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1  |  INTRODUC TION

Oligonucleotide therapy involves the use of drugs consisting of 
single-stranded DNA or RNA that can bind to specific sequences 
of DNA, RNA, or protein and inhibit gene expression or intercept 
protein functions. Oligonucleotide therapeutics include antisense 
oligonucleotides (ASOs), small interfering RNAs (siRNAs), mi-
croRNAs (miRNAs), aptamers, and decoys. Antisense oligonucle-
otides and siRNAs are widely used advanced tools to silence gene 

expression because of their high specificity and limited toxicity. 
Oligonucleotides are even suitable for targets that are not druggable 
via other therapeutic modalities; thus, oligonucleotide therapeutics 
have the potential to become the third pillar of drug development.

The advantages of oligonucleotide therapeutics include the 
simple design of the drug constructs based only on the genomic se-
quences of target genes, and they require less time for development. 
However, their applications in clinical studies are limited because 
of the off-target effects of ASO and siRNA sequences and poor 
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Abstract
Oligonucleotide therapeutics, drugs consisting of 10–50 nucleotide-long single- or 
double-stranded DNA or RNA molecules that can bind to specific DNA or RNA se-
quences or proteins, include antisense oligonucleotides (ASOs), small interfering 
RNAs (siRNAs), microRNAs (miRNAs), aptamers, and decoys. These oligonucleotide 
therapeutics could potentially become the third pillar of drug development. In par-
ticular, ASOs and siRNAs are advanced tools that are widely used to silence gene 
expression. They are used in clinical trials, as they have high specificity for target 
mRNAs and non-coding RNAs and limited toxicity. However, their clinical applica-
tion remains challenging. Although chemotherapy has benefits, it has severe adverse 
effects in many patients. Therefore, new modalities for targeted molecular therapy 
against tumors, including oligonucleotide therapeutics, are required, and they should 
be compatible with diagnosis using next-generation sequencing. This review provides 
an overview of the therapeutic uses of ASOs, siRNAs, and miRNAs in clinical studies 
on malignant tumors. Understanding previous research and development will help in 
developing novel oligonucleotide therapeutics against malignant tumors.
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stability due to the degradation by ribonucleases when injected sys-
temically. They also activate the innate immune system via Toll-like 
receptors. ASO–mRNA interactions depending on mRNA structure, 
thermodynamic stability, and hybridization site position have been 
well understood; however, design methods of ASO sequence have 
not been established. Design methods for the siRNA sequence are 
important to reduce potential off-target effects in siRNA, and the 
homology of the seed region of siRNA should be minimized to the 3' 
UTR of non-target mRNA. Chemical modifications, such as the intro-
duction of phosphorothioate backbones and sugar-modified nucleic 
acids, including 2-O-methyl, 2-O-methoxyethyl, 2-flouro, locked nu-
cleic acid (LNA), and bridged nucleic acids (BNA), increase not only 
resistance to nuclease degradation and avoid immunologic reactions 
but also prevent toxicity.1 Therapeutic oligonucleotides are filtered 
by the kidneys because of their small size, resulting in poor accumu-
lation in their target sites. Furthermore, ASOs of high concentrations 
can penetrate the lipophilic cell membranes. However, siRNAs can-
not completely diffuse across them. Drug delivery systems (DDSs) 
for oligonucleotides play an important role in overcoming these 
difficulties (Figures  1 and 2). After the penetration of ASOs and 
siRNAs into the cell membrane, they must escape from endosomes 
to reach their target RNAs in the cytosol. siRNAs are loaded onto 
Argonaute2 (Ago2), which is a component of RNA-induced silencing 
complexes (RISCs) (Figure 2).1,2 Although ASOs and siRNAs possess 
considerable therapeutic potential, complete remission cannot be 
achieved with only a single ASO or siRNA, as cancers and tumors 
are heterogeneous.

Herein, we focused on ASO and siRNA drugs currently used to 
treat malignant tumors, mainly in clinical trials. Understanding oligo-
nucleotide therapeutics will help develop novel therapeutic strate-
gies against tumors.

2  |  ANTITUMOR AL ANTISENSE 
OLIGONUCLEOTIDES

Antisense oligonucleotides are 12–25 nucleotide-long single-
stranded DNA molecules. They modulate the function of their RNA 

targets via several mechanisms, such as RNase H-mediated degrada-
tion, mRNA modification, and miRNA inhibition.3

Antisense oligonucleotides are classified by their mechanisms 
of action into (a) gapmers, which are composed of DNA antisense 
with chemically modified RNA segments on both sides of the se-
quence, and act as substrates for RNase H (Figure 3A); (b) RNase H-
independent splice switching oligonucleotides (SSOs), which bind to 
pre-mRNAs and disrupt their recognition by splicing factors4; and (c) 
modified ASOs, which inhibit miRNA function.5 The ASO drugs used 
to treat malignant tumors in clinical trials are as follows (Table 1).

AZD9150 (danvatirsen) is an STAT3 ASO. In heavily pretreated pa-
tients with diffuse large B-cell lymphoma (DLBCL), AZD9150 was 
well tolerated and demonstrated efficacy.6 In a phase 1b trial of pa-
tients with relapsed/refractory DLBCL, AZD9150 plus durvalumab 
helped achieve the primary endpoint and was well tolerated; how-
ever, its antitumor activity was limited.7

BP1001 is an ASO for liposomal growth factor receptor-bound 
protein 2 (Grb2). In a phase 1/1b trial of patients with relapsed/re-
fractory hematological malignancies, BP1001 exhibited antitumor 
activity in combination with low-dose cytarabine.8

EZN-4176 binds to the hinge region (exon 4) of androgen receptor 
mRNA. In a phase 1 study of patients with castration-resistant pros-
tate cancer (CRPC), EZN-4176 activity was minimal.9

GRN163L (imetelstat) is a telomerase inhibitor targeting the tem-
plate region of functional telomerase RNA subunits. In a phase 2 
study of patients with intermediate-2 or high-risk myelofibrosis re-
lapsed/refractory to Janus-associated kinase inhibitors, GRN163L 
improved the symptom response rate and bone marrow fibrosis.10 In 
a phase 2 trial of patients with low-risk myelodysplastic syndromes, 
GRN163L resulted in a meaningful and durable transfusion indepen-
dence rate.11 In a phase 2 study of patients with advanced non-small 
cell lung cancer (NSCLC), GRN163N did not improve progression-
free survival (PFS). However, there was a trend toward improvement 
in the median PFS and overall survival (OS) in patients with short 
telomeres.12 In a phase 2 study of children with recurrent central 
nervous system tumors, GRN163N demonstrated intratumoral and 
peripheral blood mononuclear cell target inhibition, although the 
regimen was toxic.13

F I G U R E  1  Strategies to overcome 
difficulties associated with oligonucleotide 
therapeutics

StabilityImmunogenicitySequence selection Delivery

• Renal clearance
• Poor permeability of cell 

membrane
• Endosomal escape

Chemical modificationsin silico sequence design
and in vitro verification Drug delivery system

Solutions

• Degradation by 
nucleases

• Binding to Toll-like 
receptors

• Correspondence to transcript 
variants

• Off-target effects
• Secondary structure of mRNAs
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GTI-2040 is an ASO of the R2 subunit of ribonucleotide reductase 
(RNR). The prostate-specific antigen (PSA) response rate in a phase 2 
trial of GTI-2040 plus docetaxel/prednisone for patients with CRPC 
met the minimum phase 2 criteria for further enrolment.14 In another 
phase 2 trial of patients with previously treated NSCLC, the activity 
of GTI-2040 plus docetaxel was not superior to that of docetaxel 
alone.15 In a phase 1 study of patients with advanced solid tumors, 
although GTI-2040 plus gemcitabine showed no clear evidence of 
antitumor activity, several patients had prolonged stable disease 
(SD).16

IMV-001 is an ASO against type-1 insulin-like growth factor 
receptor (IGF-1R). Both IGF ligands and their receptor IGF-1R are 
overexpressed in several tumors. IGFs stimulate the proliferation 
and prevent the apoptosis of cancer cells. Thus, IGF signaling is 
also critical in tumor dissemination in addition to carcinogen-
sis. Previously, we reported that anti-IGF-1R therapies may be a 
potential treatment strategy for several cancers.17,18 In a phase 
1 trial of patients with newly diagnosed glioblastoma, IGV-001, 
which combines autologous tumor cells and IMV-001, was well 
tolerated. The PFS of patients on IGV-001 was longer than that of 

patients in the standard of care arms, and the immune system was 
stimulated by IGV-001.19

ISIS 3521 inhibits the expression of protein kinase C-alpha 
(PKCα), which presents increased expression in tumor tissues and 
is implicated in malignant transformation, proliferation, and anti-
apoptosis. Inhibition of PKCα has been reported to arrest the growth 
of several tumors. ISIS 3521 has demonstrated anti-tumor activity 
in a phase 2 study of patients with relapsed low-grade NHL.20 ISIS 
3521 plus cisplatin/gemcitabine exhibited antitumor activity in a 
phase 2 trial of patients with advanced NSCLC.21 However, neither 
ISIS 3521 nor ISIS 5132, which inhibits the expression of PKC-alpha 
and Raf-1, showed clinically significant single-agent antitumor activ-
ity in a phase 2 trial of patients with chemotherapy-naive CRPC22 or 
those with untreated colorectal cancer (CRC).23

OGX011 (custirsen) inhibits the production of clusterin, the se-
cretory isoform of which protects the cancer cells from apoptosis 
induced by cellular stress, such as chemotherapy, radiotherapy, or 
androgen/estrogen depletion. Researchers have revealed that clus-
terin promotes cell survival via the inhibition of BAX and activation of 
the PI3K pathway or ERK 1/2 signaling in several cancers. Inhibition 

F I G U R E  2  Drug delivery system (DDS) 
for oligonucleotide therapeutics

F I G U R E  3  Modes of action of 
antisense oligonucleotides (ASOs) 
and small interfering RNAs (siRNAs). 
(A) Gapmer-type ASO binds to the 
target RNA and forms the RNA/
DNA heteroduplex in the central gap 
region, and RNase H cleaves the RNA 
strand of the heteroduplex. (B) Effect 
of siRNA. siRNA is composed of two 
complementary strands, the passenger 
strand and the guide strand. The latter 
binds to AGO2, inducing the degradation 
of complementary mRNA

(A) (B)
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of clusterin in cancer cells induces a significant reduction in cell 
growth and apoptosis; additionally, it increases the effectiveness of 
chemo drugs via p53 activation. In a phase 3 trial of patients with 
metastatic CRPC, OGX011 plus cabazitaxel/prednisone provided no 
survival benefits.24 In a phase 1/2 trial of patients with untreated 
advanced NSCLC, 31% patients on OGX011 plus gemcitabine/
platinum showed an overall response, and the 2-year survival rate 
of the patients was 30%. OGX011 decreased the serum clusterin 
level. Patients with low clusterin levels presented longer median sur-
vival.25 In a phase 2 trial of patients with metastatic breast cancer, 
OGX011 plus docetaxel was well tolerated and clinical activity was 
observed, although the number of responses to meet the criteria for 
the next stage was insufficient.26

OGX-427 (apatorsen) is an ASO for heat shock protein 27 (HSP27). 
In a phase 2 study of patients with CRPC, OGX-427 plus prednisone 
failed to alter the proportion of patients without disease progression 
compared with prednisone alone but significantly decreased PSA.27 
In another phase 2 trial of patients with metastatic pancreatic duc-
tal adenocarcinoma (PDAC) in the first-line setting, OGX-427 plus 
chemotherapy did not improve outcomes, although a trend toward 
prolonged PFS and OS in patients with high baseline serum HSP27 
level was observed.28 In a phase 2 trial for patients with untreated 
metastatic non-squamous NSCLC, OGX-427 plus carboplatin/peme-
trexed, although well tolerated, did not improve outcomes.29

3  |  ANTITUMOR AL SMALL INTERFERING 
RNA S

RNA interference is a conserved biological response that causes 
sequence-specific gene silencing via 21-bp dsRNAs known as siR-
NAs. siRNAs are composed of two complementary strands, passen-
ger (sense) and guide (antisense) strands. The guide strand binds to 
AGO2 and is activated through the RISC, leading to the degrada-
tion of complementary mRNA4 (Figure 3B). The siRNA drugs used 
to treat malignant tumors, mainly in clinical phases, are as follows 
(Table 2).

ALN-VSP02 is a lipid nanoparticle formulation containing two 
chemically modified siRNAs against kinesin spindle protein and 
vascular endothelial growth factor (VEGF), with stable nucleic acid 
lipid particles (SNALPs) as DDSs and is introduced intravenously. 
In a phase 1 trial for treating hepatocellular carcinoma (HCC) and 
other tumors with liver involvement, 8.3% of patients receiving 
doses ≤0.4  mg/kg presented SD for at least 2  months and 46.6% 
of patients receiving doses ≥0.7 mg/kg presented SD or PR. In par-
ticular, human tissue samples showed RNAi-mediated target mRNA 
cleavage.30

ARO-HIF2 is composed of HIF2 siRNA targeting HIF2α and uses a 
proprietary targeted-RNAi molecule (TRiM) delivery platform, which 
comprises targeting ligands, such as RGD motifs designed to trans-
port siRNA to cancer cells. ARO-HIF2 use resulted in HIF2α mRNA 
knockdown, tumor growth inhibition, and OS improvement in a xe-
nograft model of clear cell renal cell carcinoma, frequently involving 

the inactivation of the von Hippel–Lindau tumor suppressor, leading 
to the accumulation of HIFs.31 Arrowhead Pharmaceuticals reported 
that seven of nine tumor samples had a low HIF2α level, and one 
patient achieved partial response with tumor shrinkage of approxi-
mately 65% in a phase 1 study.32

Atu027 is a liposomal siRNA formulation targeting human PKN3, 
which acts as a Rho effector downstream of phosphoinositide 
3-kinase signaling, with AtuPLEX comprising three types of lipids.33 
In a phase 1 study of patients with advanced solid tumors, 41% pa-
tients had SD for at least 8 weeks.34 Combination of Atu027 with 
gemcitabine for the treatment of advanced PDAC in a phase 1b/2a 
study was safe, and twice-weekly Atu027 dosing was observably su-
perior to the once-weekly regimen.35

EPHARNA, an EphA2 siRNA incorporated into 1,2-dioleoyl-sn-
glycero-3-phosphocholine (DOPC) nanoliposomes, has been highly 
effective in reducing the EphA2 level in ovarian cancer cells in 
vivo.36 Patients with advanced recurrent solid tumors were enrolled 
and treated in the dose-escalation phase (Table 2).37

iExosomes, exosomes expressing CD47, purified from human fi-
broblast cultures and electroporated to introduce the siRNA target-
ing KRASG12D, most prevalent in PDAC, were used in a preclinical 
trial.38,39 In a phase 1 trial, participants with metastatic PDAC with 
KRASG12D were treated with mesenchymal stromal cell-derived exo-
somes with iExosomes (Table 2).

NBF-006 is an lipid nanoparticle (LNP) formulation delivering an 
encapsulated siRNA that inhibits the expression of glutathione-S-
transferase P (GST-π). GST-π weakens the efficacy of chemothera-
peutic drugs by promoting their in vitro extrusion and functions as 
an MAPK-pathway inhibitor to prevent the apoptosis of cells with 
KRAS and BRAF mutations. NBF-006 significantly inhibits tumors 
in KRAS-mutant animal models of NSCLC.40 Patients with progres-
sive/metastatic NSCLC, PDAC, or CRC will be prescribed dose es-
calation, and those with previously treated KRAS-mutated NSCLC 
under a high dose will be subjected to dose expansion in a clinical 
trial (Table 2).

NU-0129 is a gold-base spherical nucleic acid nanoconjugate 
siRNA against BCL2-like protein 12 (BCL2L12), an anti-apoptotic 
factor expressed in glioma cells. NU-0129 can permeate the blood–
brain and blood–tumor barriers and reach glioblastoma cells. In an 
early phase 1 study of patients with recurrent glioblastoma, followed 
by tumor resection, NU-0129 uptake into glioma cells correlated 
with the reduction in tumor-associated BCL2L12 expression.41

siG12D-LODER, a miniature biodegradable matrix, is a copolymer 
of high-molecular weight poly (lactic-co-glycolic) acid (PLGA) en-
compassing a novel siRNA targeting KRASG12D and all additional G12 
mutations.42 It is placed in PDAC using an endoscopic ultrasound bi-
opsy procedure. In an open-label phase 1/2a study, siG12D-LODER 
plus gemcitabine or modified FOLFIRINOX was well tolerated and 
safe, and it demonstrated potential efficacy in patients with locally 
advanced PDAC.43

SRN-14 is a PRDM14-specific double-stranded RNA/DNA chimera 
combined with a novel branched PEGylated polyaminoacid-based 
intravenous DDS.44 PRDM14 is expressed at considerable levels in 
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several cancers but is not expressed in normal tissues; it confers stem 
cell-like properties to cancer cells.45,46 The use of PEGylated poly-
L-ornithine, a novel DDS, leads to the accumulation of the siRNA in 
target cancer tissues, rather than the liver and spleen, owing to its 
narrow and monodisperse size distribution. This siRNA drug reduced 
the size of inoculated tumors, suppressed distant metastasis, relieved 
chemo-drug resistance, and improved prognosis in nude mice.44 Our 
package of pre-clinical tests and production of an investigational new 
drug using GMP-grade active pharmaceutical ingredients has been 
approved by PMDA. A physician-initiated phase 1 trial of patients 
with triple-negative breast cancer has been started (Table 2).

STNM01 selectively inhibits the expression of carbohydrate 
sulfotransferase 15, an enzyme that promotes tumor invasion and 
correlates with a poor prognosis in PDAC.47 Repeated endoscopic 
ultrasonography-guided fine-needle injection of STNM01 in PDAC 
as a second-line treatment was safe and feasible in a phase 1/2a 
study. The 6-month survival rate of patients treated with 10,000 nM 
STNM01 was 83.3%.48

STP705 is composed of siRNA oligonucleotides targeting TGFB1 
and COX-2 mRNAs formulated with nanoparticles containing a 
unique histidine-lysine copolymer peptide.49,50 Clinical trials for 
STP705 with intravenous or intralesional administration in patients 
with advanced/metastatic solid tumors in phase 1 or cutaneous 
squamous cell carcinoma (in situ) in phase 2 are currently underway.

TKM-080301 is an SNALP formulation against Polo-like kinase 
1, a serine/threonine kinase associated with poor prognoses. Phase 
1/2 studies for adrenocortical cancer and advanced HCC have been 
conducted; preliminary antitumor efficacy has been observed.51,52

4  |  CONCLUDING REMARKS

Antisense oligonucleotides and siRNAs are not commercially avail-
able for cancer treatment, and several problems discussed in the 
review impede their use in oligonucleotide therapy.

Oligonucleotide therapeutics must be based on biological engi-
neering, such as nucleic acid chemistry, especially related to stability 
in vivo, and avoidance of off-target effects, focusing on DDS. Due 
to space limitations, we referred to recent advances and problems 
of DDS in nucleic acid medicine with an actual case of siRNA drugs 
for patients with hereditary transthyretin amyloidosis developed by 
Alnylam Pharmaceuticals. LNPs have been used as a DDS of pati-
siran targeting transthyretin mRNA via intravenous administration 
once every 2 weeks. LNPs accumulate in the liver in an apolipopro-
tein E-dependent manner. Later, vutrisiran was developed using en-
hanced stabilization chemistry technology for the modification of 
siRNA-conjugated GalNAc via subcutaneous administration once 
every 3 months. GalNAc binds to the liver-expressed asialoglycopro-
tein receptor 1 with high affinity. Therefore, drug efficacy of ligand 
conjugation with chemically modified siRNA is more effective than 
that of LNPs. However, the accumulation of siRNA drugs in target 
lesions except the liver has not been successful. Ligand-conjugated 

siRNAs or new types of DDS, such as PEGylated poly-L-ornithine, 
have the potential to solve this difficulty. Consequently, researchers 
will be able to overcome the existing problems regarding the applica-
tion of oligonucleotide therapeutics in the clinical context.
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