB

SVM 95.1 6 8.8 97.9 6 4.7 73.0 6 8.9

Naive Bayes 93.2 6 10.0 76.2 6 17.0 59.2 6 10.3

Neural network 94.1 6 9.6 90.1 6 9.5 55.4 6 16.2

Tree 91.5 6 11.5 84.4 6 9.4 57.5 6 13.1

Random forest 94.5 6 9.3 92.1 6 7.6 62.3 6 10.3
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understood. Therefore, even if the behavior of some of the

kernels can be understood, their complex combinations and

interactions with the remaining kernels would hinder under-

standing and interpretation of the final features.

Despite the importance of our current findings, several

limitations are noted. First, the relatively small sample size

of the database and the lack of an independent test set raises

the possibility of overfitting and the risk of overtraining.

However, investigating the performance of the method on

multiple datasets and with different classifiers, and compar-

ing the performance of the method on the training set and

testing set suggest that the degree of over-fitting should be

small. Looking at the performance of the method on the

training sets showed a small variance (about 2%) for the

ALS-DB and PD-DB. However, the difference between

the training and testing accuracies on the VD-DB was much

higher (about 9%). This high variance could be attributed to

the small sample and the complexity of the problem (a four-

class classification). The imbalanced PD dataset and the age

range differences between controls and participants with

UVFP and AdLD are some other points that should be men-

tioned. Referring to Table III, we see comparable sensitivity

and specificity for the proposed method on PD-DB which

translates into its robustness to PD-DB being imbalanced.

Regarding age differences in VD-DB, speech of patients

with UVFP and AdLD have distinct perceptual attributes

and it is more likely for the machine learning to train on

these more prominent attributes rather than nuanced differ-

ences associated with age. However, there is some possibil-

ity for age-related differences to contribute to the

performance of those two classes. As a final note, the pro-

posed method has clear interpretation in the signal process-

ing sense and relative to the rich existing literature on the

spectral analysis of voice and speech; consequently, such

data could be used to make informed hypothesis about the

behavior of the spectral model, but the possibility of its

physiological interpretation remains as a question for future

studies.

V. CONCLUSION

Evaluation of voice and speech is an integral part of the

clinical voice assessment. Recent studies have advocated for

the use of connected speech for this purpose. Unfortunately,

existing works on the evaluation of connected speech have

only changed the type of stimuli from sustained vowel to

connected speech, without changing the employed evalua-

tion methodology. Considering that voicing onsets, offsets,

and temporal variations of speech are the main advantages

of using connected speech over vowels, methods for quanti-

fication of the dynamics of connected speech are needed.

To address this gap, a novel method based on image-

representation of speech was proposed and empirically eval-

uated. Dynamics and variations of the produced image along

x and y axes were captured using the joint distribution of

properly defined neighborhoods. These models captured var-

iations in the energy of speech between two consecutive

time segments and two consecutive frequency sub-bands.

As the first step of demonstrating the efficacy and utility of

the proposed method, a diagnostic framework was adopted.

At minimum, the proposed method has significant discrimi-

natory power. To this end, features were extracted from

each model and were fed into an SVM seeking discrimina-

tive patterns for three different clinical databases. The per-

formance of the proposed method was compared with a

wide range of existing approaches covering the commonly

used methods for clinical evaluation of voice and speech,

and some alternatives based on 2D representations of the

signal. The proposed method outperformed alternative

approaches with a high margin on all investigated databases.

The average accuracy improvement of the proposed method

over the more conventional clinical acoustic measures of

LTAS, CPP, and F0 was 35.1%.
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