Skip to main content
. 2022 Aug 26;22(17):6453. doi: 10.3390/s22176453

Table 6.

Parameter setting of the baseline methods.

Baselines Conv Layer LSTM Layer Attention Layer Output Layer
LSTM / [LSTM(128)]×1 / [FC(128)]×1
ABLSTM / [LSTM(128)]×1 FC(128)×1
tanh
SoftMax
[FC(128)]×1
Deep-Conv LSTM [CNN(5),64]×4 [LSTM(128)]×2 FC(128)×2
Sigmoid
[FC(128)]×1
TPN [CNN(24),32CNN(16),64CNN(8),96]
Dropout = 0.1
Maxpool(8)
/ / [FC(96)]×1
MSRLSTM [CNN(3),64CNN(2),128CNN(2),128]
Res
Maxpool(2)
[LSTM(128)]×2 FC(128)×2
SoftMax
[FC(256)FC(512)FC(1024)]

Note: CNN (a),(b) is convolutional layer, where a is the size of convolutional kernel, (b) is the kernel number; LSTM (c) is LSTM layer, where c is the size of hidden layer; FC (d) is fully connected layer, where d is the size of FC layer. Maxpool (e) is the max pooling layer, e is the size of pooling kernel; Res means a residual option after the previous convolutional layer.