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Original Article

A novel senescence-associated LncRNA signature predicts the 
prognosis and tumor microenvironment of patients with colorectal 
cancer: a bioinformatics analysis
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Background: Accumulating evidence suggests that cellular senescence promotes tumor formation and 
that long non-coding RNAs (lncRNAs) expression predicts tumor prognosis. However, senescence-related 
variables, particularly lncRNAs, are still largely unknown. Therefore, the present study developed a novel 
senescence-associated lncRNA signature to predict colorectal cancer (CRC) prognosis. 
Methods: A co-expression network of senescence-associated mRNAs and lncRNAs was built using RNA-
sequence data from The Cancer Genome Atlas (TCGA). By using the prognosis outcomes data of overall 
survival (OS) and disease-free survival (DFS) from TCGA, we constructed a prognostic senescence-
associated lncRNA signature (SenALSig). The OS and DFS were compared between the low- and high- risk 
groups defined by SenALSig. A single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT 
algorithm were used to investigate the relationship between the predictive signature and immune status. 
Finally, the relationship between SenALSig and drug treatment options was investigated. An independent 
CRC cohort and three CRC cell lines were recruited to perform real-time quantitative reverse transcription 
polymerase chain reaction (RT-qPCR) analysis to validate the results discovered in silico.
Results: A prognostic risk model consisting of six senescence-associated lncRNAs was constructed, 
including SNHG16, AL590483.1, ZEB1-AS1, AC107375.1, AC068580.3, and AC147067.1. High-risk scores 
according to the SenALSig were significantly associated with poor OS (hazard ratio =1.218, 95% confidence 
interval: 1.140–1.301; P<0.001). The model’s accuracy was further supported by receiver operating 
characteristic (ROC) curves (the area under the curve is 0.714) and a principal component analysis (PCA). In 
univariate and multivariate Cox regression analyses, SenALSig was further found to be a prognostic factor 
independent of other clinical factors. Furthermore, we discovered that immune checkpoint expression and 
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Introduction

While the five-year survival rate for early colorectal cancer 
(CRC) ranges from 65 to 92 percent depending on stage, 
it drops to 13 percent after cancer metastasis (1). Frontline 
treatment for CRC, such as chemotherapy and targeted 
therapy, is often associated with dose-limiting toxicities in 
patients and resistance in cancer cells (2). Immunotherapy 
for CRC has had limited success, as it is only effective 
in cases with microsatellite instability (3,4). As a result, 
new effective diagnostic markers, treatment targets, and 
prognostic factors must be identified to improve patient 
outcomes and quality of life. 

The known traditional biomarker of CRC, such as 
carcinoembryonic antigen (CEA), is the only tumor-
specific marker that is widely recommended for the clinical 
treatment of CRC (5). Even though CEA can sometimes 
detect CRC patients, its false positive rate is too high to 
be acceptable, and the same context, it is difficult to offer 
prognostic information, much less therapeutic advice (6). 
Long non-coding RNAs (lncRNAs) are currently thought 
to have a significant role in the malignant nature of CRC 
due to aberrant expression. For example, the small protein 
SRSP (splicing regulatory small protein) encoded by 
lncRNA LOC90024 promotes “oncogenic” RNA splicing 
and CRC tumorigenesis (7). High expression of LncRNA 
HOTAIR in CRC patients was associated with venous 
invasion, advanced tumor invasion and distant metastasis, 
and patients also had significantly shorter overall survival 
(OS) and disease-free survival (DFS) (8). Although 
several lncRNA prognostic models for CRC have been 
published (9-11), the majority do not predict the immune 
microenvironment or immunotherapeutic effects of CRC. 
Cellular senescence is an irreversible type of proliferative 

arrest that evolved as a protective mechanism for tissue 
homeostasis, ostensibly as a supplement to programmed 
cell death. It serves to inactivate and eventually destroy sick, 
defective, or otherwise superfluous cells (12). There are 
numerous examples of senescent preventive effects in cancer 
progression that have been well-documented (13). However, 
a growing body of research suggests that senescent 
cells may, in some cases, promote tumor formation and 
progression (14). Furthermore, the ability of senescent 
cells to promote cancer is not limited to cancer cells; other 
components of the tumor microenvironment (TME), such 
as fibroblasts and immune cells, appear to be particularly 
susceptible to the effects of senescence (15). Cancer-
associated fibroblasts and other abundant stromal cells in 
tumors have been shown to undergo senescence, passing 
on cancer hallmark capabilities to cancer cells in the TME 
(16,17). In addition, senescent fibroblasts in normal tissues 
have been suspected of reshaping tissue microenvironments 
via their senescence-associated secretory phenotype (SASP) 
in order to provide paracrine support for local invasion 
and distant metastasis (14). In short, cellular senescence 
is a critical factor in the development of various cancers, 
including CRC, and has recently been systemically 
summarized as a novel cancer hallmark (12). Nevertheless, 
the potential role and mechanism of genes involved in 
senescence regulation in CRC TME remain unknown.

LncRNAs with more than 200 nucleotides are involved 
in various biological processes such as cell proliferation, 
differentiation, development, apoptosis, and metastasis (18). 
Evidence suggests that lncRNAs play an important role 
in the development and progression of a wide range of 
human cancers, including CRC (19). A recent transcription 
sequence study revealed that the majority of RNAs altered 

response to chemotherapy and targeted therapy differed significantly between the SenALSig-stratified high- 
and low-risk groups. Finally, the qPCR results revealed that the expression levels of the six senescence-
associated lncRNAs differed significantly between tumor and normal tissues and between the CRC cell lines 
and a normal human colon mucosal epithelial cell line.
Conclusions: SenALSig can better predict survival and risk in CRC patients, as well as help develop new 
anti-cancer treatment strategies for CRC.
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during senescence were protein-encoding transcriptions, 
but lncRNAs also appear to have undergone significant 
transcriptional changes in cancer and senescence 
progression (20). For example, the lncRNA PURPL was 
one of the most abundant and consistent transcriptions in 
senescent cells (20). The transcription factor p53, which 
is usually elevated in senescent cells, has been shown to 
transcriptionally control PURPL production (21). On 
the other hand, PURPL helps to maintain low basal p53 
concentrations in colon cancer cells by interacting with 
MYBBP1A and preventing the formation of the stable 
p53–MYBBP1A complex (21). Because PURPL promotes 
tumorigenicity in colon cancer cells by acting as a pro-
survival factor, PURPL may also contribute to the pro-
survival phenotype of senescent cells (21). Given this, 
identifying lncRNA transcriptional changes can help define 
a senescent cancer signature. 

Given the potentially harmful role of cell senescence 
in promoting various aspects of tumorigenesis, measuring 
senescent bursting as a toxicity biomarker warrants further 
investigation. Herein, we created a senescence-associated 
lncRNA signal and systematically examined the relationship 
between senescence-associated lncRNAs and CRC 
patients’ prognosis and clinicopathological characteristics. 
To predict survival in these patients, a nomogram was 

created that included a senescence-associated LncRNA 
signature (SenALSig) and clinical factors. Immune status 
and responses to chemotherapy and targeted therapy were 
compared in high- and low-risk groups. Our findings shed 
light on the regulatory mechanism underlying senescence-
induced CRC and have the potential to improve the efficacy 
of individualized treatment and prognostic assessment. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://jgo.
amegroups.com/article/view/10.21037/jgo-22-721/rc).

Methods

Data acquisition and differentially expressed senescence-
related gene (DEG) identification

Figure 1 depicts the flow chart of the present study. The 
original transcriptome sequencing dataset and clinical 
characteristics of CRC [colon adenocarcinoma (COAD) and 
rectum adenocarcinoma (READ)] were obtained from The 
Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/). The study included a total of 631 patients 
with CRC. Following the exclusion of patients who lacked 
complete follow-up information, had a survival time of less 
than 30 days, or lacked complete clinicopathological data, a 
total of 573 patients were recruited for subsequent analyses. 
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Figure 1 Flowchart of the present study. CRC, colorectal cancer; TCGA, The Cancer Genome Atlas; DEGs, differentially expressed genes; 
RT-qPCR, quantitative reverse transcription PCR; lncRNAs, long noncoding RNAs; ROC, receiver operating characteristic.

https://jgo.amegroups.com/article/view/10.21037/jgo-22-721/rc
https://jgo.amegroups.com/article/view/10.21037/jgo-22-721/rc
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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The prognosis outcomes data of OS and DFS from TCGA 
were extracted for the following analysis.

CellAge (http://genomics.senescence.info/cells), a 
manually curated database of 279 human genes, was used 
to obtain the genes associated with cell senescence (22). 
To identify cell senescence-related DEGs between tumor 
and normal tissues, we used a false discovery rate (FDR) of 
<0.05 and absolute log2 fold change values greater than 1. 

Identification of a predictive signature of senescence-
associated lncRNAs for CRC

Senescence-associated lncRNAs were identified by building 
a senescence-associated mRNA-lncRNA co-expression 
network with absolute Pearson correlation coefficient values 
of >0.3 and P<0.001 as the thresholds. Cytoscape 3.7.2 
was used to visualize the lncRNA-mRNA co-expression 
networks. The R package “ggalluvial” was used to obtain 
the co-expression Sankey map. By using univariate Cox 
regression analyses with a P<0.01 cutoff, significant 
prognostic senescence-associated lncRNAs were identified 
and incorporated into a multivariate Cox regression 
analysis to establish the risk scores. A risk formula was 
used to calculate the risk score for each patient, where 
risk score = explncRNA1 × coef lncRNA1 + explncRNA2 
× coef lncRNA2 +...+ explncRNAi × coef lncRNAi. 
The relationship between survival and the different risk 
groups was examined using linear regression analysis. The 
distribution of survival statuses based on the risk score levels 
was investigated. Clinicopathological data were included 
in the univariate and multivariate Cox regression analyses 
to determine whether the risk score was an independent 
prognostic indicator. The accuracy of the risk model was 
evaluated using receiver operating characteristic (ROC) 
curves. The R package “pheatmap” was used to construct 
and visualize the clinicopathological variables in the high- 
and low-risk groups. Principal component analysis (PCA) 
was also used to assess and illustrate the distribution 
of high-risk and low-risk patients, using the R package 
“scatterplot3d”.

Construction of the nomogram

Risk scores and other demographic parameters, such as 
gender, age, N stage, and total stage, were combined to 
develop a nomogram that could predict survival in CRC 
patients. We used a calibration curve to see if the predicted 

survival rate matched the actual survival rate. The R 
package “rms” was used to develop the nomogram.

Functional enrichment analysis of the senescence-associated 
lncRNAs predictive signature

According to the prognostic model, gene set enrichment 
analysis (GSEA) was carried out for the high- and low-risk 
groups. Significant biological processes and pathways were 
enriched when the nominal P value (NOM p) was <0.05 
and FDR q<0.25. The c5.go.v7.4, symbols.gmt, and c2.cp.
kegg.v7.4.symbols.gmt were used as reference files from the 
Molecular Signatures Database (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/index.jsp). The results were 
visualized using the R package “ggplot2.” A single-sample 
gene set enrichment analysis (ssGSEA) was used to calculate 
the infiltration scores of 16 immune cells and the activities 
of 13 immune-related pathways using the “GSVA” package 
in R (23).

Assessment of the predictive signature’s ability to predict 
drug treatment response 

First, the expression differences of 40 immunological 
checkpoints between the high- and low-risk groups were 
analyzed. We also compared the half-maximal inhibitory 
concentration (IC50) of the drugs used to treat CRC 
between the high- and low-risk groups in order to assess 
the signature’s potential to predict treatment response. The 
Wilcoxon signed-rank test was used to compare the IC50 
values. 

Patients and tissue specimens of the independent validation 
CRC cohort

Patients were eligible for inclusion if they had histologically 
confirmed CRC with resectable tumors , regardless 
of microsatellite status or mismatched repair protein 
expression. The eighth edition of the American Joint 
Committee on Cancer (AJCC) was used to determine all 
staging (24). The presence of metastatic disease (stage 
IV), unresectable or recurrent CRC, CRC with active 
bleeding, perforation, or complete obstruction necessitating 
emergency surgery, and any prior anticancer therapy 
for CRC, such as chemotherapy, targeted therapy, or 
immunotherapy are important exclusion criteria. The 
baseline demographic and clinical characteristics of the 

http://software.broadinstitute.org/gsea/msigdb/index.jsp
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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quantitative reverse transcription polymerase chain reaction 
(RT-qPCR) independent validation CRC group are shown 
in Table 1.

Tissue samples were obtained from CRC patients who 
underwent surgical resection at the Sixth Affiliated Hospital 
of Sun Yat-sen University in 2021. Written informed 
consent was obtained from all participants. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013) and approved by the Research Ethics 
Committee of the Sixth Affiliated Hospital of Sun Yat-sen 
University (No. 2021ZSLYEC-064). We excised tumor 
tissue and adjacent tumor-free tissue and preserved them in 
RNAfixer Reagent (Biotek, Beijing, China). 

Cell culture

Three human GC cell lines (HCT116, SW480, and 
HCT8) and one normal human colon mucosal epithelial 
cell line, NCM460, were obtained from The Cell Bank 
of Type Culture Collection of the Chinese Academy 
of Sciences Committee (Shanghai, China). All the cell 
lines were cultured in RPMI 1640 medium. All media 
were supplemented with 1% penicillin-streptomycin 
(Invitrogen, Carlsbad, CA, USA) and 10% fetal bovine 
serum (Invitrogen). The cells were cultured at 37 ℃ in a 
humidified atmosphere containing 5% CO2.

Real-time RT-qPCR

A TRIzol reagent (Invitrogen, Carlsbad, USA) and 
an RNA-Quick Purification Kit (ES-RN001; Yishan 
Biotechnology, Shanghai, China) were used to extract 
the total RNA from tissues or cell lines according to the 
manufacturer’s instructions. The RT-qPCR analysis was 
performed as previously described (25). GAPDH was used 
as the normalization control. The 2–ΔCt or 2–ΔΔCt method was 
utilized for quantification.

Statistical analysis

R software (Version 4. 1.2) was used for all statistical 
analyses. The expression levels of senescence DEGs in 
cancerous and healthy tissues were compared using the 
Wilcoxon test. Patients in different groups were compared 
for differences in OS using the log-rank test. The Kruskal-
Wallis test was used to compare the differences in the 
area under the ROC (AUC) between groups. When the 

Table 1 Baseline demographic and clinical characteristics of the 
real-time RT-qPCR independent validation CRC group (n=30)

Clinical characteristics
RT-qPCR validation group 

(n=30)

Age (years)

Median 60.6

Range 45–72

Gender, n (%)

Female 9 (30.00)

Male 21 (70.00)

Tumor location, n (%)

Ascending colon 3 (10.00)

Transverse colon 4 (13.33)

Descending colon 4 (13.33)

Sigmoid colon 11 (36.67)

Rectum 4 (13.33)

Disease stage, n (%)

I 6 (20.00)

II 6 (20.00)

III 18 (60.00)

T stage, n (%)

T1 2 (6.67)

T2 11 (36.67)

T3 14 (46.67)

T4 3 (10.00)

N stage, n (%)

N0 12 (40.00)

N1 5 (16.67)

N2 13 (43.33)

Histological differentiation, n (%)

Well 12 (40.00)

Moderately 11 (36.67)

Poorly 7 (23.33)

Loss of expression of mismatch 
repair proteins

0

High microsatellite instability (testing 
by PCR)

0

T, extension of the primary tumor; N, lymph node invasion; RT-
qPCR, real-time quantitative reverse transcription polymerase 
chain reaction; CRC, colorectal cancer.
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AUC value is higher than 0.7, the model is regarded 
as performing well. For clinical data analysis, the chi-
squared test or Fisher’s exact test was used. Demographic 
information was incorporated into the univariate and 
multivariate Cox regression analysis to test the hypothesis 
that the SenALSig is an independent prognostic predictor. 
Using Spearman or Pearson correlation coefficients, we 
investigated the relationships among lncRNA expression, 
immune checkpoint gene expression, and immunological 
infiltration. Statistical significance was defined as a corrected 
P value 0.05.

Results

Identification of senescence-related DEGs in CRC

We first looked into the expression of 279 genes to check 
if there was any aberrant expression of these senescence-
related transcripts (https://cdn.amegroups.cn/static/public/
jgo-22-721-1.docx) in normal and tumor tissues. A subset 
of 80 senescence-related DEGs was obtained, including 53 
upregulated genes and 27 downregulated genes (Figure 2A, 
Table S1). 

Construction of the senescence-associated lncRNA 
predictive signature—SenALSig

By using Pearson’s correlation analysis, a total of 1161 
senescence-associated lncRNAs were identified under the 
absolute values of Pearson’s correlation coefficient >0.3 and 
P<0.001 as thresholds with correlation to senescence-related 
DEGs (https://cdn.amegroups.cn/static/public/jgo-22-
721-2.xlsx). Thirty-two lncRNAs were identified as being 
related to the prognosis of CRC patients by a univariate 
Cox regression analysis (Figure 2B). Using multivariate 
Cox regression analysis, six senescence-associated lncRNAs 
(SNHG16 ,  AL590483 .1,  ZEB1-AS1, AC107375.1, 
AC068580.3, and AC147067.1) were identified to form a 
predictive signature termed “SenALSig.” A heatmap of the 
six SenALSig lncRNAs’ expression levels in CRC patients 
is shown in Figure 2C. The co-expression network consisted 
of 120 pairs of senescence-associated lncRNA-mRNAs 
and was further visualized using Cytoscape software  
(Figure 2D; |R2| >0.3 and P<0.001). Figure 2E depicts 
a Sankey diagram demonstrating that SNHG16 and 
AL590483.1 were protective factors, whereas ZEB1-AS1, 

AC107375.1, AC068580.3, and AC147067.1 were risk factors. 

Correlation between the SenALSig and the prognosis of 
CRC patients

The risk score of SenALSig was calculated as follows: 
r i s k  s c o r e  =  ( – 0 . 8 9 9 4 × S N H G 1 6  e x p r e s s i o n )  + 
(–0.8211×AL590483.1 expression) + (0.9144×ZEB1-
AS1 expression) + (0.6663×AC107375.1 expression) + 
(0.7681×AC068580.3 expression) + (0.5576×AC147067.1 
expression). The formula was used to get the risk score for 
each patient, and the patients were then categorized into 
high- and low-risk groups on the basis on the median risk 
score. Finally, 278 patients were assigned to the high-risk 
group, while 295 patients were assigned to the low-risk 
group (Figure 3A). According to the Kaplan-Meier analysis, 
the OS time (Figure 3A) and progression-free survival time 
(PFS, Figure S1) of the high-risk group were significantly 
shorter than that of the low-risk group. Figure 3B,3C show 
the risk scores and survival statistics for individual patients. 
As risk scores rose, so did the number of patients who died. 
In the univariate and multivariate Cox regression analyses, 
the risk score was an independent predictor of OS in CRC 
patients (Figure 3D,3E). The risk score’s AUC was 0.714, 
which was better than most clinicopathological variables in 
predicting CRC patients’ prognosis (Figure 3F). The AUCs 
of the 1-, 3-, and 5-year ROC curves were 0.688, 0.718, and 
0.733, respectively, indicating SenALSig’s robust prognostic 
predictive performance (Figure 3G). 

Figure 4A illustrates the risk group-specific expression 
of the six lncRNAs from the SenALSig model and the 
clinicopathological factors. Then, using our SenALSig 
model, patients with varying risks could be differentiated 
clearly, as shown in Figure 4B-4E, proving the model’s 
accuracy.

Furthermore, when assessing the relationship between 
the SenALSig risk score and demographic parameters, as 
shown in Figure 5A-5Q, we found significant relationships 
between the risk score and age (Figure 5A,5B), gender 
(female and male, Figure 5C,5D), distant metastasis (M0 
and M1, Figure 5E,5F), lymph node metastasis (N1 and 
N2, Figure 5H,5I), T4 stage (Figure 5M), stage III and IV 
(Figure 5P,5Q). Using a stratification analysis, we again 
demonstrated that patients with a high-risk score had a 
significantly poorer prognosis. Taken together, these results 
showed that the SenALSig-based risk score was a significant 

https://cdn.amegroups.cn/static/public/jgo-22-721-1.docx
https://cdn.amegroups.cn/static/public/jgo-22-721-1.docx
https://cdn.amegroups.cn/static/public/JGO-22-721-Supplementary.pdf
https://cdn.amegroups.cn/static/public/jgo-22-721-2.xlsx
https://cdn.amegroups.cn/static/public/jgo-22-721-2.xlsx
https://cdn.amegroups.cn/static/public/JGO-22-721-Supplementary.pdf
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Figure 5 Kaplan-Meier curves for different-risk samples stratified by demographic parameters. (A,B) Age; (C,D) Sex; (E,F) M stage; (G-I) N 
stage; (J-M) T stage; (N-Q) overall TNM stage. T, tumor; N, lymph node metastasis; M, distant metastasis.
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independent prognostic risk factor for patients with CRC. 

Construction and verification of a nomogram

To determine the likelihood that CRC patients would 
survive, we created a therapeutically adaptable nomogram 
employing the SenALSig risk score in conjunction with 
additional clinicopathological factors (Figure 6A). The 
nomogram’s calibration plots for 1-, 3-, and 5-year survival 

(Figure 6B-6D) demonstrated that the estimated mortality 
was reasonably similar to the actual mortality.

Internal validation of the SenALSig

To investigate the applicability of the SenALSig for OS 
based on the complete TCGA dataset, the dataset of 
573 CRC patients was randomly split into two cohorts 
(n=288 in the first cohort and n=285 in the second cohort).  
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Figure 6 Development and validation of a nomogram. (A) Nomogram prediction model for OS of CRC patients. The calibration curves 
showed good consistency in the probability of (B) 1-, (C) 3-, and (D) 5-year survival between the actual observation and the nomogram 
prediction. OS, overall survival; CRC, colorectal cancer; T, tumor; N, lymph node metastasis; M, distant metastasis.
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Table 2 The clinical characteristics of patients in different cohorts

Clinical characteristics
Entire TCGA CRC samples 

(n=573)
First internal validation cohort 

(n=288)
Second internal validation 

cohort (n=285)
P-overall

Age, mean (SD) 65.5 (12.4) 64.6 (12.2) 66.5 (12.5) 0.168

Gender (%) 0.814

Female 259 (45.2) 134 (46.5) 125 (43.9)

Male 314 (54.8) 154 (53.5) 160 (56.1)

Stage (%) 0.153

Stage I + II 303 (52.9) 137 (47.6) 166 (58.2)

Stage III + IV 250 (43.6) 139 (48.3) 111 (38.9)

Unknown 20 (3.5) 12 (4.2) 8 (2.8)

T (%) 0.779

T1 + 2 118 (20.6) 64 (22.2) 54 (18.9)

T3 + 4 453 (79.1) 222 (77.1) 231 (81.1)

Tis 1 (0.2) 1 (0.3) 0

Unknown 1 (0.2) 1 (0.3) 0

M (%) 0.302

M0 426 (74.3) 208 (72.2) 218 (76.5)

M1 82 (14.3) 39 (13.5) 43 (15.1)

MX_unknown 65 (11.3) 41 (14.2) 24 (8.4)

N (%) 0.052

N0 322 (56.2) 146 (50.7) 176 (61.8)

N1 + 2 248 (43.3) 139 (48.3) 109 (38.2)

NX_unknown 3 (0.5) 3 (1.0) 0

T, tumor; M, metastasis; N, lymph node; P-overall, the P value is indicated for the chi-square test and Kruskal-Wallis test among the three 
groups, significant threshold <0.05; CRC, colorectal cancer.

Table 2 shows the demographic characteristics of the 
patients in the two cohorts. According to the findings 
derived from the complete TCGA cohort, the OS rate of 
patients in the high-risk group was lower than that of the 
low-risk group in both internal cohorts (Figure 7A,7B). 
Furthermore, the time-dependent ROC curves of the two 
cohorts performed well in terms of prediction. AUCs for 1-, 
3-, and 5-year survival were 0.771, 0.788, and 0.758 in the 
first internal cohort (Figure 7C), and 0.625, 0.644, and 0.713 
in the second internal cohort, respectively (Figure 7D). By 
internal verification from these two cohorts, we confirmed 
the robust predictive role of SenALSig in the prognosis  
of CRC. 

Identification of SenALSig-associated biological pathways

The gene set functional annotation in SenALSig-identified 
high- and low-risk CRC patient groups was performed using 
GSEA software. The Gene ontology (GO) terms positive 
regulation of GTPase activity [normalized enrichment score 
(NES) =2.634, NOM P<0.001, FDR q<0.001], regulation 
of GTPase activity (NES =2.617, NOM P<0.001, FDR 
q<0.001), positive regulation of MAPK cascade (NES 
=2.589, NOM P<0.001, FDR q<0.001), negative regulation 
of cytokine production (NES =2.579, NOM P<0.001, 
FDR q<0.001), and positive regulation of cell projection 
organization pathway (NES =2.567, NOM P<0.001, FDR 
q<0.001) were enriched in CRC patients with high-risk 
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Figure 7 SenALSig internal validation. Kaplan-Meier curves for the first (A) and second cohorts (B). OS is predicted by time-dependent 
ROC curves in the first set (C) and second set (D). ROC, receiver operating characteristic; OS, overall survival; AUC, area under the curve; 
SenALSig, senescence-associated lncRNAs.

scores (Figure 8A and https://cdn.amegroups.cn/static/
public/jgo-22-721-3.xlsx). In contrast, pathways related 
to mitochondrial function, such as mitochondrial gene 
expression (NES =−2.422, NOM P<0.001, FDR q<0.001), 
cytoplasmic translation (NES =−2.401, NOM P<0.001, 
FDR q<0.001), mitochondrial translation (NES =−2.345, 
NOM P<0.001, FDR q=0.002), ribosome assembly (NES 
=−2.343, NOM P<0.001, FDR q=0.002), and mitochondrial 
protein containing complex (NES =−2.342, NOM P<0.001, 
FDR q=0.002) were enriched in CRC samples with low-
risk scores, (Figure 8A and https://cdn.amegroups.cn/
static/public/jgo-22-721-4.xlsx). In addition, 178 enriched 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were identified. JAK/STAT signaling pathway 

(NES =2.454, NOM P<0.001, FDR q<0.001), cytokine-
cytokine receptor interaction (NES =2.438, NOM P<0.001, 
FDR q<0.001), chemokine signaling pathway (NES =2.395, 
NOM P<0.001, FDR q<0.001), calcium signaling pathway 
(NES =2.370, NOM P<0.001, FDR q<0.001), and focal 
adhesion signaling pathways (NES =2.367, NOM P<0.001, 
FDR q<0.001) were enriched in the high-risk group  
(Figure 8B and https://cdn.amegroups.cn/static/public/
jgo-22-721-5.xlsx). Citrate—tricarboxylic acid (TCA) 
cycle (NES =−2.181, NOM P<0.001, FDR q=0.014), 
Parkinson’s disease (NES =−2.126, NOM P=0.006, FDR 
q=0.015), oxidative phosphorylation (NES =−2.125, NOM 
P=0.004, FDR q=0.010), ribosome (NES =−2.089, NOM 
P<0.001, FDR q=0.010), and aminoacyl tRNA biosynthesis 

https://cdn.amegroups.cn/static/public/jgo-22-721-3.xlsx
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(NES =−2.067, NOM P=0.002, FDR q=0.010), were 
enriched in the low-risk group (Figure 8B and https://cdn.
amegroups.cn/static/public/jgo-22-721-6.xlsx). These 
findings, particularly the enrichment pathway identified 
from the KEGG analysis of high-risk patients, suggested 
that SenALSig may be involved in the tumor immune 
microenvironment (TIME). Thus, we subsequently 
compared immune cell infiltration, immune pathway 
activation and immune checkpoint expression between the 
high- and low-risk groups. 

Immune cell infiltration, immune-related functions, and 
the expression of immune checkpoints in different risk 
groups

As shown in Figure 9A, we found that antitumor cell types, 
such as T cell CD4 memory resting, T cell CD4 memory 
activated, and dendritic cell resting, had strongly infiltrated 
the low-risk group. Treg cells with an immunosuppressive 
function had a significantly higher degree of infiltration 

in the high-risk group, but CD8+ T cells did not differ 
significantly between the two groups. In addition, the 
immune function scores of antigen-presenting cell (APC) 
co-stimulation, chemokine receptor (CCR), T cell co-
stimulation, type I and II IFN response were higher in the 
high-risk group than in the low-risk group (Figure 9B). The 
expression of the majority of 47 immune checkpoint genes 
differed significantly between the high- and low-risk groups 
(Figure 9C). The high-risk group had much higher levels 
of clinically applied immunotherapeutic markers, such as 
CD274, PDCD-1 and CTLA4. These findings imply that 
the SenALSig-based risk score grouping could be used as 
a potential biomarker for immune checkpoint blockade 
therapy. 

Correlation between the SenALSig and CRC chemotherapy 
and targeted therapy

Chemotherapy is an aggressive, non-specific treatment 
regimen that targets rapidly growing cells. Due to their 
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Figure 9 Immune cell infiltration, immune-related functions, and the expression of immune checkpoints in different risk groups. (A) 
The violin plot illustrates the differences in 22 types of immune cell infiltration in the CRC tumor microenvironment between high- and 
low-risk groups. The CIBERSORT algorithm and Wilcoxon rank-sum test determined the differences between the two groups. (B) The 
predictive signature’s relationship to 13 immune-related functions. (C) The expression of 40 immune checkpoints differs between the high-
risk and low-risk groups. The red boxes represent high-risk patients, while the blue boxes represent low-risk patients. P value <0.05 indicates 
statistical significance. *, P<0.05; **, P<0.01; ***, P<0.001; ns, non-significant; CRC, colorectal cancer; APC, antigen-presenting cell; CCR, 
C-C chemokine receptor; HLA, human leukocyte antigen; MHC, major histocompatibility complex; IFN, interferon.
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non-proliferative nature, senescent fibroblasts, other 
stromal components, and SASP cancer cells are already 
highly resistant to chemotherapy (26). To address this 
issue, we investigated the relationships between the risk 
score and the efficacy of CRC-targeted therapeutics 
and chemotherapeutics (Figure 10A-10H). Interestingly, 
patients with high-risk scores were more sensitive to the 
targeted therapeutics vorinostat (P=3.6e-12, Figure 10A) 
and pyrimethamine (P=0.01, Figure 10B). Vorinostat 
treatment significantly reduced suppressor immune cell  
populations (27), which improved anti-tumor immunity 
in CRC patients. Furthermore, pyrimethamine inhibited 
cell growth in CRC cells by inducing S-phase arrest 
followed by cellular senescence, increased CD8+ T-cell–
mediated cytotoxicity, and exerted antitumor activity  
in vivo (28). In addition, some routinely used clinical drugs, 
such as erlotinib (P=0.00016, Figure 10C) and gemcitabine 
(P=7.8e-06, Figure 10D), have also shown significant 
sensitivity effects in high-risk groups. Correspondingly, 
patients in the low-risk group showed more drug 
susceptibility: mTOR inhibitors, such as temsirolimus 
(P=0.022, Figure 10E), rapamycin (P=0.02, Figure 10F), and 
AZD8055 (P=0.00042, Figure 10G) appear to be particularly 

sensitive in this group of patients. The IC50 value of 
cisplatin (P=0.045, Figure 10H) was also significantly higher 
in patients with low-risk scores. Taken together, our drug 
sensitivity assays are useful for investigating individualized 
treatment plans for patients in both high- and low-risk 
groups. 

Independent validation of the six lncRNAs’ expression in 
the SenALSig model using CRC samples and cell lines 

An independent validation cohort of 30 CRC tumor 
and non-tumor tissues was recruited to further validate 
the SenALSig model’s expression levels of SNHG16, 
AL590483.1, ZEB1-AS1, AC107375.1, AC068580.3, 
and AC147067.1. The RT-qPCR primer sequences are 
listed in Table S2. According to the RT-qPCR results, the 
expression levels of these lncRNAs differed significantly 
between tumor and normal tissues (Figure 11A-11F). 
AC147067.1 (Figure 11C) had a significantly lower 
expression in tumor tissues than the other five lncRNAs, 
which had significantly higher expressions. In addition, 
as shown in Figure 11G-11L), the expression of these six 
lncRNAs in at least one CRC cell line differed significantly 
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from those of normal CRC epithelial cells. Furthermore, 
the online tool GEPIA2 (gepia2.cancer-pku.cn) was used to 
analyze the different expressions of the six lncRNAs in the 
CRC data set of TCGA (Figure S2A-S2F). Importantly, the 
expression pattern has been cross-validated with TCGA, 
our independent CRC cohorts, and CRC cell lines. 

Discussion

More than 1.8 million new CRC cases and 881,000 CRC-
related deaths occur yearly, ranking it third (10.2 %) and 
second (9.2%) among all cancer types in incidence and 
mortality rates, respectively (29,30). At present, the curative 
effect for CRC remains unsatisfactory, which is partly due 
to the lack of biomarkers for diagnosis, treatment, and 
prognosis. Combining multiple clinical genetic markers 
into a model could indeed improve predictive accuracy and 
contribute to the improvement of personalized treatment 
plans when compared to single clinical biomarkers (31). 
Cellular senescence, an essential component of aging and 
cancer, occurs due to various triggers, including telomere 
attrition, macromolecular damage, and signaling from 
activated oncogenes (20). Senescent cells (of any cellular 
origin) have recently been identified as functionally important 
cell types in the TME (12). The presence of senescent cells in 
the TME is associated with a lower DFS rate. Patients had a 
shorter OS when hepatocellular carcinoma tissues expressed 
more senescence-related genes (32). When senescent cells 
expressing the cell-cycle inhibitor p16INK4a+ in aging mice 
were pharmacologically ablated, there was a lower incidence 
of spontaneous tumorigenesis and cancer-associated deaths, 
as well as a delay in a number of age-related symptoms (33). 
Some lncRNAs are thought to regulate cellular senescence  
(34-36). For instance, the lncRNA PURPL has been shown 
to be a more robust senescent biomarker than p16 mRNA 
and p21 mRNA in the colon cancer cell line HCT116. It 
may promote tumorigenicity by acting as a survival factor 
and contributing to the survival phenotype of senescent  
cells (21).

Currently, senescent cells are identified by a combination 
of multiple traits, including expression and secretion 
of senescence-related proteins,  DNA damage ,  and 
β-galactosidase activity; however, these traits are neither 
exclusively nor universally present in senescent cells  
(20,37-40). In addition, although several lncRNA signatures 
associated with CRC have been reported (9-11,41-44), only 
a few studies have focused on senescent-related lncRNA 
predictive signatures in CRC, prompting us to construct 

a SenALSig signature for simultaneous characterization 
of senescence and CRC. Based on the ROC curve, the 
SenALSig demonstrated a moderate predictive performance 
for  CRC OS by using a  s ix  lncRNA senescence-
associated signature (SNHG16, AL590483.1, ZEB1-AS1, 
AC107375.1, AC068580.3, and AC147067.1). Additionally, 
we believe that our newly established nomogram will help 
with the development of treatment strategies and enhance 
clinical decision-making. In the lncRNA model, both 
SNHG16 and ZEB1-AS1 have previously been identified as 
oncogenes in a number of cancers (45-48), including colon 
cancer. SNHG16 has been shown to promote colon cancer 
cell proliferation, migration, and epithelial-mesenchymal 
transition via miR-124-3p/MCP-1 (49), and ZEB1-AS1 
promotes PAK2 expression by sponging miR-455-3p, 
facilitating colon cancer cell growth and metastasis (50). 
Furthermore, AL590483.1 and AC068580.3 have been 
linked to a colorectal prognosis signature component in 
several lncRNA risk models (51-55). However, studies on 
AC107375.1 and AC147067.1 in cancer are lacking. The 
impact of these lncRNAs in CRC and senescence must 
therefore be further studied. 

The most valuable contribution of the present study 
is that it highlights the significant relationship between 
SenALSig and CRC prognosis. To date, the effect of the 
aging microenvironment on tumor treatment response 
is often overlooked in preclinical studies. For example, 
most animal models studied are 4-8 week old mice, rather 
than older mice with better mimicry (15). This may partly 
explain the fact that many preclinical treatments that 
were very effective have failed when they entered clinical 
trials. Furthermore, when using AUC as a cross-sectional 
comparison, our SenALSig model is comparable to most 
studies utilizing TCGA to establish lncRNA biomarker 
signatures (Table 3). This suggests that senescent cells have 
an impact on the prognosis of CRC and are at least as 
valuable as other biomarkers.

Additionally, we demonstrated a significant relationship 
between SenALSig and the TIME. SenALSig stratification 
revealed that immune cell infiltration, immune pathway 
activation, and immune checkpoint expression were all 
higher in the high-risk group than in the low-risk group. 
Notably, different states of the immune microenvironment, 
named immune-hot or -cold, have significant effects on 
therapeutic efficacy and the OS of CRC patients (56). Pre-
existing anti-tumor immune responses within the TME 
are necessary for immune checkpoint blockade to be  
effective (57). Since our findings link cellular senescence 

https://cdn.amegroups.cn/static/public/JGO-22-721-Supplementary.pdf
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Table 3 Studies of LncRNA predictive models to predict colorectal cancer prognosis

Studies No. of lncRNAs
AUC of time-dependent ROC

1-year 3-year 5-year

Zhang et al. (9) 4 0.622 0.635 0.675

Zhao et al. (10) 3 0.679 0.663 0.699

Wang et al. (11) 5 NA NA 0.740

Cheng et al. (44) 6 NA 0.797 0.771

Sun et al. (52) 10 NA 0.725 0.803

Wang et al. (53) 15 NA NA 0.708

Chen et al. (54)* 15 0.796 0.828 0.866

Zhou et al. (55)* 10 0.796 0.790 0.723

The present study 6 0.688 0.718 0.733

*, these studies only assessed colon cancer samples in the TCGA database. AUC, area under the ROC curve; ROC, receiver operating 
characteristic curve; NA, not available.

markers to immune infiltration in CRC, targeting these 
senescence-associated lncRNAs in combination with 
immune checkpoint inhibitors may be a promising new 
direction. Interestingly, Immunotherapy markers such 
as CD274, PDCD-1, and CTLA4 were found to be 
significantly higher in the high-risk group, implying that 
immunotherapy may benefit these patients more. These 
results provide new insights into tumor immunotherapy. 
Taken together,  the current study emphasizes the 
implication of cellular senescence on TIME and the future 
value of treating cellular senescence as a complement to 
enhance the efficacy of immunotherapy. 

The transitional senescent state is another aspect of 
senescent cancer cells’ impact on cancer phenotype. In this 
case, senescent cancer cells can escape the proliferative 
state to avoid detection by the immune system and 
chemotherapeutic agents, but under the right conditions, 
they can resume cell proliferation and exhibit oncogenic 
cellular capacity (12,58). For example, in breast cancer 
models, treatment-induced senescent endothelial cells 
can increase the development of cancer cells (59,60). This 
situation suggests that clinicians should pay sufficient 
attention to strategies that target senescent cells during 
oncology treatment. Because our SenALSig signature fully 
considers senescence in patient risk stratification, it may 
have potential benefits for clinical drug selection. 

The current study had several limitations. First, the 
study only used the TCGA dataset due to the current lack 

of external CRC databases. To decide if the SenALSig 
model will be able to accurately fit the dataset in the future, 
more data that is currently accessible should be taken into 
account. Second, some factors that can clearly influence 
prognosis were not included in the nomogram because 
they were not available. Third, functional and mechanistic 
research should be carried out to better understand the role 
of senescence-associated lncRNAs.

To summarize, we constructed a SenALSig lncRNA 
signature for CRC that can be used to predict prognosis. 
SenALSig was included in our effective nomogram. By 
using 30 pair-matched tumor and non-tumor tissues, 
we validated the expression levels of the identified 
lncRNAs independently.  Importantly, SenALSig is 
associated with immune infiltration of the TME as well as 
immunotherapeutic efficacy. 
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