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ABSTRACT
Transition path theory provides a statistical description of the dynamics of a reaction in terms of local spatial quantities. In its original
formulation, it is limited to reactions that consist of trajectories flowing from a reactant set A to a product set B. We extend the basic concepts
and principles of transition path theory to reactions in which trajectories exhibit a specified sequence of events and illustrate the utility of this
generalization on examples.
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I. INTRODUCTION

Many reactions studied today proceed through competing
pathways. Understanding such reactions relies on being able to
assess the relative importance of the competing pathways and how
they contribute to overall rates. When the pathways are well sepa-
rated, they can be treated independently, often by traditional theo-
ries that assume a well-defined activated complex (transition state)
and a simple form for the underlying (free) energy landscape gov-
erning the dynamics.1,2 However, when the (observed) dynamics
are stochastic, the pathways of reactions often overlap in configu-
ration space. Approaches that treat competing pathways in a unified
fashion are thus needed.

To this end, here, we build on transition path theory (TPT).3–7

The core idea of transition path theory is that the statistics of the
ensemble of reactive trajectories can be related to quantities that are
local in space: probability currents of reactive trajectories (hence-
forth, reactive currents) and committors. These quantities enable
TPT to go beyond traditional theories by providing information
about mechanisms. Reactive currents quantify flows in phase space.
Committors, which are probabilities of reaching one metastable state
before another, by definition characterize the progress of stochastic
reactions.8

In its traditional formulation, TPT focuses on transitions
between two metastable states. In the present paper, we extend TPT
to compute statistics for sequences of events, and we show how this

significantly expands its applicability. Our work builds on but goes
beyond previous studies. It is closely related to history-augmented
Markov state models, in which states are labeled based on the last
metastable state visited.9 Separating the ensemble of reactive tra-
jectories using these labels enables rates to be computed from the
flux into a metastable state10,11 as well as reactive currents and com-
mittors from the underlying trajectories.12 Our approach generalizes
the labeling strategy to sequences of arbitrary numbers of states and
allows specification of not just past events but also future ones.

Our work also has connections to that of Koltai and co-workers,
who extended TPT to allow trajectories to leave and enter the region
connecting the metastable states to analyze trajectory segments from
satellite data for drifters in the ocean.13 Specifically, they redefined
committors to exclude trajectories that were not wholly within this
region and noted that this approach could be used to exclude tra-
jectories that pass through selected states. They also considered
computing statistics for trajectories beginning and ending in spe-
cific portions of metastable states. Both of these developments allow
statistics to be computed for subsets of reactive trajectories based on
the states that they visit.

We present our work as follows. First, in Secs. II A and II B,
we review how TPT expresses path statistics in terms of spatially and
temporally local quantities using committors. In Sec. II C, we present
a motivating example in which this is not possible within the existing
framework, but it can be made possible by augmenting the stochastic
process with labels that account for sequences of events. This is the
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key idea of the paper. While this idea is straightforward, formulating
the theory in full generality requires some technical development,
and readers may wish to skim Secs. II D and IV initially, focusing
on the brief summaries in the first paragraphs of Secs. II D and IV.
In Sec. II D, we discuss conditions of consistency and Markovianity
that must be satisfied for TPT to apply to the augmented process.
We also generalize committors and integrals based on them. In
Sec. III, we review the most commonly computed TPT statistics
and show how they can be computed in our augmented TPT
framework. In Sec. IV, we introduce a procedure for constructing
the augmented process from pairs of successive time points rather
than full trajectory segments, and we show how processes can be
composed to construct more complex ones. We summarize the
operational procedure in Sec. V. Then, in Sec. VI, we illustrate our
approach on two systems with multiple pathways and intermediates.
In Sec. VII, possible extensions and numerical strategies for treat-
ing more complicated systems are discussed. In the Appendix, we
provide a method for calculating augmented TPT statistics using
a finite difference scheme. Code implementing this method is
available at github.com/dinner-group/atpt.

II. FRAMEWORK
In this section, we review TPT to show how it casts statistics

for reactive trajectories in terms of local quantities. Then, we present
an example that cannot be treated within the traditional TPT frame-
work and show how it can be treated by introducing an augmented
process. The essential idea is that the augmented process accounts
for the order of events. The challenge in implementing this idea is
that, for a finite-length trajectory segment, we generally do not know
the events that occur before and after it.

For clarity, we present our results in terms of a discrete-time
Markov process Xt with time step Δ, but our results generalize to
continuous-time processes in the limit Δ→ 0. We denote the time
interval r, r + Δ, . . . , s by r : s and a trajectory segment on this time
interval by Xr:s = (Xr , Xr+Δ, . . . , Xs). For conciseness, we denote an
infinite trajectory X−∞:∞ by X.

A. Ensemble of reactive trajectories
In both traditional and augmented TPT, statistics are computed

over the ensemble of reactive trajectories. In this section, we define
this ensemble and integrals over it. Here, we focus on traditional
TPT, but the framework generalizes to augmented TPT immediately
once we define the augmented process in Sec. II D.

Traditional TPT considers a reaction from a set A to a set B via
trajectories that cross a region D. In anticipation of our augmented
framework, we allow D ⊆ (A ∪ B)c as in Ref. 13. We consider a tra-
jectory Xr:s to be reactive if its first time point Xr is in the reactant
set A, its last time point Xs is in the product set B, and all inter-
vening time points Xr+Δ:s−Δ are in the region D. Mathematically, we
implement this definition through the indicator function

ω(Xr:s) = 1A×D×⋅⋅⋅×D×B(Xr:s), (1)

where

1S(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ S,

0 otherwise,
(2)

and S1 × ⋅ ⋅ ⋅ × Sn = {(x1, . . . , xn) ∣ x1 ∈ S1, . . . , xn ∈ Sn} is the n-fold
Cartesian product.

Given (1), we define the integral over the ensemble of reactive
trajectories to be

IX
ω[η] = lim

T→∞
1

2T
IX
⎡⎢⎢⎢⎢⎢⎣
∑

r=−T:T−Δ
s=r+Δ:T

ω(Xr:s)η(Xr:s)
⎤⎥⎥⎥⎥⎥⎦

, (3)

where IX[ f (X)] is the integral of f (X) over the distribution of infi-
nite trajectories X, which we denote using the superscript X. When
Xt is a stationary ergodic process and IX is the expectation EX over
the distribution of infinite trajectories, as in traditional TPT, we can
compute IX

ω[η] from a single infinite trajectory and so IX can be
omitted; however, this is not necessarily true for time-dependent
processes, as in Ref. 14, or for augmented processes, as in this work.
As Xt is a Markov process, we can compute this integral by sampling
configurations X−T from the distribution of states at time −T and
propagating until time T. The prefactor 1/(2T) ensures that IX

ω[η]
gives consistent results across different trajectory lengths 2T. We can
then calculate expectations over the ensemble of reactive trajectories
as

EX
ω[η] = IX

ω[η]/IX
ω[1], (4)

where the normalization factor IX
ω[1] is the expected number of reac-

tive trajectories that start (or end) per unit time. The integral IX
ω[η],

thus, yields statistics that can be used to characterize and compare
reaction pathways.

B. Transition path theory
In general, the ensemble of reactive trajectories can only be

meaningfully interpreted through its statistics. Although these statis-
tics can be computed directly from the ensemble of reactive trajec-
tories, TPT enables them to be computed from other data as well by
expressing them in terms of spatially and temporally local quantities.

TPT specifically considers functions that can be written as

η(Xr:s) = ∑
t=r:s−Δ

γ(Xt:t+Δ)Δ, (5)

where γ(Xt:t+Δ) is a function of successive time points Xt and Xt+Δ.
In this case, substituting (5) into (3) and exchanging the order of the
sums yields

IX
ω[η] = lim

T→∞
Δ

2T ∑
t=−T:T−Δ

IX
⎡⎢⎢⎢⎢⎢⎣
∑

r=−T:t
s=t+Δ:T

ω(Xr:s)γ(Xt:t+Δ)
⎤⎥⎥⎥⎥⎥⎦

(6)

= IX,t
⎡⎢⎢⎢⎢⎢⎣
∑

r=−∞:t
s=t+Δ:∞

ω(Xr:s)γ(Xt:t+Δ)
⎤⎥⎥⎥⎥⎥⎦

, (7)

where from (6) to (7) we have taken the limit T →∞ and performed
a time average over t, which we denote by the superscript t. That is,
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IX,t[ f (X, t)] = lim
T→∞

Δ
2T ∑

t=−T:T−Δ
IX[ f (X, t)]. (8)

We can, then, factor

∑
r=−∞:t

s=t+Δ:∞

ω(Xr:s) = 1A(Xτ−(t))1B(Xτ+(t+Δ)), (9)

where

τ−(t) = max{t′ ≤ t ∣ Xt′ ∈ Dc}, (10)

τ+(t) = min{t′ ≥ t ∣ Xt′ ∈ Dc} (11)

are the last exit time from Dc and the first entrance time to Dc,
respectively. Equation (9) results from the identities

∑
r=−∞:t

1A×D×⋅⋅⋅×D(Xr:t) = 1A(Xτ−(t)), (12)

∑
s=t:∞

1D×⋅⋅⋅×D×B(Xt:s) = 1B(Xτ+(t)). (13)

We arrive at (13) by observing that only one term in the sum can
be nonzero: Because D and B are disjoint, 1D×⋅ ⋅ ⋅×D×B(Xt:s) can be
nonzero only when s = τ+ (t) is the first time t′ ≥ t that Xt′ ∉ D.
Similar logic applies for (12).

Consequently, for a Markov process, (7) can be expressed in
terms of only local quantities as follows:

IX
ω[η] = IX,t[1A(Xτ−(t))1B(Xτ+(t+Δ))γ(Xt:t+Δ)] (14)

= IX,t[q−(Xt)q+(Xt+Δ)γ(Xt:t+Δ)], (15)

where we have defined the backward and forward committors,
respectively, as

q−(Xt) = EX[1A(Xτ−(t)) ∣ Xt], (16)

q+(Xt) = EX[1B(Xτ+(t)) ∣ Xt]. (17)

The backward committor q−(Xt) is the probability that Xt last came
from A rather than (A ∪D)c, and the forward committor q+(Xt) is
the probability that Xt will go to B before (B ∪D)c.

The main result of this section is (15). The advantage of (15)
over (3) is that the former involves only statistics that are local in
space and time. This aids in the interpretation of these statistics,
and it enables their estimation from short trajectories Xt:t+Δ, thus
eliminating the need for trajectories that actually cross from A to B.

C. A motivating reaction
To motivate our augmented framework, we consider a reaction

with an intermediate state C and compute statistics only for reactive
trajectories that proceed through the intermediate. The function that
selects trajectories of interest is

ω(Xr:s) = ∑
t1=r+Δ:s−Δ

t2=t1 :s−Δ

[1A×D×⋅⋅⋅×D(Xr:t1−Δ)

× 1C×(C∪D)×⋅⋅⋅×(C∪D)×C(Xt1 :t2)
× 1D×⋅⋅⋅×D×B(Xt2+Δ:s)], (18)

where D = (A ∪ B ∪ C)c, and the sum allows for any t1 and t2 satis-
fying r < t1 ≤ t2 < s. The sum searches for times t1 and t2, which are
the first and last times that the trajectory is in C, respectively. Because
determining t1 and t2 requires a search over the entire trajectory Xr:s,
we cannot factor ω(Xr:s) as in (9).

Now suppose that, for each reactive trajectory segment Xr:s in
the infinite trajectory X, we have a process Y t with

Yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t ≤ r,

1 if r < t < t1,

2 if t1 ≤ t ≤ t2,

3 if t2 < t < s,
4 if s ≤ t.

(19)

An example reactive trajectory labeled with Y t is shown in Fig. 1. We
can apply TPT on the augmented process Zt = (Xt , Y t) because we
can write (18) in the form of (1) as

ω(Zr:s) = 1(A×{0})×D′×⋅⋅⋅×D′×(B×{4})(Zr:s), (20)

where D′ = (D × {1}) ∪ ((C ∪D) × {2}) ∪ (D × {3}).
This approach suggests a general strategy. We identify

events—in this case, the first time t1 and last time t2 that Xt is in
C—and define a process Y t that labels these events. Then, we define
reactive trajectories on the augmented state space using (1). So long
as Zt satisfies the assumptions behind TPT, we can express statistics
using local quantities in the same manner as in (15). In Sec. II D, we
discuss conditions for this to be the case, allowing for the possibility
that an infinite trajectory has multiple labelings (e.g., to account for
multiple finite reactive segments).

D. Augmented transition path theory
In this section, we introduce a function Ω(Y ∣X) for construct-

ing an ensemble of trajectories augmented with labels from the
distribution of trajectories X. We first consider the case of infinite
length trajectories Z = (X, Y) and then the case of finite-length tra-
jectories Zr:s = (Xr:s, Yr:s), to which one is limited in practice. We
discuss two conditions that must hold for our framework. First,
Ω(Yr:s∣Xr:s) must be consistent with Ω(Y ∣X). Second, Zt must be

FIG. 1. Values of Y t at each point of a reactive trajectory described by (19).
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Markovian. Later, in Sec. IV, we detail a specific construction of Y
from X that requires examining only successive pairs of time points
Xt:t+Δ and Y t:t+Δ.

We now present our augmented framework. We replace Xt
with the augmented process Zt = (Xt , Y t), where Y t augments Xt
with information about past and future events. Often, a single Y is
associated with each infinite trajectory X because the latter contains
full information about the past and future of any Xt . However, cases
arise in which multiple Y can be associated with a given infinite tra-
jectory X. For example, in the motivating reaction above, we define
a Y for each reactive trajectory segment in X (i.e., we consider multi-
ple r and s). It is, thus, necessary to consider a distribution of Y , and
we compute integrals over the distribution of infinite trajectories Z
as

IZ[ f (Z)] = IX[∫ Ω(Y ∣X) f (Z) dY], (21)

where Ω(Y ∣X) is the distribution of Y (and thus Z) for a given
infinite trajectory X.

This immediately yields analogs of (15), (16), and (17),

IZ
ω[η] = IZ,t[q−(Zt)q+(Zt+Δ)γ(Zt:t+Δ)], (22)

q−(Zt) = EZ[1A(Zτ−(t)) ∣ Zt], (23)

q+(Zt) = EZ[1B(Zτ+(t)) ∣ Zt], (24)

where sets A, B, and D are now defined on the augmented state space,
and τ− (t) and τ+ (t) are now on the augmented process.

However, we cannot yet evaluate these integrals and expecta-
tions because Y t and, thus, each time point Zt depends on the infinite
trajectory X. Instead, we must convert integrals over Z to integrals
over X using

IZ[ f (Zr:s)] = IX[∫ Ω(Yr:s ∣Xr:s) f (Zr:s) dYr:s], (25)

where the weight of Yr:s (and thus Zr:s) given the trajectory segment
Xr:s is

Ω(Yr:s ∣Xr:s) = EX[∬ Ω(Y ∣X) dY−∞:r−Δ dYs+Δ:∞ ∣Xr:s]. (26)

When a single Y is associated with each infinite trajectory
X, Ω(Yr:s∣Xr:s) is the probability of Yr:s given Xr:s and so
∫ Ω(Yr:s∣Xr:s) dYr:s = 1; this is not true in the general case. Equa-
tion (26) is the first requirement of our augmented framework: We
must be able to convert integrals involving Ω(Y ∣X), which depend
on the infinite trajectory X, to those involving Ω(Yr:s∣Xr:s), which
depend only on the finite trajectory Xr:s.

Using (25), we can then write (22), (23), and (24) as

IZ
ω[η] = IX,t[∫ Ω(Yt:t+Δ ∣Xt:t+Δ)q−(Zt)q+(Zt+Δ)

× γ(Zt:t+Δ) dYt:t+Δ], (27)

q−(Zt) =
EX[∫ Ω(Y−∞:t ∣X−∞:t)1A(Zτ−(t)) dY−∞:t−Δ ∣ Xt]

EX[∫ Ω(Y−∞:t ∣X−∞:t) dY−∞:t−Δ ∣ Xt]
(28)

=
EX[∫ Ω(Y−∞:t ∣X−∞:t)1A(Zτ−(t)) dY−∞:t−Δ ∣ Xt]

Ω(Yt ∣Xt)
, (29)

q+(Zt) =
EX[∫ Ω(Yt:∞ ∣Xt:∞)1B(Zτ+(t)) dYt+Δ:∞ ∣ Xt]

EX[∫ Ω(Yt:∞ ∣Xt:∞) dYt+Δ:∞ ∣ Xt]
(30)

=
EX[∫ Ω(Yt:∞ ∣Xt:∞)1B(Zτ+(t)) dYt+Δ:∞ ∣ Xt]

Ω(Yt ∣Xt)
. (31)

For q−(Zt) and q+(Zt), we excluded Y t from the variables over
which we integrate because we conditioned on it. We note that
when ω(Zr:s) has no dependence on Yr:s [i.e., ω(Zr:s) = ω(Xr:s)]
and there is a one-to-one correspondence between X and Z
[i.e., ∫ Ω(Y ∣X) dY = 1], we can recover the traditional TPT
committors as

q−(Xt) = ∫ Ω(Yt ∣Xt)q−(Zt) dYt , (32)

q+(Xt) = ∫ Ω(Yt ∣Xt)q+(Zt) dYt. (33)

In traditional TPT, Xt must be a Markov process so that,
from (14) to (15), we could take expectations of 1A(Xτ−(t)) and
1B(Xτ+(t+Δ)) to obtain committors q−(Xt) and q+(Xt+Δ). For the
augmented process Zt to be similarly treatable, we also require it to
be a Markov process. This requirement may be surprising because Y t
can depend on the future of Xt . This can be understood by observ-
ing that, for the augmented process, the probability distribution of
Xt+Δ depends on both Xt and Y t . For example, for q+(Zt) in (24),
the distribution of Xt+Δ:∞ conditioned on Zt is not the same as that
of Xt+Δ:∞ conditioned on Xt alone, since Y t specifies that Xt must
undergo certain events in the future.

Since Xt and Zt are Markov processes, we can factor the path
probabilities PX[Xr:s] and PZ[Zr:s] of the original and augmented
processes as follows:

PX[Xr:s] = PX[Xr] ∏
t=r:s−Δ

PX[Xt+Δ ∣ Xt] (34)

= PX[Xr] ∏
t=r:s−Δ

PX[Xt:t+Δ]
PX[Xt]

, (35)

PZ[Zr:s] = PZ[Zr] ∏
t=r:s−Δ

PZ[Zt+Δ ∣ Zt] (36)

= PZ[Zr] ∏
t=r:s−Δ

PZ[Zt:t+Δ]
PZ[Zt]

. (37)

As above, the superscripts indicate distributions of infinite trajecto-
ries. Thus, for example,

PX[Xr:s] =∬ PX[X] dX−∞:r−Δ dXs+Δ:∞ (38)

is the probability of observing Xr:s with all possible semi-infinite seg-
ments X−∞:r−Δ and Xs+Δ:∞ before and after r : s, respectively; PX[X]
is the probability of a specific infinite trajectory X. The probability
distribution of Z is
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PZ[Z] = Ω(Y ∣X)PX[X]/c (39)

with c = ∫ Ω(Y ∣X)PX[X] dZ. Therefore, from (26),

Ω(Yr:s ∣Xr:s) = ∬
Ω(Y ∣X)PX[X] dZ−∞:r−Δ dZs+Δ:∞

PX[Xr:s]
(40)

= ∬ cPZ[Z] dZ−∞:r−Δ dZs+Δ:∞
PX[Xr:s]

(41)

= c
PZ[Zr:s]
PX[Xr:s]

. (42)

To compute Ω(Yr:s∣Xr:s), we divide (37) by (35) and then apply (42),

Ω(Yr:s ∣Xr:s) = Ω(Yr ∣Xr) ∏
t=r:s−Δ

Ω(Yt:t+Δ ∣Xt:t+Δ)
Ω(Yt ∣Xt)

. (43)

This factorization is the second requirement of our augmented
framework: We must be able to construct Ω(Y ∣X), which depends
on the infinite trajectory X, from Ω(Y t:t+Δ∣Xt:t+Δ), which can only
depend on pairs of successive time points Xt:t+Δ.

III. REACTIVE STATISTICS
In this section, we discuss TPT statistics that provide informa-

tion about mechanisms. These include committors, the reactive flux,
the reactive density, the reactive current, and expectations over reac-
tive trajectories that they enable computing. We present expressions
for augmented TPT in the form of (22), which can be evaluated
using (27). The corresponding expressions for traditional TPT can
be obtained by replacing Zt with Xt . The statistics are normalized so
that different reactions that are specified through different ω(Zr:s)
but calculated from the same distribution of infinite trajectories X
are directly comparable.

We note that augmented TPT is useful even for reactions that
can be described using traditional TPT [i.e., ω(Zr:s) = ω(Xr:s)]. The
augmented process allows reaction mechanisms to be resolved in
more detail, since committors and other statistics can be calculated
on points that depend on both past and future behaviors of tra-
jectories. Furthermore, the addition of past and future information
enables the calculation of statistics with η(Xr:s) no longer restricted
to the form in (5).

Several of the statistics that we discuss yield quantities on points
v in a collective variable (CV) space θ, that is, a space of functions of
a subset of the coordinates. We indicate this using the subscript θ.
We express these statistics on a CV space rather than the state space
of Zt because, for complex systems, it is often the case that the full
state space contains variables that are irrelevant to understanding
the reaction. This is particularly true for the augmented state space,
which must contain the information required to select reactive tra-
jectories using (1) and compute statistics using (5), both of which
rely on Y t to obtain past or future information. Nevertheless, the
theory holds for the choice θ(Zt) = Zt .

A. Reactive flux
The reactive flux R = IZ

ω[1] is the expected number of reactive
trajectories that start (or end) per unit time. We can express the reac-
tive flux in the form of (22) by choosing γ(Zt:t+Δ) so that η(Zr:s) = 1

when Zr:s is reactive. Such choices of γ(Zt:t+Δ) include 1A(Zt)/Δ and
1B(Zt+Δ)/Δ, which are nonzero only when Zt:t+Δ is the first or last
step of the reactive trajectory, respectively. Consequently, we can
compute the reactive flux using

R = IZ,t[1A(Zt)q+(Zt+Δ)/Δ] (44)

= IZ,t[q−(Zt)1B(Zt+Δ)/Δ], (45)

where we have applied the identities 1A(Zt)q−(Zt) = 1A(Zt) and
1B(Zt)q+(Zt) = 1B(Zt). Equation (44) counts the number of trajec-
tories that exit A in the time interval Δ and then react; (45) is the
analog for trajectories entering B.

The reactive flux is of interest not only in its own right but also
for calculating expectations over reactive trajectories,

EZ
ω[η] = IZ

ω[η]/IZ
ω[1] = IZ

ω[η]/R. (46)

For example, the duration N(Zr:s) = s − r of a trajectory can be
expressed in the form of (5) with γ(Zt:t+Δ) = 1, and so the expected
duration of a reactive trajectory is

EZ
ω[N] = IZ,t[q−(Zt)q+(Zt+Δ)]/R. (47)

B. Reactive density
The reactive density is the distribution of configurations that

belong to reactive trajectories. For a point v in the CV space θ, the
reactive density ρθ(v) is the probability that θ(Zt) = v and Zt is part
of a reactive trajectory. Equivalently, it is the expected fraction of
time an infinite trajectory spends reactive at v. It can be expressed in
the form of (22) as

ρθ(v) = IZ,t[q−(Zt)q+(Zt+Δ)
δv(θ(Zt)) + δv(θ(Zt+Δ))

2
], (48)

where δ is the Dirac delta function. When computing the expec-
tation, δv(θ(Zt)) selects the points Zt with θ(Zt) = v. The term
[δv(θ(Zt)) + δv(θ(Zt+Δ))]/2 corresponds to assuming that half of
the time of each step Zt:t+Δ is spent in Zt and half of the time is spent
in Zt+Δ.

In turn, the reactive density can be used to evaluate (22)
when γ(Zt:t+Δ) = [ f (θ(Zt)) + f (θ(Zt+Δ))]/2 is a path-independent
function on the CV space,

IZ
ω[η] = ∫ ρθ(v) f (v) dv. (49)

For instance, the expected fraction of time an infinite trajectory
spends reactive can be obtained by setting f (v) = 1, so that

IZ
ω[N] = ∫ ρθ(v) dv = IZ,t[q−(Zt)q+(Zt+Δ)], (50)

where we have assumed the distribution of trajectories X to be a
probability distribution, so that IX[1] = 1.

We note that when the CV space θ is contained in the CV
space θ′, i.e., we can write θ(Zt) = ζ(θ′(Zt)) for some ζ(v′), we can
calculate ρθ(v) by projecting ρθ′(v′) onto θ,
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ρθ(v) = ∫ δv(ζ(v′))ρθ′(v′) dv′. (51)

We can do the same for functions f (v′) defined on the CV
space θ′. We calculate Aθ[ f ](v), the expected value of f (v′) at
a point v in the CV space θ, conditioned on trajectories passing
through that point being reactive, as

Aθ[ f ](v) = ∫ δv(ζ(v′))ρθ′(v′) f (v′) dv′

ρθ(v)
. (52)

We emphasize that f (v′) can use Y t to obtain information from
the past and future of Xt , and so (52) is significantly more powerful
than its traditional TPT counterpart. For instance, we can calculate
the conditional mean first passage time, the expected time it takes for
Zt to hit B given that Zt is part of a reactive trajectory, using (52) as
discussed further in Sec. III E, whereas in traditional TPT, we would
need to employ a Feynman–Kac formula (e.g., see Ref. 15).

C. Reactive current
The reactive current Jθ(v) through a point v in the CV space θ

is the net flow of reactive trajectories within θ through v. It can be
expressed in the form of (22) as

Jθ(v) = IZ,t[q−(Zt)q+(Zt+Δ)
δv(θ(Zt)) + δv(θ(Zt+Δ))

2

× θ(Zt+Δ) − θ(Zt)
Δ

]. (53)

Conceptually, for each pair of successive time points Zt:t+Δ that are
part of a reactive trajectory, we compute the numerical derivative
[θ(Zt+Δ) − θ(Zt)]/Δ and then split it equally between Zt and Zt+Δ.
In fact, in the limit Δ→ 0, when θ(Zt) is differentiable, (53) becomes

Jθ(v) = IZ,t[1A(Zτ−(t))1B(Zτ+(t))δv(θ(Zt))
dθ(Zt)

dt
], (54)

which is the time derivative of θ(Zt) integrated over the distribution
of reactive trajectories Zt with θ(Zt) = v.

It can be useful to compute the reactive current along the
gradient of a function f (v),

Jθ[ f ](v) = IZ,t[q−(Zt)q+(Zt+Δ)
δv(θ(Zt)) + δv(θ(Zt+Δ))

2

× f (θ(Zt+Δ)) − f (θ(Zt))
Δ

]. (55)

In the limit Δ→ 0, for differentiable f (v), (55) is Jθ[ f ](v)
= Jθ(v) ⋅ ∇θ f (v), which we can derive by observing that the finite
differences in (53) and (55) are dθ(Zt)/dt and d f (θ(Zt))/dt
in this limit, respectively, and by the chain rule d f (θ(Zt))/dt
= dθ(Zt)/dt ⋅ ∇θ f (θ(Zt)).

Like the reactive density, we can calculate Jθ(v) and Jθ[ f ](v)
by projecting Jθ′(v′) and Jθ′[ f ○ ζ](v′) onto θ,

Jθ(v) = ∫ δv(ζ(v′))Jθ′[ζ](v′) dv′, (56)

Jθ[ f ](v) = ∫ δv(ζ(v′))Jθ′[ f ○ ζ](v′) dv′, (57)

where ( f ○ ζ) (v′) = f (ζ(v′)).

D. Committors
The committors q−(Zt) and q+(Zt) are defined on the state

space of Zt , which makes them useful for calculating other statistics
but can make them hard to interpret. To address this issue, we can
treat the committors as reaction coordinates and project them onto
a CV space θ as Aθ[q−](v) and Aθ[q+](v). These quantities have
a physical interpretation. For instance, Aθ[q+](v) is the probability
that a trajectory starting at a point Zt that is drawn from configura-
tions with θ(Zt) = v in the ensemble of reactive trajectories enters B
when it first leaves D. We note that, unlike most other reactive statis-
tics, Aθ[q−](v) and Aθ[q+](v) with θ(Zt) = Xt are not independent
of the choice of Y t , even when the same ensemble of reactive trajec-
tories is selected because the likelihood that a trajectory contributes
positively to the committor and the likelihood that it is reactive are
correlated.

E. Conditional mean first and last passage times
The first passage time to the product is the time it takes for a

trajectory starting at time t to reach the product B, at time τ+ (t). It
can be expressed as

f (Z′t) = Y ′t =
⎧⎪⎪⎨⎪⎪⎩

Y ′t+Δ + Δ if Zt ∉ B,

0 otherwise,
(58)

where Z′t = (Zt , Y ′t ). This increments Y ′t by Δ for each time step
backward in time when Zt ∉ B and sets Y ′t = 0 when Zt ∈ B. The con-
ditional mean first passage time, m+(Zt), is the expected first passage
time to the product for a point Zt that is part of a reactive trajectory.
This statistic, and higher moments of the first passage time distri-
bution, are useful for real-time forecasting, e.g., of weather.15 To
compute the conditional mean first passage time, we take the con-
ditional expectation of (58) with respect to the reactive density using
(52), i.e.,

m+(Zt) = Aθ′[ f ](Zt), (59)

where θ′(Z′t) = Zt . We can also calculate more general statistics
on the distribution of the first passage time. For instance, the
conditional variance of the first passage time to the product is
Aθ′[ f 2](Zt) − (Aθ′[ f ](Zt))2. Likewise, the last passage time from
the reactant is the time it takes for a trajectory ending at time t to
come from the reactant A, at time τ− (t), conditioned on Zt being
part of a reactive trajectory, and can be expressed as

g(Z′′t ) = Y ′′t =
⎧⎪⎪⎨⎪⎪⎩

Y ′′t−Δ + Δ if Zt ∉ A,

0 otherwise,
(60)

where Z′′t = (Zt , Y ′′t ). The conditional mean last passage time from
the reactant is then

m−(Zt) = Aθ′′[g](Zt), (61)

where θ′′(Z′′t ) = Zt . These statistics can be projected onto points v
on a CV space θ(Zt) as Aθ[m−](v) and Aθ[m+](v).
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IV. CONSTRUCTION OF THE AUGMENTED PROCESS
In this section, we describe a particularly useful way to define

the augmented process: We decompose Ω(Y ∣X) into a product over
functions of successive time points, κ(Y t:t+Δ∣Xt:t+Δ). We show that
Ω(Yr:s∣Xr:s) so defined satisfies the required properties (26) and (43)
by construction. We, then, demonstrate the construction of complex
augmented processes from simpler ones by composition. Finally, we
show how this machinery applies to the motivating reaction.

A. Decomposition of Ω
To apply our augmented framework, we need to construct the

augmented process and, in turn, the distribution of infinite trajec-
tories Z such that Ω(Yr:s∣Xr:s) satisfies (26) and (43). One way to
do so is to define Ω(Y ∣X), calculate Ω(Yr:s∣Xr:s) from Ω(Y ∣X) using
(26), and then verify that (43) holds. In this section, we present an
alternative approach. We specify the augmented process through a
function of pairs of successive time points, κ(Y t:t+Δ∣Xt:t+Δ), and then
use it to calculate Ω(Yr:s∣Xr:s). This procedure satisfies (26) and (43)
by construction.

We start by using the pair structure of (43) to factor

Ω(Y ∣X) = ∏
t=−∞:∞

κ(Yt:t+Δ ∣Xt:t+Δ). (62)

It follows immediately that

Ω(Y ∣X) = κ(Y−∞:r ∣X−∞:r)κ(Yr:s ∣Xr:s)κ(Ys:∞ ∣Xs:∞), (63)

where

κ(Yr:s ∣Xr:s) = ∏
t=r:s−Δ

κ(Yt:t+Δ ∣Xt:t+Δ). (64)

This cleanly separates terms that depend on the past X−∞:r and
future Xs:∞ from those that depend on the trajectory segment Xr:s.

Using (63), we can compute (26) as

Ω(Yr:s ∣Xr:s) = k−(Yr ∣Xr)κ(Yr:s ∣Xr:s)k+(Ys ∣Xs), (65)

where we have defined

k−(Yt ∣Xt) = EX[∫ κ(Y−∞:t ∣X−∞:t) dY−∞:t−Δ ∣Xt], (66)

k+(Yt ∣Xt) = EX[∫ κ(Yt:∞ ∣Xt:∞) dYt+Δ:∞ ∣Xt]. (67)

We describe how to calculate k−(Y t ∣Xt) and k+(Y t ∣Xt) in Sec. V.
The case r = s = t is the weight of Y t given Xt ,

Ω(Yt ∣Xt) = k−(Yt ∣Xt)k+(Yt ∣Xt). (68)

We can verify that the resulting Zt is a Markov process by
substituting (65) and (68) into (43).

B. Building augmented processes by composition
The factorization in (62) has a number of advantages over

(43). One is that it facilitates deriving useful expressions for treating
multiple augmented processes. If we have Ω(Y ∣X) of the form

Ω(Y ∣X) =∏
n

Ω(Y(n) ∣X(n)), (69)

where n labels different augmented processes, we can factor both
sides by (62) to obtain

κ(Yt:t+Δ ∣Xt:t+Δ) =∏
n

κ(Y(n)t:t+Δ ∣X
(n)
t:t+Δ), (70)

which involves only successive time points. Each of the terms
κ(Y(n)t:t+Δ ∣X

(n)
t:t+Δ) defines a process Y(n)t using information from the

original process Xt and other processes Y(m)t , which we denote as
X(n)t . We can use this to combine multiple augmented processes,
which may be defined independently or hierarchically.

For example, consider the augmented process Zω
t = (Xt , Yω

t ),
where Yω

t is used to define pathways and is defined using
κ(Yω

t:t+Δ ∣Xt:t+Δ). To compute statistics on the first and last passage
times, we can augment this process with the augmented processes in
(58) and (60) by defining

κ(Y ′t:t+Δ ∣Zω
t:t+Δ) =

⎧⎪⎪⎨⎪⎪⎩

δY′t (Y
′
t+Δ + Δ) if Zω

t ∉ B,

δY′t (0) otherwise,
(71)

κ(Y ′′t:t+Δ ∣Zω
t:t+Δ) =

⎧⎪⎪⎨⎪⎪⎩

δY′′t+Δ
(Y ′′t + Δ) if Zω

t+Δ ∉ B,

δY′′t+Δ
(0) otherwise.

(72)

The combined process Yt = (Yω
t , Y ′t , Y ′′t ) is then specified by

κ(Yt:t+Δ ∣Xt:t+Δ) = κ(Yω
t:t+Δ ∣Xt:t+Δ)

× κ(Y ′t:t+Δ ∣Zω
t:t+Δ)κ(Y ′′t:t+Δ ∣Zω

t:t+Δ). (73)

This example furthermore shows how (62) allows forward-in-time
and backward-in-time augmented processes to be treated in a uni-
fied manner and combined, which is not straightforward with (43).

C. Augmented process for the motivating reaction
We can also use (70) to construct augmented processes by

combining simpler augmented processes. Here, we detail a possi-
ble construction of the augmented process (19) as a composite of
three augmented processes. First, we define an augmented process
Z(0)t = (Xt , Y(0)t ) that selects all reactive trajectories regardless of
pathway,

κ(Y(0)t:t+Δ ∣Xt:t+Δ) = [1{0}×{0}(Y(0)t:t+Δ)

+ 1((D∪C)×{1})×((D∪C)×{1})(Z(0)t:t+Δ)

+ 1{2}×{2}(Y(0)t:t+Δ)

+ 1((A∪B)×{0})×((D∪C)×{1})(Z(0)t:t+Δ)

+ 1((D∪C)×{1})×((A∪B)×{2})(Z(0)t:t+Δ)

+ 1((A∪B)×{0})×((A∪B)×{2})(Z(0)t:t+Δ)]. (74)

For a reactive trajectory Xr:s from A to B, Y(0)t splits the infinite
trajectory X into three parts: time points X−∞:r before the reaction
(Y(0)t = 0), time points Xr+Δ:s−Δ during the reaction (Y(0)t = 1), and
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time points Xs:∞ after the reaction (Y(0)t = 2). We list the possible
transitions of this augmented process in Fig. 2(a). The nodes are sets
in which Z(0)t may belong; an arrow from one set to another indi-
cates that Y(0)t may transition to Y(0)t+Δ when Z(0)t is in the first set
and Z(0)t+Δ is in the second set. For instance, the fourth term in (74)
corresponds to the arrow from (A ∪ B) × {0} to (D ∪ C) × {1}.

Next, we employ additional augmented processes to find the
first and last times t1 and t2 that the trajectory is in C. Using (74), we
define the processes

Y(1)t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Y(1)t−Δ if Xt ∈ D and Y(0)t = 1,

1 if Xt ∈ C and Y(0)t = 1,

0 if Y(0)t ∈ {0, 2},
(75)

Y(2)t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Y(2)t+Δ if Xt ∈ D and Y(0)t = 1,

1 if Xt ∈ C and Y(0)t = 1,

0 if Y(0)t ∈ {0, 2}.
(76)

During the reaction (i.e., Y(0)t = 1), Y(1)t = 1 for times t ≥ t1 and
Y(2)t = 1 for times t ≤ t2. We can write (75) and (76) as

κ(Y(1)t:t+Δ ∣Z
(0)
t:t+Δ) = [1D×{1}×{(0,0),(1,1)}(Xt+Δ, Y(0)t+Δ, Y(1)t:t+Δ)

+ 1C×{1}×{1}(Xt+Δ, Y(0)t+Δ, Y(1)t+Δ)

+ 1{0,2}×{0}(Y(0)t+Δ, Y(1)t+Δ)], (77)

κ(Y(2)t:t+Δ ∣Z
(0)
t:t+Δ) = [1D×{1}×{(0,0),(1,1)}(Xt , Y(0)t , Y(2)t:t+Δ)

+ 1C×{1}×{1}(Xt , Y(0)t , Y(2)t )

+ 1{0,2}×{0}(Y(0)t , Y(2)t )]. (78)

We can then combine (74), (77), and (78) using (70),

FIG. 2. Construction of the augmented
process for a reaction with an inter-
mediate. (a) Possible transitions of the
augmented process defined by (74). (b)
Possible transitions of the augmented
process defined by (79). Each arrow
from one set to another indicates that
Y t may transition to Y t+Δ when Zt is
in the first set and Zt+Δ is in the sec-
ond set. (c) Determination of Y r :s for the
reactive trajectory X r :s from Fig. 1. The
black elements indicate trajectories Y r :s

that satisfy κ(Y r :s∣X r :s) = 1. The gray
elements indicate pairs Y t:t+Δ that satisfy
κ(Y t:t+Δ∣X t:t+Δ) = 1 but do not belong
to any Y r :s with κ(Y r :s∣X r :s).
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κ(Yt:t+Δ ∣Xt:t+Δ) = [1{0}×{0}(Yt:t+Δ)
+ 1(D×{1})×(D×{1})(Zt:t+Δ)
+ 1((C∪D)×{2})×((C∪D)×{2})(Zt:t+Δ)
+ 1(D×{3})×(D×{3})(Zt:t+Δ)
+ 1{4}×{4}(Yt:t+Δ)
+ 1(D×{5})×(D×{5})(Zt:t+Δ)
+ 1((A∪B)×{0})×(D×{1})(Zt:t+Δ)
+ 1((A∪B)×{0})×(C×{2})(Zt:t+Δ)
+ 1(D×{1})×(C×{2})(Zt:t+Δ)
+ 1(C×{2})×(D×{3})(Zt:t+Δ)
+ 1(C×{2})×((A∪B)×{4})(Zt:t+Δ)
+ 1(D×{3})×((A∪B)×{4})(Zt:t+Δ)
+ 1((A∪B)×{0})×(D×{5})(Zt:t+Δ)
+ 1(D×{5})×((A∪B)×{4})(Zt:t+Δ)
+ 1((A∪B)×{0})×((A∪B)×{4})(Zt:t+Δ)], (79)

where Zt = (Xt , Y t), and to match (19), we have merged Y(0)t , Y(1)t ,
and Y(2)t into

Yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (Y(0)t , Y(1)t , Y(2)t ) = (0, 0, 0),
1 if (Y(0)t , Y(1)t , Y(2)t ) = (1, 0, 1),
2 if (Y(0)t , Y(1)t , Y(2)t ) = (1, 1, 1),
3 if (Y(0)t , Y(1)t , Y(2)t ) = (1, 1, 0),
4 if (Y(0)t , Y(1)t , Y(2)t ) = (2, 0, 0),
5 if (Y(0)t , Y(1)t , Y(2)t ) = (1, 0, 0).

(80)

We show the possible transitions of this augmented process in
Fig. 2(b).

In Fig. 2(c), we illustrate the determination of Yr:s from
κ(Y t:t+Δ∣Xt:t+Δ) for the trajectory Xr:s in Fig. 1. For each time
point Xt , we list the possible values of Y t from (79). We then
stitch together trajectories by connecting successive time point pairs
Zt:t+Δ and following the arrows in Fig. 2(b). The black elements
in Fig. 2(c) indicate step pairs Y t:t+Δ in trajectories Yr:s that satisfy
κ(Yr:s∣Xr:s) = 1, and the gray elements indicate step pairs Y t:t+Δ that
satisfy κ(Y t:t+Δ∣Xt:t+Δ) = 1 but do not belong to any Yr:s that satisfies
κ(Yr:s∣Xr:s) = 1.

There is one Y associated with each reactive trajectory segment
in X. The diagonal path in Fig. 2(c) represents one such reactive
trajectory segment and can be selected using augmented TPT. The
horizontal paths are collections of augmented processes correspond-
ing to times before each future reaction (Y t = 0) and after each past
reaction (Y t = 4).

V. ALGORITHM
In this section, we summarize the operational aspects of the

method. For the numerical examples that we consider in the present
paper, we evaluate integrals of the form in (3) using a finite dif-
ference approximation, which we detail in the Appendix; more
complex systems can be treated by extending the approach in

Refs. 16 and 17, which we leave for future work. In terms of the
finite difference approximation, the algorithm for evaluating these
statistics is as follows:

1. Define κ(Y t:t+Δ∣Xt:t+Δ), ω(Zr:s), and γ(Zt:t+Δ) for the statistic
of interest.

2. Compute k−(Y t ∣Xt) and k+(Y t ∣Xt), which account for
weights associated with the past and future segments of
trajectories. To this end, we express (66) and (67) as

k−(Yt ∣Xt) = EX[∫ κ(Yt−Δ:t ∣Xt−Δ:t)

× k−(Yt−Δ ∣Xt−Δ) dYt−Δ ∣Xt], (81)

k+(Yt ∣Xt) = EX[∫ κ(Yt:t+Δ ∣Xt:t+Δ)

× k+(Yt+Δ ∣Xt+Δ) dYt+Δ ∣Xt], (82)

and solve these equations using (A9) and (A10).

3. Compute Ω(Y t:t+Δ∣Xt:t+Δ) and Ω(Y t ∣Xt) by (65) and (68),
respectively.

4. Compute q−(Zt) and q+(Zt). To this end, we express the
committors as solutions to boundary value problems. For
Zt ∈ D,

q−(Zt) = EZ[q−(Zt−Δ) ∣ Zt] (83)

= EX[∫ Ω(Yt−Δ:t ∣Xt−Δ:t)

× q−(Zt−Δ) dYt−Δ ∣Xt]/Ω(Yt ∣Xt), (84)

q+(Zt)= EZ[q+(Zt+Δ) ∣ Zt] (85)

= EX[∫ Ω(Yt:t+Δ ∣Xt:t+Δ)

× q+(Zt+Δ) dYt+Δ ∣Xt]/Ω(Yt ∣Xt). (86)

For Zt ∉ D, q−(Zt) = 1A(Zt) and q+(Zt) = 1B(Zt). Above,
(83) and (85) result from applying the identities (12) and (13)
to the definitions (16) and (17), and (84) and (86) follow, in
turn, from (29) and (31). We solve (84) and (86) using (A9)
and (A10).

5. Evaluate (27) using (A11).

VI. NUMERICAL EXAMPLES
In this section, we demonstrate our augmented framework

on simple examples that make the limitations of traditional TPT
apparent. The examples we consider employ overdamped Langevin
dynamics on a potential U(x) and satisfy the Fokker–Planck
equation given by

∂PX[Xt]
∂t

= ∇ ⋅ (PX[Xt]∇U(Xt)) +∇2PX[Xt]. (87)

We calculate all statistics using a quadrature scheme adapted from
Ref. 16, which we detail in the Appendix.
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A. Reaction through an intermediate
In our first example, we demonstrate the use of augmented TPT

to resolve individual reaction steps. We consider a reaction through
an intermediate with the three-dimensional potential

U(x) = 5[(x1 − 1
2
)

4
+ (x2

3
)

4
+ (x3

3
)

4
− e−(x1−2)2−x2

2

− 3e−x2
1−(x2−2)2−(x3−2)2

− 2e−x2
1−x2

2−(x3−2)2

− 3e−x2
1−(x2+2)2−(x3+2)2

− 2e−x2
1−x2

2−(x3+2)2

], (88)

where x = (x1, x2, x3). We visualize the U(x) = −3 isosurface and the
probability density on the CV space θ(x) = (x1, x2) in Fig. 3.

Our reaction of interest is described by the indicator function

ω(Xr:s) = 1A×(D∪C)×⋅⋅⋅×(D∪C)×B(Xr:s), (89)

where we have defined the reactant A, product B, and intermediate
C to be

A = {x ∣ x2
1 + (x2 − 2)2 ≤ 0.52},

B = {x ∣ x2
1 + (x2 + 2)2 ≤ 0.52},

C = {x ∣ (x1 − 2)2 + x2
2 ≤ 0.52},

(90)

and D = (A ∪ B ∪ C)c. This reaction represents, for instance, a cat-
alyzed reaction where the interaction of the substrate with the
catalyst (represented by x1) and a substrate internal coordinate (rep-
resented by x2) can be observed while the status of the reaction
(represented by x3) cannot. The observable variables form the CV
space (x1, x2), and the sets A, B, and C are defined on this CV space.

There are two pathways in this reaction: uncatalyzed and cat-
alyzed. In the uncatalyzed pathway, the system transitions from the
reactant A to S1, then crosses directly to S2 before entering the prod-
uct B. In the catalyzed pathway, instead of directly crossing from S1
to S2, the system transitions from S1 into the intermediate C and then
to S2.

We select trajectories that react through each pathway by
applying augmented TPT to the reaction. We define an augmented
process for each of the pathways by including only the terms from

FIG. 3. Reaction through an intermediate. (a) U(x) = −3 isosurface of (88). (b)
Marginal distribution on the CV space (x1, x2).

(79) that are involved in that pathway. For the uncatalyzed pathway,
we remove all reactive trajectories that visit the intermediate C by
removing all terms that contain Yt ∈ {1, 2, 3} from (79), yielding

κ(Yt:t+Δ ∣Xt:t+Δ) = [1{0}×{0}(Yt:t+Δ)
+ 1(D×{5})×(D×{5})(Zt:t+Δ)
+ 1{4}×{4}(Yt:t+Δ)
+ 1((A∪B)×{0})×(D×{5})(Zt:t+Δ)
+ 1((A∪B)×{0})×((A∪B)×{4})(Zt:t+Δ)
+ 1(D×{5})×((A∪B)×{4})(Zt:t+Δ)], (91)

and then select reactive trajectories using

ω(Zr:s) = 1(A×{0})×(D×{5})×⋅⋅⋅×(D×{5})×(B×{4})(Zr:s). (92)

For the catalyzed pathway, we retain only reactive trajectories that
pass through the intermediate C by removing all terms that con-
tain Yt ∈ {5} as well as the direct transition from (A ∪ B) × {0} to
(A ∪ B) × {4}, which does not pass through C. This yields the
augmented process

κ(Yt:t+Δ ∣Xt:t+Δ) = [1{0}×{0}(Yt:t+Δ)
+ 1(D×{1})×(D×{1})(Zt:t+Δ)
+ 1((C∪D)×{2})×((C∪D)×{2})(Zt:t+Δ)
+ 1(D×{3})×(D×{3})(Zt:t+Δ)
+ 1{4}×{4}(Yt:t+Δ)
+ 1((A∪B)×{0})×(D×{1})(Zt:t+Δ)
+ 1((A∪B)×{0})×(C×{2})(Zt:t+Δ)
+ 1(D×{1})×(C×{2})(Zt:t+Δ)
+ 1(C×{2})×(D×{3})(Zt:t+Δ)
+ 1(C×{2})×((A∪B)×{4})(Zt:t+Δ)
+ 1(D×{3})×((A∪B)×{4})(Zt:t+Δ)]. (93)

We then select reactive trajectories using

ω(Zr:s) = 1(A×{0})×D′×⋅⋅⋅×D′×(B×{4})(Zr:s), (94)

where D′ = (D × {1}) ∪ ((C ∪D) × {2}) ∪ (D × {3}). We show
the possible transitions of (91) in Fig. 4(a) and (93) in Fig. 4(b).

Our goal is to visualize the mechanism of the reaction in the
CV space (x1, x2) and quantify the relative rates of the two pathways.
To this end, we examine four reactive statistics: the reactive density
ρθ, the reactive current Jθ, the forward committor Aθ[q+], and the
conditional mean first passage time to the product Aθ[m+].

We plot the reactive statistics from traditional TPT in Fig. 5(a).
The reactive density ρθ reveals that reactive trajectories spend much
of their time around (x1, x2) = (0, 0) and (x1, x2) = (2, 0), which
is consistent with the presence of intermediates S1/S2 and C. The
reactive current Jθ (vector field) suggests that the reaction is dom-
inated by the uncatalyzed pathway, although a significant fraction
does react through the catalyzed pathway. The forward commit-
tor Aθ[q+] changes rapidly around (x1, x2) = (0, 0), suggesting the
presence of a bottleneck, corresponding to direct crossing from
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FIG. 4. Augmented processes for reaction through an intermediate. Each arrow
from one set to another indicates that Y t may transition to Y t+Δ when Zt is in
the first set and Zt+Δ is in the second set. (a) Possible transitions of the aug-
mented process (91) for the uncatalyzed pathway. (b) Possible transitions of the
augmented process (93) for the catalyzed pathway.

S1 to S2. It is almost uniform around C, suggesting the presence
of the intermediate C. The conditional mean first passage time
Aθ[m+] can be interpreted in the same way as the forward com-
mittor; however, it allows us to visualize the order in which states
are visited more clearly. The region below A has a higher value
of Aθ[m+] than the region around C, which suggests that reac-
tive trajectories usually visit the former before the latter. Together,
these reactive statistics suggest a cohesive picture. The reaction
is dominated by the uncatalyzed pathway, which has a bottle-
neck around (x1, x2) = (0, 0). Reactive trajectories may leave this

pathway before the bottleneck into the catalyzed pathway, which has
an intermediate C, and return after the bottleneck (i.e., they appear
to circumvent S1/S2).

Some of the results from traditional TPT are misleading. For
example, traditional TPT suggests that the uncatalyzed pathway is
dominant, yet the total reactive flux from A to B is 3.0 × 10−4,
while the reactive flux for trajectories that visit C is 2.2 × 10−4,
i.e., 73% of trajectories go through the intermediate. This results
from the restriction of the observed coordinates to (x1, x2); in the
full state space (x1, x2, x3), traditional TPT is capable of correctly
resolving the two pathways. However, we note that even given
(x1, x2, x3), traditional TPT cannot calculate dynamical statistics for
the ensemble of trajectories that react through a particular path-
way. Augmented TPT provides a solution to the overlap issue and
enables the calculation of reactive statistics for individual steps of
each pathway.

We first analyze the uncatalyzed pathway, which was wrongly
suggested by traditional TPT to be the dominant pathway. Reac-
tive statistics for this pathway are shown in Fig. 5(b). As we would
expect, the reactive density ρθ shows that reactive trajectories spend
much of their time around S1/S2, and the reactive current Jθ suggests
that reactive trajectories flow directly from A to S1/S2 to B, with-
out any notable deviation to the vicinity of C. On the uncatalyzed
pathway, the forward committor Aθ[q+] changes rapidly around
(x1, x2) = (0, 0) due to the transition from S1 to S2. Off the uncat-
alyzed pathway, the forward committor has a higher value closer to
A and a lower value closer to B. This is surprising and results from
slight differences in the reactive density at different values of x3. The

FIG. 5. Reactive statistics for the reaction
(89). The reactive current (vector field)
is plotted over each of the other statis-
tics (color scale): the forward committor
Aθ[q+], the reactive density ρθ, and the
conditional mean first passage time to
the product Aθ[m+]. The magnitude of
the reactive current is represented by the
opacity of the arrows, which are compa-
rable for the full reaction and all reac-
tion steps. Augmented TPT statistics are
computed using the augmented process
(93). (a) Reactive statistics computed
using traditional TPT. (b) Reactive statis-
tics for the uncatalyzed pathway com-
puted using augmented TPT. (c) Reac-
tive statistics for the catalyzed pathway
computed using augmented TPT.
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conditional mean first passage time Aθ[m+] rapidly decreases near
S1/S2, suggesting the same single bottleneck.

We now analyze the catalyzed pathway through the interme-
diate C, which dominates the rate. We select trajectories that react
through this pathway using (94). Augmented TPT enables us to split
the pathway into individual steps and, so, to resolve the structure
of each reaction step. The first step (Y t = 1) starts when the reac-
tive trajectory leaves the reactant A and ends when it first enters the
intermediate C. The second step (Y t = 2) starts at the first time the
reactive trajectory enters C, and it ends at the last time the reactive
trajectory leaves C. The third step (Y t = 3) starts when the reac-
tive trajectory last leaves the intermediate C and ends when it enters
the product B. As we now explain, separating the catalyzed path-
way into these steps leads to reactive statistics that lead to a different
interpretation than those from traditional TPT.

In the first step, the reactive density ρθ and reactive current Jθ
clearly show that most reactive trajectories flow through an interme-
diate near (x1, x2) = (0, 0), in this case S1, rather than a more direct
path from A to C, as suggested by the reactive current from tradi-
tional TPT. Likewise, in the last step, they show that most reactive
trajectories flow through an intermediate near (x1, x2) = (0, 0), in
this case S2. The absence of any significant reactive current in the
second step, along with the high reactive density near C, suggests
that reactive trajectories predominantly remain in C during this step,
with a few trajectories transitioning back and forth to S1/S2, where
there is a lower value of reactive density. The reactive current from
traditional TPT is misleading because the flows from S1 to C and
from C to S2 cancel each other, since S1 and S2 overlap in the CV
space.

The forward committor Aθ[q+] on the catalyzed pathway is
uniformly low in the first step and uniformly high in the third step.
This suggests that the main bottleneck occurs in the second step,
where Aθ[q+] ≈ 0.5 around C. The abrupt changes between steps
suggest that the dynamics of the variables not captured within the
CV space are influential in determining whether the reaction occurs.
For the second step, we note that the low value of Aθ[q+] below
A and high value above B reflect the full three-dimensional poten-
tial [Fig. 3(a)]. In traditional TPT, the high value of Aθ[q+] in the
first step and the low value in the third step cancel, giving rise to the
apparent rapid change near (x1, x2) = (0, 0).

In the first step, Aθ[m+] decreases from (x1, x2) = (0, 0) to C,
suggesting the presence of a bottleneck between intermediates S1 to
C. The same holds for the second step, suggesting that if the sys-
tem crosses back to an intermediate near (x1, x2) = (0, 0), it needs
to overcome the same bottleneck to return to C. In the third step,
Aθ[m+] decreases from (x1, x2) = (0, 0) to B, marking the transi-
tion from S2 to B. We note that this decrease occurs at a slightly
lower value than in the uncatalyzed pathway. This separation of the
two bottlenecks lies in contrast with Aθ[m+] from traditional TPT,
where the superposition of the two bottlenecks creates an apparent
bottleneck near (x1, x2) = (0, 0), which conflates the dynamics of the
catalyzed and uncatalyzed pathways.

Overall, we see that the statistics from traditional TPT qualita-
tively resemble a superposition of those for the uncatalyzed pathway
and those associated with the second step of the catalyzed pathway,
in which the system is mainly localized at C. The important contri-
butions from the first and third steps of the catalyzed pathway mask
each other in traditional TPT.

B. Reaction with multiple pathways
For our second example, we demonstrate the use of augmented

TPT to separate pathways that overlap in the CV space. We consider
overdamped Langevin dynamics on the three-dimensional potential

U(x) = 5[(x1

2
)

4
+ (x2

3
)

4
+ (x3

2
)

4
+ e−x2

2

− 3e−x2
1−(x2−3)2

− 2e−(x1−x2)2+(x3−1)2

− 3e−x2
1−(x2+3)2

− 2e−(x1+x2)2−(x3+1)2

], (95)

where x = (x1, x2, x3). As previously, these dynamics satisfy the
Fokker–Planck equation in (87). The U(x) = −3 isosurface for this
potential is shown in Fig. 6(a), and the probability distribution on
the (x1, x2) coordinates, which we use as CVs, is shown in Fig. 6(b).
We define the reactant A, product B, and intermediates C1, C2, C3,
and C4 to be

A = {x ∣ x2
1 + (x2 − 3)2 ≤ 1},

B = {x ∣ x2
1 + (x2 + 3)2 ≤ 1},

C1 = {x ∣ (x1 + x2)2 + (x1 − x2 + 4)2/4 ≤ 1},
C2 = {x ∣ (x1 + x2 − 4)2/4 + (x1 − x2)2 ≤ 1},
C3 = {x ∣ (x1 + x2 + 4)2/4 + (x1 − x2)2 ≤ 1},
C4 = {x ∣ (x1 + x2)2 + (x1 − x2 − 4)2/4 ≤ 1}.

(96)

We also define the sets C = C1 ∪ C2 ∪ C3 ∪ C4 and D = (A ∪ B ∪ C)c.
The reaction of interest is specified through the indicator function

ω(Xr:s) = 1A×(D∪C)×⋅⋅⋅×(D∪C)×B(Xr:s). (97)

We use the intermediates to define pathways. This is advan-
tageous because it is not possible to divide the space into regions
corresponding to different pathways owing to overlap. We define
four pathways: major pathways I and II and minor pathways III
and IV. We define pathway I to first hit intermediate Ci = C1 after
leaving A and last hit intermediate Cj = C4 before hitting B. We

FIG. 6. Reaction with multiple pathways. (a) U(x) = −3 isosurface of (95). (b)
Marginal distribution on the CV space (x1, x2).

J. Chem. Phys. 157, 094115 (2022); doi: 10.1063/5.0098587 157, 094115-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

likewise define pathway II with (Ci, Cj) = (C2, C3), pathway III with
(Ci, Cj) = (C1, C3), and pathway IV with (Ci, Cj) = (C2, C4).

To define the means of selecting these pathways, we label a tra-
jectory before the reaction with Y t = 0 and after the reaction with
Y t = 4. When the reaction is in process, we label times before the
reactive trajectory first enters Ci with Y t = 1, after the reactive trajec-
tory last exits Cj with Y t = 3, and between those times with Y t = 2.
Then, we select pathways using

ω(Zr:s) = 1(A×{0})×D′ ⋅ ⋅ ⋅D′×(B×{4})(Zr:s), (98)

where D′ = (D × {1}) ∪ ((D ∪ C) × {2}) ∪ (D × {3}). This choice
of Y t corresponds to

κ(Yt:t+Δ ∣Xt:t+Δ) = [1{0}×{0}(Yt:t+Δ)
+ 1(D×{1})×(D×{1})(Zt:t+Δ)
+ 1((C∪D)×{2})×((C∪D)×{2})(Zt:t+Δ)
+ 1(D×{3})×(D×{3})(Zt:t+Δ)
+ 1{4}×{4}(Yt:t+Δ)
+ 1(A×{0})×(D×{1})(Zt:t+Δ)
+ 1(A×{0})×(Ci×{2})(Zt:t+Δ)
+ 1(D×{1})×(Ci×{2})(Zt:t+Δ)
+ 1(Cj×{2})×(D×{3})(Zt:t+Δ)
+ 1(Cj×{2})×(B×{4})(Zt:t+Δ)
+ 1(D×{3})×(B×{4})(Zt:t+Δ)]. (99)

The first five terms of (99) denote the sets in which Xt may be
for each of the labels {0, 1, 2, 3, 4} and the remaining six terms
describe the permitted transitions between the labels. We rep-
resent (99) visually in Fig. 7. For instance, the seventh term,
1(A×{0})×(Ci×{2})(Zt:t+Δ), corresponds to the single timestep transi-
tion from A to Ci and associates this with a change in the label from
Y t = 0 to Y t = 2.

We determine the reactive flux associated with each path-
way and compare it with the total reactive flux. For the reaction
specified by (97), the total reactive flux is 7.5 × 10−4. Each of the
major pathways has a reactive flux of 2.9 × 10−4, which is 39% of
the total reactive flux. Each of the minor pathways has a reac-
tive flux of 6.4 × 10−4, which is 8.5% of the total reactive flux.
These four pathways, thus, give rise to 95% of the total reac-
tive flux and, so, are representative of the majority of reactive

FIG. 7. Possible transitions for the augmented process of the reaction with multiple
pathways, defined by (99).

trajectories. The remaining 5% results from trajectories that do not
conform to these pathways (e.g., ones that pass through only a single
intermediate).

In Fig. 8, we plot four reactive statistics: the reactive density ρθ,
the reactive current Jθ, the conditional mean last passage time from
the reactant Aθ[m−], and the conditional mean first passage time to
the product Aθ[m+].

Reactive statistics from traditional TPT are shown in Fig. 8(a).
From the reactive density ρθ, we observe that reactive trajectories
spend most of their time in the X-shaped region that connects the
intermediates. The reactive current Jθ suggests that the majority
of the reactive trajectories flow from the reactant A to either C1
or C2, then to either C3 or C4 via (x1, x2) = (0, 0), and finally to
the product B. Importantly, even if we consider the full state space
(x1, x2, x3), we cannot determine the relative weights of these four
possible pathways because the pathways are composed of segments
that belong to multiple pathways (e.g., the first half of pathway III
overlaps with pathway I and the second half of pathway III overlaps
with pathway II) and the transitions through (x1, x2, x3) = (0, 0, 0)
along pathways III and IV occur in opposite directions. Other quan-
tities calculated using traditional TPT have the same issue. Both
Aθ[m−] and Aθ[m+] are unable to distinguish between the path-
ways and only indicate the presence of a bottleneck between C1 ∪ C2
and C3 ∪ C4.

In Fig. 8(b), we visualize the reactive statistics for the major
pathways. As pathway I and pathway II are mirror images of one
another, we discuss only pathway I. The reactive current Jθ clearly
shows that the system transitions directly between on-pathway inter-
mediates, from A to C1 to C4 to B. The reactive density ρθ corrobo-
rates this picture, with relatively little density in C2 and C3 compared
to C1 and C4. We observe that Aθ[m−] and Aθ[m+] are highest
near C2 and C3, suggesting that these configurations are dynami-
cally disconnected from the main flow of the reactive trajectories.
The transition from C1 to C4 is accompanied by an abrupt increase
in Aθ[m−](v) and an abrupt decrease in Aθ[m+], which shows that
a transition bottleneck is traversed. We note that the sharp increase
in Aθ[m−] from A to C1 and the sharp decrease in Aθ[m+] from C4
to B imply the presence of bottlenecks between each of these pairs of
states.

The minor pathways in Fig. 8(c) result from trajectories that
switch between the major pathways. Since the two minor path-
ways are mirror images of each other, we discuss only pathway
III, which involves a switch from pathway I to pathway II. In con-
trast with the major pathways, the reactive density ρθ indicates that
the system is likely to visit off-pathway intermediates C2 and C4
on its way from C1 to C3. The conditional mean last passage time
Aθ[m−] from the reactant is nearly identical to that of pathway I,
with higher values near C2 and C3 and lower values near C1 and
C4. However, the conditional mean first passage time Aθ[m+] to
the product is nearly identical to that of pathway II. In conjunction
with ρθ, the slight increase in Aθ[m−] from C1 to C4 suggests that
these intermediates readily interconvert, and similarly for the slight
increase in Aθ[m+] from C3 to C2. The larger change in Aθ[m−] and
Aθ[m+] between C2 ∪ C3 and C1 ∪ C4 implies a bottleneck between
C2 ∪ C3 and C1 ∪ C4. This bottleneck is significant because the tran-
sition from C1 to C3 must occur for this pathway. As with the
major pathways, there are also bottlenecks between A and C1, and
C3 and B.
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FIG. 8. Reactive statistics for the reac-
tion with multiple pathways. The reac-
tive current (vector field) is plotted over
each of the other statistics. Note that
the magnitude of the reactive current
is represented by the opacity of the
arrows and that they are normalized dif-
ferently for each reaction and pathway.
The other reactive statistics (color scale)
are the reactive density ρθ, the condi-
tional mean last passage time from the
reactant Aθ[m−], and the conditional
mean first passage time to the prod-
uct Aθ[m+]. (a) Reactive statistics from
traditional TPT. (b) Reactive statistics
from augmented TPT for major path-
ways I and II. (c) Reactive statistics from
augmented TPT for minor pathways III
and IV.

VII. DISCUSSION
In this paper, we introduced an augmented process that labels

sequences of events. This process enabled us to write statistics that
depend on knowledge of past and future events in terms of quanti-
ties that are local in time and, in turn, to extend the TPT framework.
We demonstrated how this framework can be used to separate statis-
tics of competing pathways in reactions with intermediates to reveal
features of mechanisms that are not apparent from traditional TPT
analyses. Our framework can also be used to treat new classes of
reactions that are not amenable to TPT analyses. For instance, reac-
tions with the same reactant and product states, such as cycles of
oscillators and excitable systems, can be handled using augmented
TPT but not traditional TPT.

Our framework generalizes a previous extension of TPT13 and
history-augmented approaches for computing rates9–11 and reac-
tive statistics.12 The augmented process that we introduce is distinct
from that in Ref. 14, in which the state space is expanded to include
a time variable to treat time-dependent processes, including tran-
sient relaxations and systems with periodically varying dynamics. As
a result, the two approaches can be combined to treat sequences of
events of finite-time processes.

Our focus here was on establishing the conceptual frame-
work for augmented TPT, and the examples that we showed
were sufficiently simple that the Fokker–Planck equations defin-
ing their dynamics could be numerically integrated in the variables
by quadrature. The dynamics of models with larger numbers of
variables must instead be sampled through simulations that gener-
ate stochastic realizations of trajectories (i.e., the dynamics of the

variables are numerically integrated in time). Because, like tradi-
tional TPT, the framework casts statistics in terms of quantities that
are local in time, we can extend methods that compute reactive
statistics from short trajectories.12,16,17 Such efforts are underway.
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APPENDIX: FINITE DIFFERENCE SCHEME

For a time-reversible drift-diffusion process given by

∂PX[Xt]
∂t

= ∇ ⋅ (PX[Xt]∇U(Xt)) +∇2PX[Xt] (A1)

with stationary distribution π(Xt)∝ exp(−U(Xt)), the infinitesi-
mal generator can be used to compute expectations forward-in-time
as

∂EX[ f (Xt+Δ) ∣ Xt]
∂Δ

= −∇U(Xt) ⋅ ∇ f (Xt) +∇2 f (Xt). (A2)

To evaluate expectations by quadrature, we adapt the finite
difference scheme from Ref. 16, which we reproduce here. We
approximate (A1) as a discrete-time Markov jump process with time
step Δ on a grid with uniform spacing ϵ. For a small change ϵi in
the direction of the ith coordinate with magnitude ϵ, we substitute
−∇U(Xt) = ∇π(Xt)/π(Xt) and then make the approximation

E[ f (Xt+Δ) ∣ Xt] − f (Xt)
Δ

≈ 1
2∑i

(π(Xt + ϵi) − π(Xt))/ϵ
(π(Xt + ϵi) + π(Xt))/2

[ f (Xt + ϵi) − f (Xt)
ϵ

]

+ 1
2∑i

(π(Xt) − π(Xt − ϵi))/ϵ
(π(Xt) + π(Xt − ϵi))/2

[ f (Xt) − f (Xt − ϵi)
ϵ

]

+∑
i

f (Xt + ϵi) + f (Xt − ϵi) − 2 f (Xt)
ϵ2 . (A3)

Alternatively, we can write

EX[ f (Xt+Δ) ∣ Xt] − f (Xt)
Δ

= 1
Δ
(∫ PX[Xt:t+Δ] f (Xt+Δ) dXt+Δ

PX[Xt]
− f (Xt)) (A4)

≈ 1
Δ
[(P(Xt , Xt) f (Xt) +∑

i
P(Xt , Xt + ϵi) f (Xt + ϵi)

+∑
i

P(Xt , Xt − ϵi) f (Xt − ϵi))/π(Xt) − f (Xt)], (A5)

where P(Xt:t+Δ) represents the approximation of PX[Xt:t+Δ] on
the grid. Above, the first equality follows from the definition of

conditional expectation and the second assumes that all transitions
within time Δ are to neighboring grid points.

By matching terms between (A5) and (A3), the only nonzero
entries of P(x, x′) are

P(x, x + ϵi) =
2Δ
ϵ2

1
1/π(x) + 1/π(x + ϵi)

, (A6)

P(x, x − ϵi) =
2Δ
ϵ2

1
1/π(x) + 1/π(x − ϵi)

, (A7)

P(x, x) = π(x) −∑
i
[P(x, x + ϵi) + P(x, x − ϵi)]. (A8)

Then, we can use the above expressions to estimate expectations
using

EX[ f (Xt−Δ:t) ∣ Xt] ≈
∑Xt−Δ

P(Xt−Δ:t) f (Xt−Δ:t)
π(Xt)

, (A9)

EX[ f (Xt:t+Δ) ∣ Xt] ≈
∑Xt+Δ

P(Xt:t+Δ) f (Xt:t+Δ)
π(Xt)

, (A10)

EX[ f (Xt:t+Δ)] ≈ ∑
Xt:t+Δ

P(Xt:t+Δ) f (Xt:t+Δ), (A11)

where the sums are over points on the grid.
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