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Abstract: Imaging examinations are of remarkable importance for diagnostic support in Dentistry.
Imaging techniques allow analysis of dental and maxillofacial tissues (e.g., bone, dentine, and enamel)
that are inaccessible through clinical examination, which aids in the diagnosis of diseases as well
as treatment planning. The analysis of imaging exams is not trivial; so, it is usually performed by
oral and maxillofacial radiologists. The increasing demand for imaging examinations motivates
the development of an automatic classification system for diagnostic support, as proposed in this
paper, in which we aim to classify teeth as healthy or with endodontic lesion. The classification
system was developed based on a Siamese Network combined with the use of convolutional neural
networks with transfer learning for VGG-16 and DenseNet-121 networks. For this purpose, a database
with 1000 sagittal and coronal sections of cone-beam CT scans was used. The results in terms of
accuracy, recall, precision, specificity, and F1-score show that the proposed system has a satisfactory
classification performance. The innovative automatic classification system led to an accuracy of
about 70%. The work is pioneer since, to the authors knowledge, no other previous work has used a
Siamese Network for the purpose of classifying teeth as healthy or with endodontic lesion, based on
cone-beam computed tomography images.

Keywords: automatic classification system; endodontic lesion; deep learning; Siamese concatenated
network

1. Introduction

In Dentistry, imaging exams perform an important role in diagnosis support, be-
cause they help the dentist to obtain important information about dental tissues and facial
bones, such as roots, which are anatomical regions inaccessible by means of the usual
clinical examination [1].

Among the imaging techniques widely used in Dentistry, one can mention cone-beam
computed tomography (CBCT), which refers to a diagnostic imaging method that portrays
structures from three dimensions [2,3]. The CBCT performs a volumetric analysis of the
region of interest; for this reason, it is possible to obtain a more faithful representation of the
patient’s dental arch. The cone-beam computed tomography is considered a highly precise
imaging exam [4,5]. The most frequent medical reasons for taking a dental tomography are
for the suspicion of cysts and tumors; analysis of the roots’ proximity of the injured teeth
and the mandibular canal or the inferior alveolar nerve; and for investigating periapical
lesions, either for detecting the lesion’s location or for previous treatments’ adequacy
verification, in which an endodontic evaluation is carried out [6,7].

The growing demand for imaging exams is notorious, which is supported by their
usefulness in the detection of abnormalities and in treatment planning [8]. Nevertheless,
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the analysis of such images is not trivial; for this reason, it is often performed by experienced
radiology specialists to obtain an adequate diagnosis [9,10]. To overcome this challenge,
computer systems have been proposed as a support tool for analyzing image exams,
with the advantage of performing fast, accurate, and objective tasks such as segmentation,
detection, and classification [11,12].

Deep learning has shown to be a viable field of study in the development of expert
systems for the aforementioned tasks related to images, especially the so-called convolu-
tional neural networks (CNN), as they perform well in image pattern recognition [13,14].
Therefore, artificial intelligence techniques are used in health sciences as an alternative
to aid image-based diagnosis. In many cases, it is possible to reduce the time needed to
perform the diagnosis and even increase the accuracy when compared to the evaluation
performed by specialists [15].

In dental practice, there is a consensus about the difficulty in analyzing imaging exams;
however, as the human tooth is essentially composed by the crown—a clinically visible
region, and by the root—a structure that can only be evaluated by imaging methods, it
becomes indispensable in the dental routine to request imaging exams for a complete anam-
nesis of the patient [16]. Furthermore, the dental arch is divided between mandible and
maxilla, which indicate the lower and upper region, respectively; according to specialists,
the visual analysis in the maxilla region is even more complex [17,18]. Periapical lesions
correspond to an inflammatory response that manifests itself in the apex of the tooth after
necrosis of the pulp tissue, and which occurs frequently, but can be difficult to detect,
especially when the lesions are small and located in the maxilla [19]. In general, to reach the
diagnosis, specialists request CBCT and evaluate tomographic sections, because, depending
on the lesion, it can be more visible on one section compared with another; so, analyzing
more than one section makes the evaluation more precise [20,21]. Further, specialists may
use more than one plane to enhance the anamnesis’ accuracy. Concerning periapical lesion
detection, it is usual to analyze the sagittal and coronal planes [22]. As far as we are aware,
there are no previous published works in literature that explore both planes to classify the
presence or absence of periapical lesions in CBCT images. In fact, few papers focus on
periapical lesions while most of them are for caries or periodontal bone loss classification.
Therefore, there is a lack of works addressing this issue. Additionally, if we consider the
ones that address the issue, we observe that they use a small dataset [23,24] or they use
only one plane [25], which suggests that there is room for obtainment of better results.

This paper introduces a new automatic classification system for the dental diagnostic
in cone-beam computed tomography, in which the coronal and sagittal slices are considered
for the detection of periapical lesions. In order to use pairs of images (i.e., both coronal and
sagittal slices of a single tooth) as inputs for the machine learning model, a system that
uses a Siamese Network is proposed [26]. The present work uses the Siamese Network
not to compare two images, but to extract characteristics from both at the same time. It is
important to highlight that this approach is innovative in the sense that, according to the
authors’ knowledge, no other published paper in Dentistry uses more than one plane in
the deep learning model. The proposed framework uses two planes for the classification
task (presence or absence of periapical lesion). Transfer learning techniques with the
DenseNet-121 [27] and VGG-16 [28] networks are also used to develop the classification
system. To the authors’ knowledge, no other study has been found in the literature that
uses deep learning and pairs of dental images for endodontic diagnostics.

Related Works

Pattern recognition in dental images has shown a growing development due to its
ability to assist the analysis of exams [29]. Therefore, there has been an increase in scientific
production on this particular subject in recent years. One may highlight the following
related areas: forensics, in the identification of bodies through the dental arch in serious
accidents [30]; Forensic Dentistry, to estimate the age of individuals and verify the age
of criminal majority [31]; Implant Dentistry, for the detection of teeth and implants [32];
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and diagnosis, in which the objective is to provide a classification of teeth—for instance,
in two classes, with or without pathology [33]. In the next paragraphs, related works are
presented regarding machine learning techniques applied to dental-aided diagnosis.

In 2018, Choi, Eun, and Kim [34] presented a system for automatic detection of
proximal caries, which are considered difficult to diagnose due to the low quality of the
images. To do so, they used periapical radiographs and convolutional neural networks
in a proposal comprising four steps: horizontal alignment, probability map generation,
crown extraction, and refinement. In 2020, Haghanifar, Majdabadi, and Ko [35] developed
an automatic classification system based on deep learning and transfer learning techniques
to detect carious lesions with a database of 470 panoramic radiographs. In 2021, Leo and
Reddy [36] proposed a hybrid system with an artificial neural network and a deep network
to detect the presence of caries and the extent of contaminated tissue, from the stages of
preprocessing; segmentation; extraction of attributes; and, finally, classification.

In the work of Kim et al. [37], the convolutional neural network DeNTNet is used to de-
tect periodontal bone losses in 12,179 panoramic radiographs, which occur as a consequence
of periodontitis, a serious disease that corresponds to an inflammation of the periodontal
bone, and, if not detected early, can lead the patient to tooth loss. In the paper, a method
was presented to identify the presence or absence of periodontal lesion, as well as the
numbering of the affected tooth. In 2018, Lee et al. [38] presented a system for the diagnosis
and prediction of periodontally compromised teeth, which was implemented by combining
a pretrained deep CNN and a self-trained network, using periapical radiograph images.

Regarding the detection of periapical lesions, Setzer et al. [23] presented a study based
on deep learning, with the U-Net architecture, to perform an automated segmentation of
CBCT scans of 20 patients in order to detect endodontic lesions. With the same objective
of the aforementioned article, Zheng et al. [24] proposed a new approach to the U-Net
Network, which is the Dense U-Net, in which CBCT scans from 20 patients were used.
Endres et al. [25] conducted a study to evaluate the performance of a convolutional neural
network, based on image segmentation using U-Net architecture, to detect periapical
radiolucencies. They used 2902 panoramic radiographs that were evaluated by 24 dental
and maxillofacial surgeons. The CNN method was compared to human evaluation and
presented superior performance over 14 out of the 24 experts. Ezhov et al. [39] published
a work describing an experimental study that uses a deep-learning-based system to aid
dentists to detect periapical lesions. The authors compare recall and specificity results
between aided and unaided groups of dentists while performing a clinical evaluation. It is
important to mention that the authors do not present the results obtained by using only
the deep learning system. In Table 1, we summarize works related to periapical lesion
classification. All of them use convolutional neural network.

Table 1. Works related to periapical lesion classification with the use of CNN.

Ref. Year CNN Architecture Dataset Plane

[23] 2020 U-Net 20 CBCT scan images Coronal
[24] 2020 U-Net 20 CBCT scan images Coronal
[25] 2021 U-Net 2902 Panoramic Radiograph images Coronal
[39] 2021 Not stated 2800 CBCT scan images Sagittal

2. Artificial Neural Network

Artificial neural network (ANN) is a field of study of artificial intelligence [40]. The con-
volutional neural networks are considered a category of artificial neural networks based on
deep learning [41]. Their performance approximates the behavior of the receptive fields
of the visual cortex [42,43]. CNNs are essentially composed of two characteristic layers:
convolutional, which process the inputs as small receptive fields and perform feature
extraction; and dense, which are responsible for performing classification according to the
features extracted in the convolutional layers [44].

Regarding the task of pattern recognition in medical images, CNNs have been shown
to be feasible models with good performance [13]. However, one of the problems usually
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reported in the use of these networks is the need for high computational capacity and
large databases, because of the high number of network parameters [45]. To overcome this
challenge, transfer learning is a viable option for dense networks.

2.1. Siamese Network

The Siamese Network [26], also known as twin network, has the particularity of
receiving two images as inputs, which is possible because its architecture has its operation
in parallel with two identical subnetworks that are joined at the outputs. The goal of this
network is to verify the correspondence between the pair of images; so, the inputs are
mapped as feature descriptors that are compared from a similarity function, illustrated in
Figure 1, in which h1 and h2 represent the feature descriptors and the distance measure
step is the metric used to verify the similarity.

Figure 1. Schematic of the operation of the conventional Siamese Network, used for correspondence
between two images. In this case, there is an example, for the correspondence of a letter “A” written
in different ways.

This class of networks is commonly used to check the similarity between images. It
was originally proposed for performing signature verification [46–48].

2.2. Transfer Learning

Transfer learning aims at the classification process of the current problem by using
the “knowledge” learned from a previously network trained in a different dataset (usually
larger and more generalist). This “knowledge” is represented by the structure and/or
the weights of the convolutional layers. This approach is based on the assumption that
previous knowledge acquired in other problems can be useful in solving new ones, as it
may be able to find the solution faster and more effectively [49]. Some of the options for
pretrained networks are those presented in the computational intelligence competition—
the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [50]—trained for the
publicly available ImageNet dataset, which corresponds to a database of more than fourteen
million labeled images, distributed over more than twenty thousand categories; for this
reason, it is considered a reference [51].

In the present paper, the VGGNet and DenseNet networks are considered, both trained
with the ImageNet dataset and introduced in the ILSVRC in the years of 2014 and 2017,
respectively. VGGNet [28] is a CNN architecture with two models, VGG-16 and VGG-19.
It was presented by the Visual Geometry Group (VGG) and consists of using filters that
are considered small—that is, 3 × 3 in the convolution layers and 2 × 2 in the pooling
layers. Transfer learning has been used in many applications. Recently, Barua et al. [52]
used pretrained networks for automatic detection of COVID-19: among three different
networks used, two are the VGGNet family. Transfer learning in the scenario of a healthcare
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application is used in the work of Kang, Ullah, and Gwak [53], in which deep learning with
transfer learning are used to classify brain tumors in magnetic resonance imaging.

Regarding DenseNet [27], it is a CNN architecture, made available by Facebook
AI Research, which can be found in DenseNet-121, DenseNet-169, DenseNet-201, and
DenseNet-264. The purpose of this architecture is to promote high connectivity, which was
implemented from the connections between layers, so that all subsequent layers can access
the outputs of previous layers, i.e., each future layer receives as inputs all the past outputs.
The main benefit of using DenseNet is due to resource reuse, which reduces the number of
tractable parameters and, as a consequence, the computational complexity [54].

3. Imaging Exams in Dentistry

In endodontics, radiographic examination is an indispensable adjunct for diagno-
sis, treatment, and follow-up after surgical or nonsurgical endodontic therapy. Usually,
periapical radiographs are the first choice of imaging method in clinical practice. Nev-
ertheless, some limitations are common and may be a challenge to the diagnosis, such
as the compression of three-dimensional anatomy, geometry distortion, and anatomical
noise [55–57].

The main purpose of nonsurgical and surgical endodontic therapy is to avoid periapi-
cal infection or to reverse endodontic periapical or periradicular lesions, thus preventing
the spread into the surrounding tissues or healing periapical tissue to maintain the non-
vital teeth. The absence or regression of periapical or periradicular radiolucencies and
the presence of a sealed root canal are conditions to consider the endodontics therapy
successful [57,58].

When tridimensional assessment is required, a Computed Tomography scan is de-
manded. Commonly, CBCT is a three-dimensional diagnostic image modality used in
Dentistry. The development of a relatively small scanner, which allows accurate evaluation
of teeth, adjacent tissues, and maxillofacial structures, has made possible to obtain mul-
tiplanar reconstructions without magnification using lower radiation doses and having
lower cost when compared with Multidetector Computed Tomography (MDCT) [56,59].

During a CBCT acquisition, a cone- or pyramid-shaped X-ray beam and a detector
rotate along a circular trajectory. During the rotation, the detector acquires several two-
dimensional projections. Then, these projections (raw data) usually undergo preprocessing
steps and are reconstructed into a three-dimensional matrix of isotropic voxels of the
scanned region, ranging from a small area to the skull. Multiplanar reconstructions (ax-
ial, sagittal and coronal views) and other slices are acquired through the reconstructed
volume [22].

Generally, CBCT scanners use a low-radiation dose and have higher spatial resolu-
tion for hard tissues, especially dental hard tissues and bones. Several CBCT systems
are commercially available, with different exposure factors (tube current, exposure time,
field of view, kilovoltage) and acquisition parameters (resolution, raw data, and rotation
angle), which affect both image quality and radiation dose. The diagnostic task and patient
size should be considered in the selection of these acquisition parameters, which can be
performed manually or through the selection of preset protocols. Besides, X-ray generation
is the other CBCT scanners’ feature that also interferes with the radiation dose. CBCT scan-
ners use continuous or pulsed X-ray generation; the latter allows an exposure time (i.e., the
cumulative time during which the patient is exposed to X-ray pulses) considerably smaller
than the scan time (i.e., the whole time of acquisition process). Therefore, the reduced
motion effect in pulsed scans may result in an improved spatial resolution [22].

Advances in computational techniques and more complex CNNs have contributed
to recent advances in Artificial Intelligence (AI). In oral and maxillofacial radiology, CNN
models can be used for classification, detection, segmentation, and diagnostic tasks in
radiographic image analysis [60,61]. AI may be used as an auxiliary tool in the CBCT scan’s
diagnosis for periapical or periradicular radiolucencies detection and for evaluation of
endodontic treatment quality.



Sensors 2022, 22, 6481 6 of 15

4. Materials and Methods
4.1. Database

The study protocol was reviewed and approved by the Local Research Ethics Commit-
tee, University of Pernambuco, Brazil (certificate #: 4.881.124).

The initial sample consists of 5343 consecutive CBCT scans from an image database of
an Oral Radiology Center of a Dental School in Pernambuco, Brazil. The image database
considers all patients referred to the Oral Radiology Center by several professionals for
CBCT imaging of the jaws from 2014 to 2017. CBCT scans were acquired using the i-CAT
Next Generation (Imaging Sciences International, Inc., Hatfield, PA, USA) operating at
120 kVp, 3-8 mA, field of view (FOV) of 6 × 16 cm, 26 s acquisition time, and 0.13- or
0.40-mm voxel size.

To be included in the study sample, CBCT exams must meet only the following criteria:
exams of patients who had at least one endodontically treated maxillary molar. Mandibular
CBCT exams and exams with low technical quality and or voxel size greater than 0.20 mm
were excluded. After applying the criteria, the final sample was composed of 885 CBCT
exams, with a total of 1000 endodontically treated maxillary molars.

All CBCT evaluations were performed by an oral and maxillofacial radiologist with
10 years of experience in CBCT diagnosis in a light-dimmed and quiet room using a 24.1
LCD computer monitor (spatial resolution of 1920 × 1200 pixels). The examiner evaluated
the entire CBCT volume using the XORAN software (Xoran Technologies, Ann Arbor, MI,
USA) and classified the periapical status of each endodontic treated maxillary molar as
“presence of periapical lesion” (presence of a well-defined apical radiolucency or 0.5 mm or
greater ligament space thickness in more than one multiplanar reconstruction) or “absence
of periapical lesion” [58,62]. In addition, when a periapical lesion was present, the examiner
measured the extent of the lesion and classified it in one of two groups according to this
parameter: small lesions (ranging from 0.5 to 1.9 mm) and big lesions (2.0 mm or greater).
These situations are illustrated in Figure 2.

Figure 2. Feature images from the UFPE database, where (a,b) represent a tooth without lesion and
are sagittal and coronal sections, respectively; (c,d) represent a tooth with small lesion and are sagittal
and coronal sections, respectively; (e,f) represent a tooth with large lesion and are sagittal and coronal
sections, respectively.

The examiner used TMJ tool to generate sagittal (mesiodistal direction) and coronal
(cross-sectional) reconstructions from each tooth. The thickness of the image slices was 1
mm and the distance between slices was 1 mm for both reconstructions (XORAN software,
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Xoran Technologies, Ann Arbor, MI, USA). The examiner selected the sagittal and coronal
reconstructions that demonstrate the periapical status and saved both. A brief summary of
the used dataset is presented in Table 2.

Table 2. Summary of the used dataset.

Classification Number of Samples Features

Healthy 454 Teeth without lesion
Small Lesion 276 Teeth with lesion of 0.5 to 1.9 mm
Large Lesion 270 Teeth with lesion of 2.0 mm or greater

4.2. Proposed System

The automatic classification system for pairs of sagittal and coronal CBCT slices was
implemented from the proposal of a new approach to use for Siamese Network, which
we call Siamese Concatenated Network, and transfer learning. The concatenation Siamese
Network consists of a network based on the Siamese Network strategy, with the objective
of performing a joint analysis of the pair of images. A novelty of the approach is the
use of both sagittal and coronal sections, which are jointly evaluated for the presence or
absence of periapical lesion. The importance of using a pair of images instead of a single
slice comes from the fact that, according to the lesion to be detected, either by location
or size, it may be more evident in one of the slices; for this reason, the analysis of both is
recommended. Computationally, this situation was corroborated after initial tests, in which
only the sagittal or coronal sections were used as input, and the results obtained were
below the performance for the concatenated images.

In the Siamese Concatenated Network, pretrained networks based on transfer learning
were implemented; this was a decision based on the size of the database, which consists
of 1000 evaluations, which can be considered a small number to train the parameters of a
deep-learning-based network [45,49]. Thus, the classification system was implemented and
evaluated for the DenseNet-121 and VGG-16 networks. The choice of these two networks
was due to the fact that they present a superior performance in terms of accuracy compared
with the other networks available in the Keras package, which were preliminarily tested.
Regarding the database used to perform the training of the parameters, ImageNet was used
in both cases.

In addition, data augmentation techniques were implemented for the purpose of
increasing the number of images to train the network. The adopted techniques and factors
were chosen so that the object of analysis would not be compromised—that is, with-
out interfering in the evaluation of the dental roots, preserving the original classification.
Thus, three techniques were applied: horizontal flip; rotation, in which a factor of 0.1 was
considered—that is, the image was randomly rotated with values in the range [−18◦, 18◦];
and enlargement, also with a factor of 0.1, in which the image is zoomed in and zoomed
out, with random values between [−10%, 10%] in height, as observed in Figures 3 and 4.

Figure 3. Image of Figure 2e submitted to the three data augmentation techniques used in this work.
In (a), there is the application of the horizontal flip technique; in (b), the rotation technique was
applied; and in (c), a zoom magnification.
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Figure 4. Image of Figure 2e subjected to nine different combinations with the three data augmenta-
tion techniques used in this work.

Regarding the images, three different scenarios were evaluated for the proposed system:

• Complete base: 1000 pairs of images are considered. It includes the whole set of
images presented in this article—that is, teeth without lesion, teeth with small lesion,
and teeth with large lesion.

• Base with large lesions: 724 pairs of images, which correspond to cases of teeth without
lesion and teeth with large lesion.

• Base with small lesions: 730 pairs of images, which correspond to cases of teeth
without lesions and teeth with small lesion.

For the aforementioned three scenarios, the images were divided into training, validation,
and test sets, resulting in 60%, 20%, and 20% of the database, respectively. All tomographic
images simulated in this paper have dimensions of 186 × 115 pixels; for each simulation, 150
iterations were fixed, with batch size (amount of training examples considered in an iteration)
of 32, with “RMSprop” optimizer and learning rate of 0.001 and the activation function of the
output layer was sigmoid.

The proposed Siamese Concatenated Network is presented in the methodological scheme
presented in Figure 5, in which in the first step the network is duplicated, to process the
two distinct inputs, which are the sagittal and coronal tomographic sections. In this first
section, the data augmentation techniques were performed (random flip, random rotation,
and random zoom, which were previously described) and also the transfer stage learning
with the DenseNet-121 and VGG-16 networks. After that, the feature maps generated by
the convolutional layers were concatenated to be later classified. Finally, the flatten layer
vectorizes the values of the features so that they can be received by the dense layer, which is a
fully connected layer with 32 neurons. The dense layer uses the ReLU (Rectified Linear Unit)
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activation function. The ReLU is a simple nonlinear activation function widely used in deep
neural networks. It is given by

f (x) =

{
0, if x ≤ 0
x, otherwise.

(1)

A dropout of 20% is used after the dense layer that is followed by the output layer,
which uses the sigmoid as activation function, given by

f (x) =
1

1 + e−x . (2)

Figure 5. Schematic of how the Siamese Concatenation Network works; a proposed strategy using a
Siamese Network for joining pairs of images.

5. Results and Discussion

Computational simulations were performed in Python language, considering the strat-
egy of using the Siamese Concatenation Network and the pretrained networks DenseNet-
121 and VGG-16. The results were obtained for each of the networks considering the three
scenarios of the database use, in other words, full database, large lesion database, as well
as small lesion database.

To assess the performance of the automated artificial system, metrics related to the
confusion matrix were calculated, based on true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN), as shown in Figure 6 [63].

For this, the following metrics were considered.

• Accuracy: provides the percentage of successful classifications, among all those per-
formed, given by

TP + TN
TP + TN + FP + FN

. (3)
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• Recall: reports the percentage of true positive ratings among all true ratings, calculated
as follows:

TP
TP + TN

. (4)

• Precision: indicates the percentage of true positive ratings, among all positive ratings,
calculated as follows:

TP
TP + FP

. (5)

• Specificity: presents the percentage of true negative ratings, among all negative ratings,
obtained by

TN
TN + FN

. (6)

• F1-score: calculated as the harmonic mean between recall and precision:

2 × recall × precision
recall + precision

. (7)

Figure 6. Confusion matrix with predicted classes and detected classes.

The first evaluation scenario was performed for the UFPE database in its entirety—
the 1000 pairs of CT sagittal and coronal sections, which encompasses healthy teeth, as well
teeth with large and small periapical lesions.

Table 3 presents the results using all samples in the dataset for the two architectures
used in the present paper. Further, it presents the results obtained in [25]. Even though that
paper uses a different dataset, we used their reported results for comparison purposes. One
may note that the proposed approach using the Siamese Network and transfer learning
outperforms the results in [25] for all evaluated metrics. Considering only the proposed
approach, it can be inferred that the results obtained for the two networks are similar;
however, it is possible to verify that the DenseNet-121 network outperforms the VGG-
16 network, since it achieves better accuracy, F1-score, specificity, and precision values,
with equal results in recall metrics.

Table 3. Results obtained by the compared models considering the test sets for the classification
scenario of the entire database. The best values are presented in bold.

Methods Metrics

Accuracy F1-Score Specificity Precision Recall

DenseNet-121 0.7000 0.6970 0.7634 0.7582 0.6449
VGG-16 0.6800 0.6832 0.7204 0.7263 0.6449

[25] — 0.58 — 0.67 0.51

In the second analysis scenario, the dataset consists of all healthy teeth as well those
with large lesions—that is, those with lesions larger than or equal to 2 mm in size, which
was considered large in this paper. Thus, 724 pairs of tomographic slices were used in this
scenario. The results achieved are shown in Table 4.
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Table 4. Performance of the pretrained networks DenseNet-121 and VGG-16 considering the test sets
for the classification scenario of 724 images (without lesions and with lesions larger than 2.0 mm)
from the UFPE database. The best values are presented in bold.

Methods Metrics

Accuracy F1-Score Specificity Precision Recall

DenseNet-121 0.7917 0.6591 0.9239 0.8055 0.5577
VGG-16 0.8125 0.6582 0.9100 0.7429 0.5910

Based on the analysis of the performance obtained by the networks, it is possible to
verify that there is similarity in the results; however, the DenseNet-121 network was supe-
rior in three out of the five metrics evaluated, which are F1-score, specificity, and precision,
reaching a percentage of 92.39% in specificity. On the other hand, VGG-16 provided the
best result in accuracy and recall, reaching 81.25% accuracy.

It is possible to see that the performance considering only teeth without lesions and
teeth with lesions considered large is superior compared with the performance for the
full base.

The last simulated scenario was for 730 pairs of tomographic slices, which takes into
account teeth without lesion and teeth with small lesion, which are in the range of 0.5 to
1.9 mm. The results are shown in Table 5.

Table 5. Performance of the pretrained networks DenseNet-121 and VGG-16 considering the test
sets for the classification scenario of 730 images (without lesions and with lesions between 0.5 and
1.9 mm) from the UFPE database. The best values are presented in bold.

Methods Metrics

Accuracy F1-score Specificity Precision Recall

DenseNet-121 0.6667 0.4494 0.8571 0.6060 0.3571
VGG-16 0.6599 0.4318 0.8041 0.5000 0.3800

According to Table 5, there are similarities in the accuracy performance of the two
networks, but with slight superiority of the DenseNet-121 network. In the other metrics
evaluated, the DenseNet-121 network was superior in F1-score, specificity, and precision,
while it was below the performance of VGG-16 in recall. The results point out the superiority
of DenseNet-121, as it performed better in four out of the five metrics measured.

Compared with the performances of the previous scenarios, the performance in this
scenario is below the others, which may possibly highlight the fact that very small lesions
are difficult to detect, which makes it more complex to distinguish between a tooth with
small lesion and a tooth without a lesion.

6. Conclusions

In this work, we evaluated techniques for the development of an automatic classifica-
tion system for endodontic lesions in pairs of cone-beam computed tomography sections,
which was implemented using the Siamese Concatenation Network proposed in this paper,
based on the Siamese Network, and with the networks DenseNet-121 and VGG-16.

A noteworthy aspect is the pioneering nature of this framework, as no machine-
learning-based classification system for dental images with the characteristics considered
in this study has been found in the literature. Another aspect to be highlighted is the
complexity of the problem, since periapical lesions are not easy to detect. In addition,
the lesions present in the images from the UFPE database are considered small for the area
of Dentistry (although, in the work, a distinction was made between large and small lesions
for the purpose of results analysis), which makes the classification even more complex.

Regarding the classification system, an accuracy of about 70% was obtained for the
complete set of images, 81.25% for the set of images without lesions and with large lesions,
and 66.67% for the set of images without lesions and with small lesions. The results seem
to point to a difficulty that comes from the distinction between teeth without lesions and



Sensors 2022, 22, 6481 12 of 15

those with small lesions. To put the results obtained in this work into perspective, in the
article by Kruse et al. [64], the performance of human experts in the setting of lesions of
already treated teeth in the maxilla showed an accuracy of 63%.

As future works, one may cite the following:

• Introduction of an image segmentation step as part of the classification system. It is
worth mentioning that authors [65] report benefits of using image segmentation in
machine-learning-based classification systems.

• Application of the proposed Siamese Concatenated Network framework in other
classification tasks that involve the use of pairs of images.
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