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Abstract: Due to high recurrence rates in patients with non-small cell lung cancer (NSCLC), medical
professionals need extremely accurate diagnostic methods to prevent bleak prognoses. However,
even the most commonly used diagnostic method, the TNM staging system, which describes the
tumor-size, nodal-involvement, and presence of metastasis, is often inaccurate in predicting NSCLC
recurrence. These limitations make it difficult for clinicians to tailor treatments to individual patients.
Here, we propose a novel approach, which applies deep learning to an ensemble-based method that
exploits patient-derived, multi-modal data. This will aid clinicians in successfully identifying patients
at high risk of recurrence and improve treatment planning.

Keywords: clinical feature; handcrafted radiomics; deep learning-based radiomics; non-small cell
lung cancer; cancer recurrence

1. Introduction

Non-small cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases [1],
is one of the most common and fatal cancer types worldwide [2]. While the most common
treatment strategy for NSCLC patients is surgery, a high probability of tumor recurrence
following surgical resection typically results in a bleak prognosis [3]. In fact, early-stage
NSCLC patients (Stage I, II, IIIA) who underwent resection surgery have recurrence rates of
40% (stage I), 66% (stage II) and 75% (stage IIIA) [4–6]. Therefore, the ability to accurately
predict NSCLC relapse is extremely critical considering that, as cancer progresses, the
five-year survival rates decrease sharply, from 40% of stage I patients to only 1% of stage
IV patients [7,8]. Thus, the ability to identify patients with a high risk for recurrence
following surgical resection is critically important because it allows clinicians to determine
which patients may benefit from adjuvant therapies [9], and thus create more effective
personalized treatments.

However, for patients with NSCLC, crafting treatment strategies that include adjuvant
therapies is difficult [10,11]. Of the several common factors known to be associated with
NSCLC relapse in early NSCLC, such as tumor size (T-stage), nodule involvement (N-stage)
and smoking history [12–14], the tumor node (TN) staging system is traditionally used
as a postoperative prognostic factor [15,16]. The TN staging system provides medical
professionals with a framework for understanding the prognosis, treatment options, and
value of new interventions allowing for the best possible care for lung cancer patients [17].
However, because tumor size is determined qualitatively, accurate TN staging can be
limited due to human error [18]. The TN staging system is further limited in predicting
clinical outcomes due to the lack of a clear rank order by stage [19]. Thus, the current
staging system for NSCLC is insufficient for predicting treatment outcomes, illustrating the
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critical need for a novel predictive model. Moreover, an alternative model must possess a
high predictive power to identify patients at high risk of relapse and help guide clinical
decisions for optimal treatment.

One of the key resources that shape a patient’s clinical trajectory is the use of non-
invasive medical imaging, and imaging is widely accepted as a standard procedure for
treatment in routine clinical practice [20,21]. In particular, computed tomography (CT)
texture analysis can visualize intra-tumor heterogeneity, which may result in disparate
patient outcomes [22]. This imaging technology can aid clinicians in the planning and
execution of treatment strategies. However, complex pathological characteristics can often
be overlooked by normal imaging techniques. To discover tumor characteristics that
may not be visualized by the naked eye, radiomics, a visual imaging technique that has
traditionally made use of handcrafted radiomic features (HCR), has been widely utilized
as an imaging biomarker to predict clinical outcomes and therapy responses [21,23]. Under
the biological assumption that distinct phenotypic morphologies can be visualized using
high specialized imaging techniques, high throughput of quantitative descriptors including
intensity distribution, spatial relationships, texture heterogeneity patterns, and volumetric
quantification are being used as input data for statistical or standard machine learning
models [20,24,25]. However, traditional radiomic methods have recently come under
question due to possible perceived human bias during analysis [26]. Therefore, deep
learning-based radiomics (DLR) with convolution layers has been developed as a method
to extract latent pathological features. Data passed through the convolutional neural
network (CNN) is non-linearly mapped throughout the transformation linking the input
and output spaces of networks, allowing potential features projected into the synthetic
feature space at each layer to be investigated in relation to the outcome label [20]. In
other words, using a deep learning paradigm enables automatic learning of the relevant
radiographic features without prior definition by researchers, which connotes greater
learning capabilities, enhanced generality, and accuracy.

In this paper, we propose an ensemble-based prediction model for NSCLC recurrence
after surgical resection. First, we constructed three neural network models, each trained
with (1) clinical data including TN stage, (2) HCR features, and (3) DLR features, and
optimized for each data-based prediction. Then, the integrated predictive outputs of
the three models went through a different machine learning-based ensemble analyzer
for making the final decision. This may allow for compensation of shortcomings of the
three prior models. Several previous NSCLC studies conducted, including a systematic
review, have identified CT-based image features that are related to recurrences, such as a
sequentially enlarging mass-like lesion, opacity enlargement after 12 months, filling-in of
air bronchograms, bulging margins, the disappearance of the linear margin, development
of ipsilateral pleural effusion, and lymph node enlargement [27,28]. While we expect HCR
and DLR networks to perform predictive functions that take into account these external
NSCLC tumor characteristics, the key factors that exist outside of the medical image, such
as nodal involvement [29], were not analyzed. Therefore, the proposed ensemble model of
concatenating inferences from pathological information and medical image features has
high potential to produce refined and precise results.

The main contributions of this paper are as follows:

• Neural network-based recurrence prediction models exploiting (1) clinical information,
(2) radiomics, and (3) deep learning-based features, respectively, were developed.

• The performance of ensemble models using various combinations of the three patient-
derived multi-modal features was evaluated.

• The ensemble model using all three features showed the best performance.
• A first recurrence prediction model for early NSCLC through the integration of the

aforementioned three features was proposed.
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2. Materials and Methods
2.1. Patient Data Acquisition

Our patient data was provided by two separate institutions. One is the Veterans
Health Service (VHS) Medical Center, a hospital that treats ordinary citizens to national
merit. The other institution we obtained data from was the Cancer Imaging Archive (TCIA)
database [30]. Clinical data and CT images were collected from VHS NSCLC patients under
an Institutional Review Board (IRB)-approved protocol and merged with new NCSLC
patient data from the TCIA database that includes lung CT images and clinical information
of patients [31]. Since the TCIA is a publicly available database without patient identifiers,
IRB approval is not required. Among the two TCIA datasets, R01 and AMC, the AMC
dataset was excluded because it did not have pertinent clinical information such as the TN
stage. All subjects from all datasets were pathologically confirmed to have lung squamous
cell carcinoma (LUSC) or lung adenocarcinoma (LUAD). Patients with a history of multiple
surgeries, with missing information related to the research, or referred to as “inadequate
cases” by the experts were excluded. The demographic and clinical characteristics of all
326 NSCLC patients are provided in Table 1, including the age, TN stage, and recurrence.

Table 1. Demographic characteristics.

Characteristics Number of Patients (%)

Institution

VHS Medical Center 224 (68.7%)
TCIA (R01) 102 (31.3%)

Age (70.92 ± 7.8)
Age < 60 17 (5.2%)
Age ≥ 60 309 (94.8%)
Histology

Adenocarcinoma 167 (51.2%)
Squamous cell carcinoma 159 (48.8%)

T stage
Tis, T1 146 (44.8%)

T2 149 (45.7%)
T3, T4 31 (9.5%)

N stage
N0 210 (64.4%)
N1 62 (19.0%)
N2 54 (16.6%)

Recurrence
Recurred 193 (59.2%)

Not recurred 133 (40.8%)

2.2. Image Processing

Lung CT images of the dataset utilized in this study were acquired with various
multidetector CT (MDCT) scanners. To prevent problematic spatial information lacking
uniformity, when using convolution layers for deep learning, CT scans were preprocessed
as summarized in Figure 1.
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First, CT scans were standardized to Hounsfield Units (HU), which is a quantitative
indicator of the X-ray attenuation degree for each pixel in a CT image. The intensity in
CT image is related to tissue density and can be measured in HU, allowing for the direct
comparison of images from different sources [20]. After standardizing the pixel values
of the target images into HU, a defined HU value was selected to display the images in
grayscale. In our study, the window level and window width were set to −600 and 1500 HU,
respectively, the values regularly used for general lung CT image display [32]. Furthermore,
isotropic voxel resampling was performed to compensate for CT slide thickness variation
and ensure uniform isotropic resolution of all CT images. Finally, regions of interest (ROI)
images to be used for CNN analysis were generated based on the tumor segmentation
labels, and all non-tumor pixels in the ROI images were set to zero.

2.3. Feature Extraction and Selection

Clinical and pathologic characteristics/features including clinical characteristics, lab-
oratory results, and pathologic conditions were collected from the patient records. Of
the features available for examination, only the clinical features routinely obtained from
various institutions were considered. Additionally, we excluded features with a missing
value in >25% of cases at either institution. Among the remaining pathologic features, we
utilized some traditionally accepted variables with well-known prognostic power; these
included histology, TN stage, age, and overall stage [33]. Specifically, visceral pleural
invasion and lymphovascular invasion have been found to be two critical indicators for
risk of recurrence [29,34]. The final clinical features utilized in our predictive model are
listed in Table 2.

Table 2. Clinical variable used in the first neural network model.

Clinical Features

LUAD/LUSC, Age, Overall stage, T stage (T1, T2, T3), N stage (N0, N1, N2),
Pathology-visceral pleural (+/−), Pathology-lymphovascular invasion (+/−)

Next, to extract HCR features, volumetric tumor contours in lung CT images from
VHS medical center and TCIA were manually segmented by two experienced radiologists
(with more than 10 years of experience in lung diagnosis) of VHS medical center and Ewha
Womans University Seoul Hospital, respectively, following the RTOG 1106 contouring
guideline [35,36]. A total of 1668 HCR features were extracted from 3D ROI using Pyra-
diomics [37], which is an open-source package in Python. HCR features can be divided into
four categories, shape, first-order statistics, second-order statistics, and high-order statis-
tics, which are obtained after applying filters or mathematical transforms to the images.
Attempting to use all the numerous extracted HCR features makes developing effective
classification models very challenging. This is due to a high probability that many features
are redundant and/or highly correlated, which can lead to over-fitting the results and affect
the final performance of the network. Furthermore, Cox-proportional hazard regression
was employed to identify the subset of HCR features with the most discriminating power
for a given task and the greatest reduction in the data dimension. This analysis was done
in a univariate way by applying a 0.05 p-value threshold. As such, we excluded variables
with high correlation (>0.95) and near-zero variance, as they did not provide advantageous
information to our model. As a result, 157 out of 1668 HCR features were selected as
training variables. Table 3 shows the details of the selected HCR features by category.

Lastly, DLR features were not explicitly designed like HCR features. However, convo-
lutional neural networks trained on CT images to perform a pre-defined task of predicting
cancer recurrence were able to learn filters that function as edge detectors in the early
layers. In the input, deeper layers respond to more complex patterns that resemble texture,
shapes, or compositions of earlier features. The DLR features obtained from deep layers
contain more abstract predictive patterns of CT images, compared with the clinical and
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HCR features. The extracted DLR features went through the rest of the deep networks to
output cancer recurrence probability [0, 1].

Table 3. Handcrafted radiomic features used in the second neural network model.

Handcrafted Radiomic Features by Category

First Order

Shape 5
Second order (texture features)

gray level co-occurrence (GLCM) 4
gray level run-length (GLRLM) 3
gray level size zone (GLSZM) 2

gray level dependence matrix (GLDM) 2
neighborhood gray tone difference matrix (NGTDM) 1

High order 140

2.4. Neural Network-Based Cancer Prediction Model

To obtain a well-organized ensemble model, we initially pretrained three neural
network-based models with clinical data, HCR, and DLR, respectively, as shown in Figure 2.
The clinical neural network was trained with the clinical features listed in Table 2, and the
HCR neural network was learned from the selected HCR features shown in Table 3. The
two neural network architectures mainly consisted of dense layers, batch normalization
layers, dropout layers, and rectified linear units (ReLU), excluding the last layer, which
underwent sigmoid optimization with Adam. While the clinical neural network had three
pairs of dense-batch normalization-activation-dropout with the shape of increasing and
decreasing the number of nodes, the HCR neural network had four pairs without batch
normalization layer.
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Figure 2. Flow chart of the proposed algorithm.

The DLR convolutional neural network model input was a 2D ROI image on a repre-
sentative axial slice, where tumor pixels were the largest within the entire volume of the
CT image of each patient. Using this network, a large diversity of features was learned,
especially through non-linearity operations, as images were passing through convolutional
blocks. The DLR convolutional neural network contained four convolution layers and two
fully connected layers. The Max-pooling layer, parametric PReLU as an activation function,
and batch normalization layer followed after convolution layers, and 0.5 of dropout prob-
ability was included between the fully connected layers to avoid overfitting. A detailed
composition is shown in Figure 3. The training was optimized with stochastic gradient
descent and began with an initial learning rate of 0.01 and a momentum of 0.5. This learning
rate fell 0.8×, to at most 0.0005 when the validation loss stopped diminution for a time. The
model provided automatically augmented images from the original input images. These
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images were generated in simple ways including rotating (~20◦), flipping (vertically or
horizontally), or shifting.
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In the end, a machine learning-based analyzer was employed to combine the predictive
outputs (cancer recurrence probability [0, 1]) of each neural network-based model to
improve the accuracy of prior models (i.e., ensemble learning). The combined outputs went
through a different machine learning-based ensemble analyzer for making the final decision.
The final analyzer was determined based on the performance of several representative
analyzers. These tested analyzers included random forests, logistic regression, support
vector machine, Gaussian naive Bayes, linear discriminant analysis, quadratic discriminant
analysis, and hard and soft voting classifier. The research workflow is demonstrated in
Figure 2.

2.5. Model Assessment

We applied a 5-fold cross-validation method with shuffled training data and evaluated
the predictive abilities of each designed neural network with clinical features, HCR, and
DLR, as well as the final proposed ensemble model. Moreover, we compared the perfor-
mance of our proposed three neural network models with pre-existing models. The Cox
proportional hazards (PH) model [38], traditionally used to predict the clinical outcomes or
hazard functions corresponding to specific time units [39], was employed to compare pre-
dictive power using clinical variables. Selected HCR and DLR of CT images were utilized
by more recent machine learning-based prediction models, random survival forest [40] and
convolutional neural network [41], respectively. In addition, a neural network model with
TN staging was developed to use as a baseline for performance evaluation.

The performance of the baseline model (TN staging), individual data feature models
(clinical data, HCR, and DLR), and the all three data feature model (clinical data, HCR,
and DLR) were evaluated using quantitative metrics including F1 score, precision, recall,
and accuracy from the confusion matrix. Precision was defined as the ratio of the actual
positive of the model determined to be positive. Recall was determined as the ratio of
how many positive observations were found in the actual positive observations. Thus, in
general, because the precision and recall values of the algorithms are inversely related,
they should be considered simultaneously for evaluating the classification performance.
Moreover, the F1 score is the weighted average of precision and recall, thereby making it
the single numeric representation of the algorithm’s precision and recall. Finally, accuracy
refers to the ability of the algorithm to precisely judge positive and negative.

The results of the 5-fold cross-validation were also used to draw an ROC curve with
an AUC value for each model under the same condition. An ROC curve is a plot of the true
positive rate against the false-positive rate at various threshold settings. The ROC curve is
crucial for future medical applications because it evaluates the diagnostic ability of tests to
discriminate a subject’s true state and finds optimal cut off values [42–45].
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To determine if there was a significant difference between the patients classified by
the model, we generated Kaplan–Meier curves with a log-rank test to analyze using one
of the 5-fold results. The Kaplan–Meier estimates are one of the best methods used to
calculate the proportion of patients who do not relapse or survive a certain period of time
after treatment [46]. Lower p-values of log-rank test are correlated with less Kaplan–Meier
curve overlaps, and clearer distinction.

3. Results
3.1. Quantitative Measurements

The 5-fold cross-validation quantitative results including F1-score, precision, recall,
and accuracy are displayed in Table 4. Our results show that our proposed ensemble model
that incorporated clinical, HCR, and DLR performed better than all other current methods.
Notably, the conventional method, the Cox PH model, underperformed the most exten-
sively. Interestingly, clinical and HCR features had better prognostic power of recurrence
than DLR features. Of the machine learning algorithms tested, linear discriminant analysis
(LDA), quadratic discriminant analysis (QDA), and logistic regression (LR) were most
successful in predicting recurrence.

Table 4. Mean and standard deviation values of the 5-fold cross validation in terms of F1 score,
precision, recall and accuracy. The first three rows reported the implementation results of other
competitive methods using each of our dataset. Type of machine learning model was recorded if the
model of the row was ensembled. The number of trainable parameters is displayed in thousands in
the rightmost column. The models that shows significant difference with the TN stage (baseline) for
all evaluation metrics are marked with an asterisk (*).

F1 Score Precision Recall Accuracy Model Trainable
Parameters

Clinical (David Cox) [38] 68.11 (±2.4) 56.51 (±1.4) 85.84 (±5.5) 52.90 (±2.5) Cox PH -
HCR (Wen Yu et al.) [40] 72.19 (±3.4) 63.78 (±2.1) 83.23 (±5.5) 62.44 (±3.8) RSF -

DLR (André Diamant et al.) [41] 74.55 (±5.4) 69.12 (±6.3) 81.12 (±5.2) 67.35 (±7.1) CNN 916 K

TN stage (baseline) 65.67 (±5.1) 70.09 (±8.0) 63.81 (±10.6) 61.54 (±3.8) NN 1 K
Clinical 73.54 (±2.4) 68.99 (±5.1) 79.07 (±2.2) 66.46 (±3.8) NN1 1 K

HCR 76.61 (±4.7) 73.07 (±5.2) 80.61 (±4.7) 71.08 (±5.7) NN2 10 K
DLR 76.28 (±4.9) 70.11 (±3.1) 84.80 (±11.2) 69.54 (±4.2) CNN 1046 K

Clinical & HCR * 77.58 (±5.0) 75.29 (±4.1) 80.08 (±6.4) 72.92 (±5.6) QDA 11 K
Clinical & DLR * 76.86 (±4.7) 71.03 (±3.7) 83.75 (±6.1) 70.46 (±5.6) LR 1047 K

HCR & DLR * 77.65 (±5.0) 73.70 (±4.5) 82.19 (±6.6) 72.31 (±5.9) LR 1056 K
Clinical & HCR & DLR * 77.79 (±5.3) 75.71 (±4.8) 80.08 (±6.4) 73.23 (±6.0) LDA 1057 K

3.2. ROC Curve with AUC Value

Based on the ROC curve with AUC value, experimental results with the 5-fold cross-
validation indicate that the proposed ensemble algorithm had the highest predictive power
when the clinical data, HCR, and DLR were included together, as opposed to the use of
individual features (Figure 4). The proposed HCR neural network model showed the next
best performance with a slightly lower value of AUC, compared to the ensemble model.

3.3. Kaplan–Meier Curve

Figure 5 shows the Kaplan–Meier curves derived from each model’s lung cancer
recurrence risk. The predicted to recur group indicates a high risk of recurrence, whereas
the predicted not to recur group reveals a low or intermediate-risk. Of the 65–66 test data in
one-fold, an average of 9.8 cases (SD 1.7, 15.1% of one test set) of the incorrect predictions
from the TN stage neural network (baseline), 7.0 cases (SD 0.9, 10.8% of one test set) of the
incorrect predictions from the Clinical neural network, 3.2 cases (SD 1.9, 4.9% of one test
set) of the incorrect predictions from the HCR neural network, and 6.6 cases (SD 2.41, 10.2%
of done test set) of the incorrect predictions from the DLR convolutional neural network
were correctly classified by our proposed ensemble model.
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4. Discussion

Despite surgical resection being the major treatment for NSCLC, adjuvant chemother-
apy is regularly employed as standard post-surgical care. Adjuvant chemotherapy is
critical due to the high probability of occult micro-metastases present at the time of surgi-
cal intervention [47]. Importantly, post-surgery chemotherapy attempts to eliminate any
metastasized cancer cells and prevent recurrence. Although chemotherapy is correlated
with an increase in overall survival in early-stage NSCLC patients [48–50], questions about
whether adjuvant chemotherapy should be accompanied in cases of patients with high
predictive risk of recurrence still remains.

Considering that the recurrence of NSCLC typically occurs at sites distal to the original
tumor [51,52], patients at high risk of recurrence should be treated similarly to advanced
NSCLC patients. As such, the ability to predict recurrence is very critical in early-stage
(i.e., IA) patients. In these cases, patients with high probabilities of recurrence can be treated
with adjuvant therapies as prevention measures. Conversely, with high powered predictive
models, patients with a low predictive risk of recurrence can avoid unnecessary adjuvant
therapies. Therefore, it is critical to have powerful predictive models to differentiating
high risk and low-risk patients. With this information, patients can make an informed
decision about their treatment options. The ensemble model we proposed here showed an
11.69% higher accuracy than the TN staging-based algorithm (baseline) as shown in Table 4.
Additionally, the proposed model was able to accurately predict 15.1% of cases where the
baseline algorithm failed (see Section 3.3). The high accuracy of our algorithm in predicting
recurrence can aid clinicians in guiding appropriate treatment strategies for each patient.

Considering that the TN staging has limitations such as patient to patient recurrence
rate variations [29], this study attempted to develop and validate an NSCLC recurrence
prediction model for patients with surgically resected lungs. Using the same data sets, the
three proposed neural network-based models (Clinical neural network, HCR neural net-
work, and DLR convolutional neural network) were more accurate in predicting recurrence
than existing representative models [38,40,41].

Moreover, we hypothesized that deep learning models learned using valid clinical
variables, features extracted explicitly (i.e., HCR) and automatically induced (i.e., DLR)
from medical images, could be applied back to the ensemble model to produce more
accurate and refined results. Our results demonstrate that the proposed ensemble model
that utilized all data (clinical data, HCR, and DLR) outperformed proposed models that
used individual data. For the case of this study, the proposed final ensemble-based model
was able to accurately predict the recurrence for the cases of 4.9% to 15.1%, where the
models trained with single data-type features failed to predict. Therefore, the proposed
method can help more accurately identify patients with a high risk of recurrence, and
thus can significantly reduce erroneous postoperative cancer treatment decisions due to
incorrect recurrence prediction. According to Table 4, the computational complexity of DLR
networks is much higher than the other single-modality and TN stage (baseline) models.
HCR networks utilize more features and therefore have slightly higher computational
complexity than TN (baseline) and clinical models. In addition, the proposed algorithm
integrates multimodal features through a machine learning-based analyzer, thus exhibiting
computational complexity similar to that of DLR model. Although our proposed ensemble
models have higher model complexity compared to the baseline, the inference time per im-
age with increasing complexity is several milliseconds. Given that it can take up to minutes
for a clinician to review a patient’s multimodal information and draw a comprehensive
conclusion, the increase of several milliseconds is considered negligible.

Proper cancer prognosis and treatment is a very difficult and complex task for oncol-
ogists. Oncologists must choose from a wide range of treatment options to fit a patient’s
clinical and pathological data [53]. Therefore, the algorithm for predicting relapse using
only TN stage information or CT images is far removed from actual clinical decision mak-
ing; however, the proposed ensemble model that utilizes all three available features (clinical
data, HCR, and DLR) is more clinically relevant.
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Several limitations of our study need to be addressed. First, we did not account for
the possibility of overlapping among heterogeneous features. While we removed features
with a high correlation within the HCR features, the correlation between each network
input feature was not analyzed. This is likely to impede the final model performance and
involves a process that is less efficient. Second, the DLR convolutional neural network
model used a representative 2D slice rather than a full 3D volumetric image, indicating
a possible loss of information. However, the effective through-plane (z)-resolution is
typically much lower than the in-plane resolution of the axial slice, thus, the use of 2D
slices may still produce better results [41]. Several studies have attempted to improve the
z-axis resolution [54–56]; therefore, as research in this field develops, the algorithm can
be improved upon by incorporating a 3D CT image. Thus, in future studies, we plan to
develop a more robust model that utilizes a complete 3D CT image, as well as eliminating
redundancy between heterogeneous data. Furthermore, we plan to develop a model that
utilizes all three different neural networks simultaneously.

5. Conclusions

Here, we present a machine learning-based ensemble methodology with various
NSCLC patients’ clinical and pathological data that predicts cancer recurrence after sur-
gical resection. Specifically, we utilized clinical variables and radiomic features, which
included both human-designed (HCR) and automatically learned and extracted by the DLR
convolutional neural networks features. Each of these showed meaningfully significant
predictive power. The three proposed models for clinical data, HCR, and DLR more accu-
rately predicted recurrence than existing representative models using the same individual
data. Each neural network-based model produced outcomes that were combined and
subsequently put through a different machine learning-based ensemble analyzer to further
improve accuracy and making the final decision. The overall performance of our suggested
ensemble model was greater than models that did not use all three data types (clinical
data, HCR, and DLR). Moreover, the proposed model was both efficient and robust, as
evidenced by the k-fold cross-validation. We believe the better prediction capabilities of
our system can improve the care of NSCLC patients and allow for more efficient decision
making for treatment.
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