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Abstract: Despite the lack of findings in laryngeal endoscopy, it is common for patients to undergo
vocal problems after thyroid surgery. This study aimed to predict the recovery of the patient’s voice
after 3 months from preoperative and postoperative voice spectrograms. We retrospectively collected
voice and the GRBAS score from 114 patients undergoing surgery with thyroid cancer. The data
for each patient were taken from three points in time: preoperative, and 2 weeks and 3 months
postoperative. Using the pretrained model to predict GRBAS as the backbone, the preoperative and
2-weeks-postoperative voice spectrogram were trained for the EfficientNet architecture deep-learning
model with long short-term memory (LSTM) to predict the voice at 3 months postoperation. The
correlation analysis of the predicted results for the grade, breathiness, and asthenia scores were 0.741,
0.766, and 0.433, respectively. Based on the scaled prediction results, the area under the receiver
operating characteristic curve for the binarized grade, breathiness, and asthenia were 0.894, 0.918,
and 0.735, respectively. In the follow-up test results for 12 patients after 6 months, the average of
the AUC values for the five scores was 0.822. This study showed the feasibility of predicting vocal
recovery after 3 months using the spectrogram. We expect this model could be used to relieve patients’
psychological anxiety and encourage them to actively participate in speech rehabilitation.

Keywords: deep learning; voice recovery; spectrogram; GRBAS

1. Introduction

Voice disorders, the most common discomfort, are known to occur in 40% to 80% of
patients who undergo thyroid surgery [1,2]. Vocal cord paralysis, which is caused by nerve
damage, including damage to the recurrent laryngeal nerve, receives the most medical
attention. However, it is very rare and found only in about 1% of patients, while functional
vocal problems that occur without special anatomical abnormalities after thyroid surgery
have been reported to occur about 30% of the time [1,2]. After a thyroidectomy, although
patients may have normal findings in terms of their laryngeal endoscopy, it is common
that they may complain of vocal dysfunction [3,4]. In many cases, it is difficult to find
the cause of the change in speech by way of visual observations such as performing a
laryngoscope examination.

The typical symptoms of patients who complain of vocal dysfunction after thyroid
surgery are vocal fatigue, difficulty producing treble, difficulty maintaining vocalization,
difficulty breathing, mild hoarseness, and problems with swallowing [5]. Functional voice
disorders are characterized by dysphonia in the presence of apparently normal vocal fold
anatomy and movement. Choi et al., reported that even in the absence of laryngeal nerve
damage, half of the patients may experience vocal changes, which require a 6-month
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recovery period [1]. The ability to identify early changes would facilitate an early referral
for a comprehensive voice evaluation that aims at improving the patient’s quality of
life, preventing secondary injuries, and identifying those who might benefit from vocal
fold augmentation [6].

The GRBAS scale has been established as the most compact perceptual grading sys-
tem [7]. The perceptual GRBAS scale is reliable, and has been applied worldwide. Its
use has enabled a better level of communication among clinicians and speech-language
pathologists concerning their patients’ voices, which constitutes a major advantage for an
assessment tool [8].

In otorhinolaryngology, because the vocal samples are collected using the same proto-
col, quantitative analysis is possible in terms of using objective and quantitative data [9,10].
The acoustic sound generated through acoustic-voice inspection can be used as various
types of data by preprocessing it. Studies reported that the normalization of speech data
into spectrograms can be used for classification and regression [11]. There have been
several studies using a spectrogram that transforms voice data into an image form using
a convolutional neural network (CNN) algorithm [12–14]. Moreover, the GRBAS score, a
subjective measure among the vocal analysis methods, was predicted by researchers using
machine learning techniques [15].

With the advent of machine learning technology, the use of artificial intelligence (AI)
in medicine has become essential [16]. Particularly in thyroid cancer, deep learning has
been widely used for the diagnosis of disease and the detection of lesions [17–19]. Because
vocal diseases have a great impact on a patient’s quality of life, predicting the prognosis is
crucial [20,21]. However, despite advances in acoustic-acoustic testing, AI studies using
audio data are relatively rare in medicine.

This study aimed to predict vocal recovery after 3 months by using a deep neural
network algorithm from preoperative and postoperative vocal spectrograms. This can
improve the patient’s quality of life and allow them to receive treatments in advance. The
performance of the model was verified through internal consecutive split validation, and
the possibility of an application to AI’s negative disease has been examined.

2. Related Works

Our study has several differences compared with previous related studies on post-
operative outcomes [22–24]. There have been studies to find prognostic factors related to
the voice outcome. However, these were studies analyzing the prognostic factors related
to voice, not AI-based prognosis prediction models. In this study, the goal was to predict
long-term outcomes in advance using the patient’s pre- and postoperative voices with
deep learning. Furthermore, previous studies on using acoustic samples for voice disorder
prediction have focused on the diagnosis of the current condition [25–27]. By contrast, in
our study, we predicted the patient’s prognosis and quickly suggested treatment to patients
with poor prognoses. Providing these clinical decisions will help improve patients’ quality
of life.

3. Materials and Methods
3.1. Patients and Vocal Data

The protocol for this retrospective study was approved by the Ethics Committee of
the Institutional Review Board (D-1801-003-002) at Dongnam Institute of Radiological &
Medical Sciences (DIRAMS). Written or oral informed consent was not obtained from the
patients because this study had a nonintrusive retrospective design and the IRB waived the
need for individual informed consent because all data were anonymously analyzed. All
experiments were performed in accordance with relevant guidelines and regulations, and
all experimental protocols were approved by DIRAMS. The vocal data analyzed during the
current study are not publicly available, but are available from the corresponding author
upon reasonable request.
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Our exclusion criteria were as follows: first, the patients with previous laryngeal
or vocal fold paralysis; second, patients with pulmonary diseases; third, patients who
had previous neck surgery; fourth, patients who showed post-thyroidectomy evidence
of recurrent laryngeal nerve; and, finally, patients with an injury of the external branch
of the superior laryngeal nerve palsy. Patients with preoperative, postoperative, and
after-3-months voice samples were recruited in this study.

We consecutively enrolled 114 patients with a thyroidectomy who were diagnosed
with thyroid cancer and who had visited the hospital from January 2018 to December
2019. The average age was 47.4 years, and the sex split was 26 men and 88 women. The
distribution of grade scores for all patients can be found in Table 1.

Table 1. Grade score distribution.

Grade Pre op. Post op. 3 Months Post op.

G0 43 25 31
G1 61 60 67
G2 9 24 14
G3 1 5 2

To measure the performance of the model, internal consecutive split validation was
performed, and the test set was divided by time. Of the total data, 92 sample data, cor-
responding to 80%, were used for data training and for the parameter tuning set, and
22 sample data recruited last, corresponding to 20%, were used as a test set.

To evaluate the degree of patients’ speech impairment, the GRBAS scale, a perceptual
evaluation method, was applied to compare the degree of speech impairment in each
session [28]. The GRBAS system for describing vocal quality contains five well-defined
parameters: G (overall grade of hoarseness), R (roughness), B (breathiness), A (asthenic),
and S (the strained) quality of the voice [7].

3.2. Preprocessing the Vocal Data

The speech signals in the vocal data—preoperative, postoperative, and 3 months
postoperative—were all generated through the same protocol. The speech signal in the
voice data with durations ranging from less than 1 s to about 20 s was sampled at 11,025 Hz.
Each sentence was labeled with the GRBAS score by an experienced phonologist. We
calculated the spectrograms for all vocal data. We ignored the rest and used a frequency
range of 0–6 KHz. The DFT was calculated through a frame size of 1024. The DFT data
were converted to the log-power spectrum. Finally, through RGBA mapping, spectrogram
images of the same size were created. The model architecture and the process of generating
the spectrogram are included in the Supplementary Material.

3.3. The Two Stages of Deep Neural Networks

To predict the amount of vocal recovery after 3 months using pre- and postoperative
vocal data, we first developed a pretrained model to predict the GRBAS score. To evaluate
the performance of predicting the GRBAS score from the voice sample, the performance
was measured using a 20% random split. The architecture of the deep neural network was
based on EfficientNet-B4, which is a recent state of the art structure [29]. We added two
fully connected layers to the last layer of the CNN model, composed of 1024 and 5 units for
the final layer, respectively. The mean squared error (MSE) was used as the loss function,
and the model was compiled to predict the GRBAS score as a label for the final layer with
five units. The model was used with the parameters pretrained from ImageNet data, and
the fine-tuning of the entire model was performed using all data.

The above model was used as an encoding model to extract the important features
to predict the GRBAS score as a pretrained model. Two CNN models were connected by
separately applying models that extracted 1024 features to pre- and postoperative vocal
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data. We concatenated two feature vectors to compose the input of the next long short-
term memory (LSTM) layer, which is a variant of the recurrent neural network involving
time series by introducing a three gates operation (input, output, and a forget gates) [30].
Then, we used the LSTM recurrent neural network for the time-series prediction at the
postoperative and 3-month times from pre- and postoperative spectrograms [31]. Finally,
this model architecture was fine-tuned to predict the postoperative GRBAS scores and
GRBAS score after 3 months without a spectrogram after 3 months with an MSE loss of 25.
The scheme of the overall model structure is shown in Figure 1, and the detailed structure
and source code of the model are shown in Supplementary Materials.
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Figure 1. Workflow scheme of the data-learning process for acoustic vocal samples of patients with
thyroid surgery using an artificial intelligence model. (A) Inclusion criteria and steps to train a
pretrained model that extracts important features from vocal data. (B) The development of a deep
learning model to predict the GRBAS score after three weeks from pre- and postoperative vocal
samples with the pretrained model.

To avoid the overfitting, online augmentation was performed by transforming the
images while learning. During the learning process, the rotation range within 20 degrees,
the 20% range for the width and height, and the shear zoom were randomly applied to
the training images. This process was performed using ImageDataGenerator supported
by Tensorflow Keras (Google, Mountain View, CA, USA). However, the flip, which could
change the meaning of the spectrogram, was not used.

We used the Keras deep-learning framework included in Tensorflow version 2.3.0
(Google, Mountain View, CA, USA). We trained the model using the Adam optimizer
to accelerate the convergence of network parameters with a learning rate of 0.001. The
learning rate was gradually reduced through the call-back function. The batch size was
24. A total of 200 epochs were performed, and the weight with the lowest validation
loss was used. We used EfficientNet-B4 as the backbone architecture of the CNN (https:
//github.com/qubvel/efficientnet—accessed on 16 January 2022).

3.4. The Activation Heatmap of the Convolution Layer

We inferred the activation heatmap of the model that predicted the GRBAS score to
identify the important location in the spectrograms. To derive the activation heatmap, we
used the gradient-weighted class activation mapping (Grad-CAM) method using gradient-
based localization [32]. The heatmap was derived by computing the gradients for class with
respect to the feature map of the selected convolutional layer. The activation heatmaps were
derived from the convolutional layer in the second and third residual block, corresponding
to 56 × 56 and 28 × 28 of the model, respectively.

https://github.com/qubvel/efficientnet
https://github.com/qubvel/efficientnet
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3.5. Performance Evaluation

To measure the performance of the model, internal consecutive split validation was
performed with the test set divided by time. The final output was the GRBAS score
value, the MSE values were calculated for each label in 22 patients, and the Spearman’s
rank correlation test was performed. To measure the area under the receiver operating
characteristic curve (AUROC), the GRBAS scores were divided into binary values of 0 or
greater than 1.

In Equation (1), n and i denote the total number of patients and the index of the
patient’s vocal sample, respectively. t and s denote the time point of the vocal samples
(preoperative, postoperative, and 3-months-after vocal sample). This metric was calculated
in terms of the five scores representing the GRBAS. The Spearman’s rank correlation
coefficient, used for the performance evaluation of numeric labels, was computed for the
derived parameters according to Equation (2), where n and d denote the number of voice
samples and the rank difference between the GRBAS score and predicted GRBAS score,
respectively.

RMSEts =

√
1
n

n

∑
i=1

(yits − ỹits)
2 (1)

$ = 1 − 6 ∑ d2
i

n(n2 − 1)
(2)

4. Results and Discussion
4.1. The Prediction Performance of the Deep Neural Network

Table 2 summarizes the performance of the deep neural network predicting GRBAS
after 3 months of surgical treatment using pre- and postoperative voice spectrograms.
The overall root mean square error (RMSE) value of the GRBAS score of the deep neural
network was 0.3798. The RMSE values for each GRBAS score was 0.399, 0.365, 0.409, 0.469,
and 0.203. In the Spearman’s rank correlation test, the grade was 0.741, roughness was
0.153, breathiness was 0.766, and asthenia was 0.433; the strain could not be calculated
because all test samples had zeros. Only two patients had a value of one for roughness,
and all others were zero. Where the Spearman’s rank correlation results were concerned,
scores that had a statistically significant correlation were grade, breathiness, and asthenia
(p < 0.01). For the roughness of the test sample, only two samples had a score of one, and
the rest were zero. Figure 2 shows the relationship between the prediction results for grade,
breathiness, and asthenia for the test set and the actual score.
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Figure 2. The prediction results for the (A) grade, (B) breathiness, and (C) asthenia scores of the test
set. The x-axis represents the observed GRBAS score of the patient, and the y-axis represents the
predicted value by the deep learning model. The blue line is the regression line to see the relationship
between the predicted value and the actual value.

We used EfficientNet-B4 among the CNN architectures. The changes in performance
when using other CNN models are summarized in Supplementary Table S1. The efficientnet-
b4 architecture had the lowest RMSE value in terms of the average value of all scores.
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Table 2. Prediction performance for the GRBAS score.

Class RMSE Rho p Value

Grade 0.399 0.796 <0.001
Roughness 0.365 0.149 0.509
Breathiness 0.409 0.784 <0.001

Asthenia 0.469 0.602 0.003
Strain 0.203 NA NA

4.2. Binary Classification Performance for Prognostic Prediction

Because RMSE and correlation have different meanings that depend on the range and
scale of the data, they do not represent the performance of an objective model. Therefore,
we divided the grade, breathiness, and asthenia scores into binary values of zero or greater
than one, and measured AUROC scores using these (Figure 3). The AUROC values were
0.894, 0.918, and 0.735 for grade, breathiness, and asthenia, respectively. The roughness
score was more than one among 22 patients used as the test set, and the AUROC value
was 0.575, which was poorly predicted. The strain score was zero for all patients in the test
set. Because the strain score was zero for all patients in the test set, it was impossible to
calculate the AUROC value.
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Figure 3. For the grade, breathiness, and asthenia scores, we divided the patient based on 0 or not,
and the ROC was calculated.

The optimal thresholds corresponding to the Youden index yielded 76.5% and 100.0%
sensitivity and specificity for the grade score. For breathiness and asthenia, sensitivity and
specificity were 70.6% and 100.0%, and 55.6% and 92.3%, respectively.
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4.3. Prognosis in Patients after 6 Months

Among the consecutively recruited patients, vocal samples after 6 months were ob-
tained for 12 of 22 patients in the test set. The distribution of GRBAS scores of patients
6 months after surgery is shown in Supplementary Table S2. The AUROC values were
0.852, 0.800, 0.688, 0.861, and 0.909 for grade, roughness, breathiness, asthenia, and strain,
respectively (Figure 4).
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The optimal thresholds given by the Youden index, sensitivity and specificity of
the grade score, were 78.8% and 100.0%, respectively. For roughness and breathiness,
sensitivity and specificity were 60.0% and 100.0%, and 62.5% and 75.0%, respectively. For
asthenia and strain, sensitivity and specificity were 100.0% and 83.3%, and 100.0% and
90.9%, respectively.

4.4. Scores for the Activation Heatmap

To visualize the important features of the scores in the spectrograms, an activation
heatmap was constructed using the second and third residual block of the EfficientNet
model (Figure 5). The voice spectrogram of a patient with high-degree grade was shown in
Figure 5A. This spectrogram is from one of the patients with very poor voice quality. In
the heatmap visualization through Grad-CAM, the highlighted part shows an important
imaging feature to predict the grade score. The spectrogram of a normal grade voice is
shown in Figure 5B. In this patient, the amplitude widely spreads over various frequencies.
The region where the heatmap is activated in the spectrogram is very narrow.
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4.5. Discussion

This study aimed to predict patients who will have problems with long-term vocal
recovery. We obtained patient voice samples for those who underwent surgical treatment
as well as their GRBAS scores from experienced phonologists for three points in time:
preoperative, postoperative, and 3 months after surgery. Using this data, we developed a
model that predicts, using deep learning, the GRBAS score of the patient’s voice 3 months
after the operation. For model performance, the RMSE value was 0.3798, and the results for
the Spearman’s rank correlation analysis for the grade, breathiness, and asthenia scores
were 0.796, 0.784, and 0.602, respectively. When each score was binarized, the AUROC
values for grade, breathiness, and asthenia were 0.894, 0.918, and 0.735, respectively.
Through these results, we showed the possibility of predicting a patient’s long-term vocal
disorder using the pre- and postoperative voice samples. This method is expected to help
relieve patients’ psychological anxiety and encourage patients to actively participate in
speech rehabilitation.

There have been studies conducted to predict voice quality and voice disorders using
deep learning from voice samples [33–35]. The results of these studies have demonstrated
the potential of using predictive models in clinical settings, which have shown high per-
formance comparable to human evaluation. This study aimed to predict voice quality
after 3 months from pre- and postoperative vocal samples. Long-term voice change after
3 months can be used for prognosis prediction, a problem that cannot be evaluated by
humans. To the best of our knowledge, this is the first study predicting the prognosis of
long-term voice quality after surgery.

Evaluating the objective patient’s voice is a challenging task because it is laborious,
time-consuming, and cost-intensive [36]. Additionally, it is difficult to objectively measure
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voice samples given that interobserver variability may exist depending on the phonetician,
and intraobserver variability may exist depending on the condition [7,37]. To provide an
objective measure for this, there have been various methods that predict GRBAS by using
machine learning. In our study, we implemented a deep-learning model that predicts
the voice after 3 months postsurgery based on a pretrained model, which is the feature
extractor based on the GRBAS score.

The results for predicting vocal diseases 3 months after a patient’s surgery can be
regarded as a prognostic marker. Long-term vocal defects are a major factor in a patient’s
quality of life, and it is almost impossible to predict them in advance. In this study, we
found that by using internal consecutive split validation, AI models could predict long-term
vocal defects. This means that the patient’s voice, as generated by the same protocol, can
be used for objective data. Therefore, we suggest the possibility that a patient’s voice data
can be applied to various purposes to make a prognosis for the patient.

Our study has some limitations. Our data ere from 112 people, which is not enough
to train a deep neural network. Next, we are planning a validation study by recruiting
more patients with long-term follow-up. We did not use factors that could have affected
interpersonal phonetic outcomes, such as the patient’s surgical range, method, or age.
Because the variability in the GRBAS score varies depending on the person who measures
it, predicting it cannot completely cover the vocal condition. To find an objective answer
to this problem, we first constructed a pretrained model that extracts features based on
GRBAS, and we attempted to avoid the problem by applying a deep neural network to pre-
and postoperative data.

In conclusion, we developed a model for predicting the recovery of a patient’s voice
after 3 months by using a deep neural network algorithm from pre- and postoperative
voice spectrograms. This approach can help physicians select patients with long-term vocal
disorders for whom intensive care should be applied.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s22176387/s1, Table S1: RMSE values for prognosis predic-
tion according to the architecture of CNN model; Table S2: Distribution of GRBAS scores in patients
6 months after surgery.
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