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Abstract

We present a machine learning model for the analysis of randomly generated discrete signals, 

modeled as the points of an inhomogeneous, compound Poisson point process. Like the wavelet 

scattering transform introduced by Mallat, our construction is naturally invariant to translations 

and reflections, but it decouples the roles of scale and frequency, replacing wavelets with Gabor-

type measurements. We show that, with suitable nonlinearities, our measurements distinguish 

Poisson point processes from common self-similar processes, and separate different types of 

Poisson point processes.
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1. INTRODUCTION

Convolutional neural networks (CNNs) have obtained impressive results for a number of 

learning tasks in which the underlying signal data can be modelled as a stochastic process, 

including texture discrimination [1], texture synthesis [2, 3], time-series analysis [4], and 

wireless networks [5]. In many scenarios, it is natural to model the signal data as the 

points of a (potentially complex) spatial point process. Furthermore, there are numerous 

other fields, including stochastic geometry [6], forestry [7], geoscience [8] and genetics [9], 

in which spatial point processes are used to model the underlying generating process of 

certain phenomena (e.g., earthquakes). This motivates us to consider the capacity of CNNs 

to capture the statistical properties of such processes.

The Wavelet scattering transform [10] is a model for CNNs, which consists of an alternating 

cascade of linear wavelet transforms and complex modulus nonlinearities. It has provable 

stability and invariance properties and has been used to achieve near state of the art results 

in fields such as audio signal processing [11], computer vision [12], and quantum chemistry 
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[13]. In this paper, we examine a generalized scattering transform that utilizes a broader 

class of filters (which includes wavelets). We primarily focus on filters with small support, 

which is similar to those used in most CNNs.

Expected wavelet scattering moments for stochastic processes with stationary increments 

were introduced in [14], where it is shown that such moments capture important statistical 

information of one-dimensional Poisson processes, fractional Brownian motion, α-stable 

Lévy processes, and a number of other stochastic processes. In this paper, we extend the 

notion of scattering moments to our generalized architecture, and generalize many of the 

results from [14]. However, the main contributions contained here consist of new results 

for more general spatial point processes, including inhomogeneous Poisson point processes, 

which are not stationary and do not have stationary increments. The collection of expected 

scattering moments is a non-parametric model for these processes, which we show captures 

important summary statistics.

In Section 2 we will define our expected scattering moments. Then, in Sections 3 and 4 we 

will analyze these moments for certain generalized Poisson point processes and self-similar 

processes. We will present numerical examples in Section 5, and provide a short conclusion 

in section 6.

2. EXPECTED SCATTERING MOMENTS

Let ψ ∈ L2(ℝ) be a compactly supported mother wavelet with dilations ψj(t) = 2−jψ(2−jt) for 

j ∈ ℤ, and let X(t),t ∈ ℝ, be a stochastic process with stationary increments. The first-order 

wavelet scattering moments are defined in [14] as SX(j) = E ψj * X , where the expectation 

does not depend on t since X(t) has stationary increments and Sγ,pX(t) = SX(γ, p) is a 

wavelet which implies X * ψj(t) is stationary. Much of the analysis of in [14] relies on 

the fact that these moments can be rewritten as SX(j) = E ψj * dX , where dψj = ψj. This 

motivates us to define scattering moments as the integration of a filter, against a random 

signed measure Y(dt).

To that end, let w ∈ L2 ℝd  be a continuous window function with support contained in [0, 

1]d. Denote by ws(t) = w t
s  the dilation of w, and set gγ(t) to be the Gabor-type filter with 

scale s > 0 and central frequency ξ ∈ ℝd,

gγ(t) = ws(t)eiξ ⋅ t, γ = (s, ξ), t ∈ ℝd . (1)

Note that with an appropriately chosen window function w, (1) includes dyadic wavelet 

families in the case that s = 2j and |ξ| = C/s. However, it also includes many other filters, 

such as Gabor filters used in the windowed Fourier transform.

Let Y(dt) be a random signed measure and assume that Y is T-periodic for some T > 0 in the 

sense that for any Borel set B we have Y(B) = Y(B + Tei), for all 1 ⩽ i ⩽ d (where {ei}i⩽d 

is the standard orthonormal basis for ℝd). For f ∈ L2 ℝd , set f * Y (t): = ∫ℝdf(t − u)Y (du). 
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We define the first-order and second-order expected scattering moments, 1 ⩽ p, p′ > ∞, at 

location t as

Sγ, pY (t): = E gγ * Y (t) p and (2)

Sγ, p, γ′, p′Y (t): = E gγ * Y p * gγ′(t)
p′ . (3)

Note Y(dt) is not assumed to be stationary, which is why these moments depend on t. Since 

Y(dt) is periodic, we may also define time-invariant scattering coefficients by

SY (γ, p): = 1
Td∫[0, T ]dSγ, pY (t)dt, and

SY γ, p, γ′, p′ : = 1
Td∫[0, T ]dSγ, p, γ′, p′Y (t)dt

In the following sections, we analyze these moments for arbitrary frequencies ξ and small 

scales s, thus allowing the filters gγ to serve as a model for the learned filters in CNNs. In 

particular, we will analyze the asymptotic behavior of the scattering moments as s decreases 

to zero.

3. SCATTERING MOMENTS OF GENERALIZED POISSON PROCESSES

In this section, we let Y(dt) be an inhomogeneous, compound spatial Poisson point process. 

Such processes generalize ordinary Poisson point processes by incorporating variable 

charges (heights) at the points of the process and a nonuniform intensity for the locations 

of the points. They thus provide a flexible family of point processes that can be used to 

model many different phenomena. In this section, we provide a review of such processes and 

analyze their first and second-order scattering moments.

Let λ(t) be a continuous, periodic function on ℝd with

0 < λmin: = inf
t

λ(t) ⩽ ‖λ‖∞ < ∞, (4)

and define its first and second order moments by

mp(λ): = 1
Td∫[0, T ]dλ(t)2dt, p = 1, 2.

A random measure N(dt): = ∑j = 1
∞ δtj(dt) is called an inhomogeneous Poisson point process 

with intensity function λ(t) if for any Borel set B ⊂ ℝd,
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P (N(B) = n) = e−Λ(B) (Λ(B))n
n! , Λ(B) = ∫B

λ(t)dt,

and, in addition, N(B) is independent of N(B′) for all B′ that do not intersect B. Now let 

Aj j = 1
∞  be a sequence of i.i.d. random variables independent of N. An inhomogeneous, 

compound Poisson point process Y(dt) is given by

Y (dt) = ∑
j = 1

∞
Ajδtj(dt) . (5)

For a further overview of these processes, we refer the reader to Section 6.4 of [15].

3.1. First-order Scattering Asymptotics

Computing the convolution of gγ with Y(dt) gives

gγ * Y (t) = ∫ℝdgγ(t − u)Y (du) = ∑
j = 1

∞
Ajgγ t − tj ,

which can be interpreted as a waveform gγ emitting from each location tj. Invariant 

scattering moments aggregate the random interference patterns in |gγ * Y|. The results 

below show that the expectation of these interference patterns encode important statistical 

information related to the point process.

For notational convenience, we let

Λs(t): = Λ([t − s, t]d) = ∫[t − s, t]dλ(u)du

denote the expected number of points of N in the support of gγ(t – ·). By conditioning on N 
([t − s, t]d), the number of points in the support of gγ, and using the fact that

ℙ[N([t − s, t]d) > m] = O sd‖λ‖∞
m + 1

one may obtain the following theorem.1

Theorem 1.—Let E A1
p < ∞, and λ(t) be a periodic continuous intensity function 

satisfying (4). Then for every t ∈ ℝd, every γ = (s, ξ) such that sd∥λ∥∞ < 1, and every 
m ⩾ 1,

1A proof of Theorem 1, as well as the proofs of other theorems stated in this paper, can be found in the appendix
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Sγ, pY (t) ≈ ∑
k = 1

m
e−Λs(t) Λs(t) k

k! E ∑
j = 1

k
Ajw V j eisξ ⋅ V j

p
, (6)

where the error term ε(m, s, ξ, t) satisfies

|ε(m, s, ξ, t) | ⩽ Cm, p
‖λ‖∞
λmin

‖w‖p
pE A1

p ‖λ‖∞
m + 1sd(m + 1) (7)

and V1, V2, . . . is an i.i.d. sequence of random variables, independent of the Aj, taking 

values in the unit cube [0, 1]d and with density pV (v) = sd
Λs(t)λ(t − vs) for ν ∈ [0, 1]d.

If we set m = 1, and let s → 0, then one may use the fact that a small cube [t − s, t]d has at 

most one point of N with overwhelming probability to obtain the following result.

Theorem 2.—Let Y(dt) satisfy the same assumptions as in Theorem 1. Let γk = (sk, ξk) be 
a sequence of scale and frequency pairs such that limk→∞ sk = 0. Then

lim
k ∞

Sγk, pY (t)
sk

d = λ(t)E A1
p ‖w‖p

p, (8)

for all t, and consequently

lim
k ∞

SY γk, p
sk

d = m1(λ)E A1
p ‖w‖p

p . (9)

This theorem shows that for small scales the scattering moments Sγ,pY(t) encode the 

intensity function λ(t), up to factors depending upon the summary statistics of the charges 

Aj j = 1
∞  and the window w. Thus even a one-layer location-dependent scattering network 

yields considerable information regarding the underlying data generation process.

In the case of ordinary (non-compound) homogeneous Poisson processes, Theorem 2 

recovers the constant intensity. For general λ(t) and invariant scattering moments, the role 

of higher-order moments of λ(t) is highlighted by considering higher-order expansions (e.g., 

m > 1) in (6). The next theorem considers second-order expansions and illustrates their 

dependence on the second moment of λ(t).

Theorem 3.—Let Y satisfy the same assumptions as in Theorem 1. If (γk)k⩾1 = (sk, 

ξk)k⩾1, is a sequence such that limk→∞ sk = 0 and limk ∞skξk = L ∈ ℝd, then
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lim
k ∞

SY γk, p
sk

2dE A1
p E V k

p − 1
T d∫[0, T ]d

Λsk(t)
sk

2d dt

= m2(λ)
E A1w U1 eiL ⋅ U1 + A2w U2 eiL ⋅ U2 p

2 w p
pE A1

p ,
(10)

where U1, U2 are independent uniform random variables on [0, 1]d; and (Vk)k⩾1 is a 
sequence of random variables independent of the Aj taking values in the unit cube with 

respective densities, pV k(v) =
sk
d

Λsk(t)λ t − vsk  for ν ∈ [0, 1]d.

We note that the scale normalization on the left hand side of (10) is s−2d, compared to 

a normalization of s−d in Theorem 2. Thus, intuitively, (10) is capturing information at 

moderately small scales that are larger than the scales considered in Theorem 2. Unlike 

Theorem 2, which gives a way to compute m1(λ), Theorem 3 does not allow one to compute 

m2(λ) since it would require knowledge of Λsk(t) in addition to the distribution from which 

the charges Aj j = 1
∞  are drawn. However, Theorem 3 does show that at moderately small 

scales the invariant scattering coefficients depend nontrivially on the second moment of λ(t). 
Therefore, they can be used to distinguish between, for example, an inhomogeneous Poisson 

point process with intensity function λ(t) and a homogeneous Poisson point process with 

constant intensity.

3.2. Second-Order Scattering Moments of Generalized Poisson Processes

Our next result shows that second-order scattering moments encode higher-order moment 

information about the Aj j = 1
∞ .

Theorem 4.—Let Y(dt) satisfy the same assumptions as in Theorem 1. Let γk = (sk, 

ξk) and γk′ = sk′ , ξk′  be sequences of scale-frequency pairs with sk′ = csk for some c > 0 

and limk ∞skξk = L ∈ ℝd. Let 1 ⩽ p, p′ < ∞ and q = pp′. Assume E A1
q < ∞, and let 

K : = gc, L/c * g1, 0
p

p′
p′

. Then,

lim
k ∞

Sγk, p, γk′ , p′Y (t)

sk
d p′ + 1 = Kλ(t)E A1

q , and (11)

lim
k ∞

SY γk, p, γk′ , p′
sk

d p′ + 1 = Km1(λ)E A1
q . (12)

Theorem 2 shows first-order scattering moments with p = 1 are not able to distinguish 

between different types of Poisson point processes at very small scales if the charges have 

the same first moment. However, Theorem 4 shows second-order scattering moments encode 

higher-moment information about the charges, and thus are better able to distinguish them 
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(when used in combination with the first-order coefficients). In Sec. 4, we will see first-

order invariant scattering moments can distinguish Poisson point processes from self-similar 

processes if p = 1, but may fail to do so for larger values of p.

4. COMPARISON TO SELF-SIMILAR PROCESSES

We will show first-order invariant scattering moments can distinguish between Poisson 

point processes and certain self-similar processes, such as α-stable processes, 1 < α ⩽ 
2, or fractional Brownian motion (fBM). These results generalize those in [14] both by 

considering more general filters and general pth scattering moments.

For a stochastic process X(t), t ∈ ℝ, we consider the convolution of the filter gγ with 

the noise dX defined by gγ * dX(t): = ∫ℝgγ(t − u)dX(u), and define (in a slight abuse of 

notation) the first-order scattering moments at time t by Sγ, pX(t): = E gγ * dX(t) p . In the 

case where X(t) is a compound, inhomogeneous Poisson (counting) process, Y = dX will be 

a compound Poisson random measure and these scattering moments will coincide with those 

defined in (2).

The following theorem analyzes the small-scale first-order scattering moments when X 
is either an α-stable process, or an fBM. It shows the small-scale asymptotics of the 

corresponding scattering moments are guaranteed to differ from those of a Poisson point 

process when p = 1. We also note that both α-stable processes and fBM have stationary 

increments and thus Sγ,pX(t) = SX(γ, p) for all t.

Theorem 5.

Let 1 ⩽ p < ∞, and let γk = (sk, ξk) be a sequence of scale-frequency pairs with limk→∞ sk 

= 0 and limk ∞skξk = L ∈ ℝ. Then, if X(t) is a symmetric α-stable process, p < α ⩽ 2, we 

have

lim
k ∞

SX γk, p

sk
p/α = E ∫0

1
w(u)eiLudX(u)

p
.

Similarly, if X(t) is an fBM with Hurst parameter H ∈ (0, 1) and w has bounded variation on 
[0, 1], then

lim
k ∞

SX γk, p

sk
pH = E ∫0

1
w(u)eiLudX(u)

p
.

This theorem shows that first-order invariant scattering moments distinguish 

inhomogeneous, compound Poisson processes from both α-stable processes and fractional 

Brownian motion except in the cases where p = α or p = 1/H. In particular, these 

measurements distinguish Brownian motion, from a Poisson point process except in the 

case where p = 2.
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5. NUMERICAL ILLUSTRATIONS

We carry out several experiments to numerically validate the previously stated results. In all 

of our experiments, we hold the frequency ξ constant while letting s decrease to zero.

Compound Poisson point processes with the same intensities:

We generated three homogeneous compound Poisson point processes, all with intensity 

λ(t) ≡ λ0 = 0.01, where the charges A1,j, A2,j, and A3,j are chosen so that A1,j = 1 

uniformly, A2, j N 0, π
2 , and A3,j are Rademacher random variables. The charges of the 

three signals have the same first moment E Ai, j = 1 and different second moment with 

E[ A1, j
2] = E[ A3, j

2] = 1 and E[ A2, j
2] = π

2 . As predicted by Theorem 2, Figure 1 shows 

first-order scattering moments will not be able to distinguish between the three processes 

with p = 1, but will distinguish the process with Gaussian charges from the other two when p 
= 2.

Inhomogeneous, non-compound Poisson point processes:

We also consider an inhomogeneous, non-compound Poisson point processes with intensity 

function λ(t) = 0.01 1 + 0.5sin 2πt
N  (where we estimate Sγ,pY(t), by averaging over 1000 

realizations). Figure 2 plots the scattering moments for the inhomogeneous process at 

different times, and shows they align with the true intensity function.

Poisson point process and self similar process:

We consider a Brownian motion compared to a Poisson point process with intensity λ = 0.01 

and charges (A)j = 1
∞ ≡ 10. Figure 3 shows the convergence rate of the first-order scattering 

moments can distinguish these processes when p = 1 but not when p = 2.

6. CONCLUSION

We have constructed Gabor-filter scattering transforms for random measures on ℝd. Our 

work is closely related to [14] but considers more general classes of filters and point 

processes (although we note that [14] provides a more detailed analysis of self-similar 

processes). In future work, it would be interesting to explore the use of these measurements 

for tasks such as, e.g., synthesizing new signals.

A. PROOF OF THEOREM 1

To prove Theorem 1 we will need the following lemma.

Lemma 1.—Let Z be a Poisson random variable with parameter λ. Then for all α ∈ ℝ, 

m ∈ ℕ, 0 < λ < 1, we have

E Zα1 Z > m = ∑
k = m + 1

∞
e−λλk

k! kα ⩽ Cm, αλm + 1 .
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Proof. For 0 < λ < 1 and k ∈ ℕ, e−λλk ⩽ 1. Therefore,

E Zα1 Z > m = ∑
k = m + 1

∞
e−λλk

k! kα

= λm + 1 ∑
k = 0

∞
e−λ λk

(k + m + 1)! (k + m + 1)α

⩽ λm + 1 ∑
k = 0

∞ (k + m + 1)α
(k + m + 1)!

= Cα, mλm + 1 .

The proof of Theorem 1. Recalling the definitions of Y(dt) and Sγ,pY(t), and setting Ns(t) = 

N([t − s, t]d), we see

Sγ, pY (t) = E ∫[s − t, t]dw t − u
s eiξ ⋅ (t − u)Y (du)

p

= E ∑
j = 1

Ns(t)
Ajw

t − tj
s eiξ ⋅ t − tj

p
,

where t1, t2, …tNs(t) are the points N(t) in [t − s, t]d. Conditioned on the event that Ns(t) = k, 

the locations of the k points on [t − s, t]d are distributed as i.i.d. random variables Z1, . . . , Zk 

taking values in [t − s, t]d with density

pZ(z) = λ(z)
Λs(t) , z ∈ [t − s, t]d .

Therefore, the random variables

V i: =
t − Zi

s

take values in the unit cube [0, 1]d and have density

pV (v) = sd
Λs(t)λ(t − vs), v ∈ [0, 1]d .

Note that in the special case that N is homogeneous, i.e. λ(t) ≡ λ0 is constant, the Vi are 

uniform random variables on [0, 1]d.

Therefore, computing the conditional expectation, we have for k ⩾ 1

E ∑
j = 1

Ns(t)
Ajw

t − tj
s eiξ ⋅ t − tj

p

:Ns(t) = k (13)
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= E ∑
j = 1

k
Ajw V j eisξ ⋅ V j

p

⩽ λ ∞
λmin

kpE A1
p w

p

p
, (14)

where (14) follows from (i) the independence of the random variables Aj and Vj; (ii) the fact 

that for any sequence of i.i.d. random variables Z1, Z2, . . .,

E ∑
n = 1

k
Zn

p
⩽ kp − 1E ∑

n = 1

k
Zn p = kpE Z1 p ;

and (iii) the fact that

E w V i
p = ∫[0, 1]d|w(v) |p pV (v)dv ⩽

λ ∞
λmin

‖w‖pp .

Therefore, since ℙ Ns(t) = k = e−Λs(t) ⋅ Λs(t) k/k!,

E ∑
j = 1

Ns(t)
Ajw

t − tj
s eiξ ⋅ t − tj

p
=

= ∑
k = 0

∞
e−Λs(t) Λs(t) k

k! E ∑
j = 1

Ns(t)
Ajw

t − tj
s eiξ ⋅ t − tj

p
:Ns(t) = k

= ∑
k = 1

∞
e−Λs(t) Λs(t) k

k! E ∑
j = 1

k
Ajw V j eisξ ⋅ V j

p

= ∑
k = 1

m
e−Λs(t) Λs(t) k

k! E ∑
j = 1

k
Ajw V j eisξ ⋅ V j

p
+ ε(m, s, ξ, t),

where

ε(m, s, t, ξ): = ∑
k = m + 1

∞
e−Λs(t) Λs(t) k

k! E ∑
j = 1

k
Ajw V j eisξ ⋅ V j

p
.
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By (14) and Lemma 1, if s is small enough so that Λs(t) ⩽ sd∥λ∥∞ < 1, then:

ε(m, s, ξ, t) = ∑
k = m + 1

∞
e−Λs(t) Λs(t) k

k! E ∑
j = 1

k
Ajw V j eisξ ⋅ V j

p

⩽
‖λ‖∞
λmin

E A1 p ‖w‖pp ∑
k = m + 1

∞
e−Λs(t) Λs(t) k

k! kp

⩽ Cm, p
‖λ‖∞
λmin

E A1 p ‖w‖pp Λs(t) m + 1

⩽ Cm, p
‖λ‖∞
λmin

E A1 p ‖w‖pp‖λ‖∞m + 1sd(m + 1) .

B. PROOF OF THEOREM 2

Proof. Let (sk, ξk) be a sequence of scale and frequency pairs such that limk→∞ sk = 0. 

Applying Theorem 1 with m = 1, we obtain:

Sγk, pY (t)

sk
d

= e−Λsk(t)Λsk(t)

sk
d E A1w V 1, k eisξ ⋅ V 1, k p +

ε 1, sk, ξk, t
sk
d

= e−Λsk(t)Λsk(t)

sk
d E A1 p E w V 1, k

p +
ε 1, sk, ξk, t

sk
d ,

where we write V1,k = V1 to emphasize the fact that the density of V1,k is:

pV k(v) =
sk
d

Λsk(t)λ t − vsk .

Using the error bound (7), we see that:

lim
k ∞

ε 1, sk, ξk, t
sk
d = 0.

Furthermore, since 0 ⩽ Λsk(t) ⩽ sk
d λ ∞, we observe that:

lim
k ∞

e−Λsk(t) = 1,

and by the continuity of λ(t),

lim
k ∞

Λsk(t)
sk

d = lim
k ∞

1
sk

d∫sk − t, t dλ(u)du = λ(t) . (15)

Finally, by the continuity of λ(t), we see that
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pV k(v) ⩽ λ ∞
λmin

and lim
k ∞

pV k(v) = 1, ∀v ∈ [0, 1]d. (16)

Therefore, by the bounded convergence theorem,

lim
k ∞

E w V 1 p = lim
k ∞∫[0, 1]d|w(v) |p pV k(v)dv

= ∫[0, 1]d|w(v) |p lim
k ∞

pV k(v)dv

= ‖w‖pp .

That completes the proof of (8).

To prove (9), we assume that λ(t) is periodic with period T along each coordinate and again 

use Theorem 1 with m = 1 to observe,

SY sk, ξk, p
sk
d

= E A1 p 1
Td∫[0, T ]de−Λsk(t)Λsk(t)

sk
d ×

∫[0, 1]d|w(v) |p pV k(v)dvdt + 1
Td∫[0, 1]d

ε 1, sk, ξk, t
sk
d dt .

By (7), the second integral converges to zero as k → 8. Therefore,

lim
k ∞

SY sk, ξk, p
sk
d = E A1 p ‖w‖pp

1
Td∫[0, T ]dλ(t)dt,

by the continuity of λ(t) and the bounded convergence theorem.

C. PROOF OF THEOREM 3

Proof. We apply Theorem 1 with m = 2 and obtain:

Sγk, pY (t) (17)

= e−Λsk(t)Λsk(t)E A1
p E w V 1, k

p (18)

+e−Λsk(t) Λsk(t) 2

2 E A1w V 1, k eiskξk ⋅ V 1, k + A2w V 2, k eiskξk ⋅ V 2, k p (19)

+ε 2, sk, ξk, t ,
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where Vi,k, i = 1,2, are random variables taking values on the unit cube [0, 1]d with 

densities,

pV k(v) =
sk
d

Λsk(t)λ t − vsk .

Dividing both sides in (18) by sk
2d w p

pE A1
p  and subtracting 

Λsk(t)

sk
2d

E w V 1, k
p

w pp
 yields:

Sγk, pY (t)

sk
2d w p

pE A1
p −

Λsk(t)
sk

2d
E w V 1, k

p

‖w‖p
p (20)

=
e−Λsk(t)Λsk(t) − Λsk(t)

sk
2d

E w V 1, k
p

‖w‖p
p

(21)

+e−Λsk(t) Λsk(t) 2

sk
2d

E A1w V 1, k eiskξk ⋅ V 1, k + A2w V 2, k eiskξk ⋅ V 2, k p

2‖w‖ppE A1 p

+
ε 2, sk, ξk, t

sk
2d‖w‖ppE A1 p .

Using the error bound (7),

lim
k ∞

ε 2, sk, ξk, t
sk

2d‖w‖p
pE A1

p = 0, (22)

at a rate independent of t. Recalling (16) from the proof of Theorem 2, we use the fact that 

limk ∞pV k ≡ 1 and the bounded convergence theorem to conclude,

lim
k ∞

E |A1w V 1, k eiskξk ⋅ V 1, k + A2w V 2, k eiskξk ⋅ V 2, k|p (23)

= E A1w U1 eiL ⋅ U1 + A2w U2 eiL ⋅ U2 p , (24)

where Ui, i = 1, 2, are uniform random variables on the unit cube and L = limk ∞skξk. 

Similarly,
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lim
k ∞

E w V 1, k
p

w p
p = 1. (25)

Lastly, recalling that sk → 0 as k → 8 and using (15) from the proof of Theorem 2, we see

lim
k ∞

e−Λsk(t)Λsk(t) − Λsk(t)
sk

2d
(26)

= lim
k ∞

Λsk(t)
sk

d lim
k ∞

e−Λsk(t) − 1
sk

d

= λ(t) lim
k ∞

e−Λsk(t) − 1
sk

d

= − λ(t)2 .

(27)

Now we integrate both sides of (21) over [0, T]d and divide by Td. Taking the limit as k → 
8, on the left hand side we get:

lim
k ∞

1
Td∫[0, T ]d

Sγk, pY (t)

sk
2d‖w‖ppE A1 p −

Λsk(t)

sk
2d

E w V 1, k
p

‖w‖pp
dt

= lim
k ∞

SY sk, ξk, p

sk
2d‖w‖ppE A1 p −

E w V 1, k
p

‖w‖ppTd ∫[0, T ]d
Λsk(t)

sk
2d dt

= lim
k ∞

SY sk, ξk, p

sk
2dE w V 1, k

p E A1 p − 1
Td∫[0, T ]d

Λsk(t)

sk
2d dt ,

where we used the definition of the invariant scattering moments and (25). On the right hand 

side of (21), we use (25), (27) and the dominated convergence theorem to see that the first 

term is:

lim
k ∞

1
Td∫[0, T ]d

e−Λsk(t)Λsk(t) − Λsk(t)

sk
2d

E w V 1, k
p

‖w‖pp
dt

= lim
k ∞

1
Td∫[0, T ]d

e−Λsk(t)Λsk(t) − Λsk(t)

sk
2d dt

= − 1
Td∫[0, T ]dλ(t)2dt .

Using (15), (23), and the bounded convergence theorem, the second term of (21) is:
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lim
k ∞

1
Td∫[0, T ]de−Λsk(t)Xkdt

=
E ∣ A1w U1 eiL ⋅ U1 + A2w U2 eiL ⋅ U2 p

2Td‖w‖ppE A1 p ∫[0, T ]dλ(t)2dt

where

Xk =
E A1w V 1, k eiskξk ⋅ V 1, k + A2w V 2, k eiskξk ⋅ V 2, k p

2‖w‖ppE A1 p .

Finally, the third term of (21) goes to zero using the bounded convergence theorem and (22). 

Putting together the left and right hand sides of (21) with these calculations finishes the 

proof.

D. PROOF OF THEOREM 4

Proof. As in the proof of Theorem 1, let Ns(t) = N ([t − s, t]d) denote the number of points in 

the cube [t − s, t]d. Then since the support of w is contained in [0, 1]d,

gγk * Y (t) = ∫t − sk, t dw t − u
sk

eiξk ⋅ (t − u)Y (du)

= ∑
j = 1

Nsk(t)
Ajw

t − tj
sk

eiξk ⋅ t − tj ,

where t1, t2, …, tNsk(t) are the points of N in [t − sk, t]d. Therefore, in the event that 

Nsk(t) = 1,

gγk * Y (t) p = gγk
p * Y p (t),

and so, partitioning the space of possible outcomes based on Nsk(t), we obtain:

gγk * Y (t) p

= gγk * Y (t) ⋅ 1 Nsk(t) = 1 + gγk * Y (t) ⋅ 1 Nsk(t) > 1
p

= gγk * Y (t) ⋅ 1 Nsk(t) = 1
p

+ gγk * Y (t) ⋅ 1 Nsk(t) > 1
p

= gγk
p * Y p (t) ⋅ 1 Nsk(t) = 1 + gγk * Y (t) ⋅ 1 Nsk(t) > 1

p

= gγk
p * Y p (t) + ek(t),

where
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ek(t): = gγk * Y (t) ⋅ 1 Nsk(t) > 1
p

− gγk
p * Y p (t) ⋅ 1 Nsk(t) > 1

Using the above, we can write the second order convolution term as:

gγk′ * gγk * Y (t) = gγk′ * gγk
p * Y p (t) + gγk′ * ek (t) .

The following lemma implies that gγk′ * ek (t) decays rapidly in Lp′ at a rate independent of t.

Lemma 2.—There exists δ > 0, independent of t, such that if sk < δ,

E gγk′ * ek (t) p ⩽ C p, p′, w, c, L
λ ∞

λmin
‖λ‖∞2 sk

d p′ + 2 .

Once we have proved Lemma 2, equation (11) will follow once we show,

lim
k ∞

E gγk′ * gγk
p * Y p (t)

p′

sk
d p′ + 1 = K p, p′, w, c, L λ(t)E A1

q . (28)

Let us prove (28) first and postpone the proof of Lemma 2. We will use the fact that 

the support of gγk′ * gγk
p is contained in 0, sk + sk′

d. Let sk: = sk + sk′ , Nk(t): = Nsk(t), 

Λk(t): = Λsk(t), and let t1, t2, …, tNk(t) be the points of N in the cube t − sk, t d. We have 

that ℙ Nk(t) = n = e−Λk(t) Λk(t) n

n! , and conditioned on the event that Nk(t) = n, the locations 

of the points t1, . . . , tn are distributed as i.i.d. random variables Z1(t), . . . , Zn(t) taking 

values in t − sk, t d with density pZ(t)(z) = λ(z)
Λk(t) . Therefore the i.i.d. random variables 

V 1(t), …, V n(t) defined by V i(t): = t − Zi(t) take values in 0, sk
d and have density

pV (t)(v) = λ(t − v)
Λk(t) , v ∈ 0, sk

d .

Now, we condition on Nk(t) to see that

E gγk′ * gγk
p * Y p (t)

p′
(29)

= E ∑
j = 1

Nk(t)
Aj

p gγk′ * gγk
p t − tj

p′
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= ∑
n = 1

∞
e−Λk(t) Λk(t) n

n! (30)

⋅ E ∑
j = 1

Nk(t)
Aj

p gγk′ * gγk
p t − tj

p′
: Nk(t) = n

= ∑
n = 1

∞
e−Λk(t) Λk(t) n

n! E ∑
j = 1

n
Aj

p gγk′ * gγk
p V j(t)

p′

= e−Λk(t)Λk(t)E A1
q E gγk′ * gγk

p V 1(t)
p′

(31)

+ ∑
n = 2

∞
e−Λk(t) Λk(t) n

n! E ∑
j = 1

n
Aj

p
gγk′ * gγk

p V j(t)
p′

(32)

The following lemma will be used to estimate the scaling of the term in (31).

Lemma 3.—For all t ∈ ℝd,

lim
k ∞

sk
d

sk
d p′ + 1 E gγk′ * gγk

p V 1(t)
p′

= gc, L/c * g1, 0
p

p′
p′ . (33)

Furthermore, there exists δ > 0, independent of t, such that if sk < δ then

sk
d

sk
d p′ + 1 E gγk′ * gγk

p V 1(t)
p′

⩽ 2 λ ∞
λmin

C p, p′, w, c, L . (34)

Proof. Making a change of variables in both u and v, and recalling the assumption that 

sk′ = csk, we observe that

sk
d

sk
d p′ + 1 E gγk′ * gγk

p V 1(t)
p′

= sk
d

sk
d p′ + 1 ∫

ℝdpV (t)(v) .
(35)
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∫
ℝdw v − u

sk′
eiξk′ ⋅ (v − u) w u

sk

p
du

p′
dv

= sk
d∫

ℝdpV (t) skv ∫
ℝdw sk(v − u)

sk′
eiskξk′ ⋅ (v − u) w(u)

p
du

p′
dv

= ∫
ℝd

sk
dλ t − skv

Λk(t) ∫
ℝdw u − v

c eisk′ ξk′ ⋅ (u − v)/c w(u)
p
du

p′

dv .

(36)

The continuity of λ(t) implies that

lim
k ∞

sk
dλ t − skv

Λk(t) = 1, ∀v ∈ [0, 1 + c]d .

Furthermore, the assumption 0 < λmin ⩽ ∥λ∥∞ < ∞ implies

sk
dλ t − skv

Λk(t) ⩽ λ ∞
λmin

, ∀k ⩾ 1. (37)

Therefore, (33) follows from the dominated convergence theorem and by the observation 

that the inner integral of (36) is zero unless v ∈ [0, 1 + c]d. Equation (34) follows from 

inserting (37) into (36) and sending k to infinity.

Since

lim
k ∞

Λk(t)

sk
d = λ(t),

the independence of V 1(t) and A1, the continuity of λ(t), and Lemma 3 imply that taking k 

→ ∞ in (31) yields:

lim
k ∞

e−Λk(t)Λk(t)E A1 q E gγk′ * gγk
p V 1(t)

p′

sk
d p′ + 1

= lim
k ∞

e−Λk(t)Λk(t)

sk
d E A1 q sk

d

sk
d p′ + 1 E gγk′ * gγk

p V 1(t)
p′

= K p, p′, c, w, L λ(t)E A1 q .

The following lemma shows that (32) is O sk
d p′ + 2  (and converges at a rate independent of 

t), and therefore completes the proof of (11) subject to proving Lemma 2.

Lemma 4.—For all α ∈ ℝ there exists δ > 0, independent of t, such that if sk < δ, then
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∑
n = 2

∞
e−Λk(t) Λk(t) n

n! nαE ∑
j = 1

n
Aj

p gγk′ * gγk
p V j(t)

p′

⩽ C p, p′, w, c, α, L
λ ∞

λmin
‖λ‖∞2 E A1 q sk

d p′ + 2 .

Proof. For any sequence of i.i.d. random variables, Z1, Z2, . . . , it holds that

E ∑
n = 1

k
Zn

p
⩽ kp − 1E ∑

n = 1

k
Zn p = kpE Z1 p .

Therefore, by Lemma 1, Lemma 3, and the fact that the V j(t) and Ai are i.i.d. and 

independent of each other, we see that if sk < δ, where δ is as in (34),

∑
n = 2

∞
e−Λk(t) Λk(t) n

n! nα

× E ∑
j = 1

n
Aj

p gγk′ * gγk
p V j(t)

p′

⩽ ∑
n = 2

∞
e−Λk(t) Λk(t) n

n! nαnp′

× E A1 q gγk′ * gγk
p V 1(t)

p′

= ∑
n = 2

∞
e−Λk(t) Λk(t) n

n! np′ + α

× E A1 q E gγk′ * gγk
p V 1(t)

p′

= E A1 q E gγk′ * gγk
p V 1(t)

p′
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× ∑
n = 2

∞
e−Λk(t) Λk(t) n

n! np′ + α

⩽ C p, p′, w, c, L
λ ∞

λmin
E A1 q sk

d p′ + 1

sk
d

× ∑
n = 2

∞
e−Λk(t) Λk(t) n

n! np′ + α

⩽ C p, p′, w, c, L, α
λ ∞

λmin
E A1 q sk

d p′ + 1

sk
d Λk(t) 2

⩽ C p, p′, w, c, L, α
λ ∞

λmin
‖λ‖∞2 E A1 q sk

d p′ + 2 ,

where the last inequality uses the fact that Λk(t) ⩽ sk
d‖λ‖∞ = (1 + c)dsk

d‖λ‖∞.

We will now complete the proof of the theorem by proving Lemma 2.

Proof. [Lemma 2] Since

ek(t)

= gγk * Y (t)1 Nsk(t) > 1
p

− gγk
p * Y p (t)1 Nsk(t) > 1 ,

we see that

gγk′ * ek(t) ⩽ gγk′ * gγk * Y 1 Nsk( ⋅ ) > 1
p

(t)

+ gγk′ * gγk
p * Y p 1 Nsk( ⋅ ) > 1 (t) .

First turning our attention to the second term, we note that
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gγk′ * gγk
p * Y p 1 Nsk( ⋅ ) > 1 (t)

= ∫t − sk′ , t dw t − u
sk′

eiξk′ ⋅ (t − u) gγk
p * Y p (u)1 Nsk(u) > 1 du

⩽ 1 Nk(t) > 1 ∫t − sk′ , t dw t − u
sk′

gγk
p * Y p (u)du

= 1 Nk(t) > 1 gsk′ , 0 * gγk
p * Y p (t) .

(38)

since Nsk(u) ⩽ Nsk + sk′ (t) = Nsk(t) = Nk(t) for all u ∈ t − sk′ , t d. Therefore, conditioning on 

Nk(t), if sk < δ,

E gγk′ * gγk
p * Y p 1 Nsk( ⋅ ) > 1 (t)

p′

⩽ E 1 Nk(t) > 1 gsk′ , 0 * gγk
p * Y p (t)

p′

= ∑
n = 2

∞
e−Λk(t) Λk(t) n

n! E ∑
j = 1

n
Aj

p gsk′ , 0 * gγk
p V j(t)

p′

⩽ C p, p′, w, c, L
‖λ‖∞
λmin

‖λ‖∞2 E A1 q sk
d p′ + 2

by Lemma 4. Now, turning our attention to the first term, note that

gγk * Y (t) p1 Nsk(t) > 1 ⩽ Nsk(t)p − 1 gγk
p * Y p (t)1 Nsk(t) > 1 .

Therefore, by the same logic as in (38)

gγk′ * gγk * Y 1 Nsk( ⋅ ) > 1
p

(t)

⩽ ∫t − sk′ , t dw t − u
sk′

Nsk(u)p − 1 gγk
p * Y p (u)1 Nsk(u) > 1 du

⩽ 1 Nk(t) > 1 Nk(t)p − 1∫t − sk′ , t dw t − u
sk′

gγk
p * Y p (u)du

⩽ 1 Nk(t) > 1 Nk(t)p − 1 gsk′ , 0 * gγk
p * Y p (t) .

So again conditioning on Nk (t), and applying Lemma 4, we see that if sk < δ

Perlmutter et al. Page 21

Proc IEEE Int Conf Acoust Speech Signal Process. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E gγk′ * gγk * Y 1 Nsk( ⋅ ) > 1
p

(t)
p′

⩽ ∑
n = 2

∞
e−Λk(t) Λk(t) k

n! np − 1E ∑
j = 1

n
Aj

p gsk′ , 0 * gγk V j(t) p
p′

⩽ C p, p′, w, c, L
‖λ‖∞
λmin

‖λ‖∞2 E A1 q sk
d p′ + 2 .

This completes the proof of (11). Line (12) follows from integrating with respect to t, 
observing that the error bounds in Lemmas 2 and 3 are independent of t, and applying the 

bounded convergence theorem.

E. THE PROOF OF THEOREM 5

In order to prove Theorems 5, we will need the following lemma which shows that the 

scaling relationship of a self-similar process X(t) induces a similar relationship on stochastic 

integrals against dX(t).

Lemma 5.—Let X be a stochastic process that satisfies the scaling relation

X(st) =d sβX(t) (39)

for some β > 0 (where =d denotes equality in distribution). Then for any measurable function 
f :ℝ ℝ,

∫0
s
f(u) dX(u): = sβ∫0

1
f(su) dX(u) .

Proof. Let X = (X(t))t ∈ ℝ be a stochastic process satisfying (39), and let 

Pn = {0 = t0n < t1n < … < tKn
n = 1} be a sequence of partitions of r0,1s such that

lim
n ∞

max
k

tk
n − tk − 1

n = 0.

Then, by the scaling relation (39),

∫0
s
f(u) dX(u)

= lim
n ∞

∑
k = 0

Kn − 1
f stk

n X stk + 1
n − X stk

n

: = sβ lim
n ∞

∑
k = 0

Kn − 1
f stk

n X tk + 1
n − X tk

n

= sβ∫0
1

f(su) dX(u) .

We will now use Lemma 5 to prove Theorem 5.
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Proof. We first consider the case where X = (X(t))t ∈ ℝ is an α-stable process, p < α ⩽ 

2. Since X has stationary increments, its scattering coefficients do not depend on t and it 

suffices to analyze

E gγk * dX (0) p = E ∫−sk
0

gγk(u)dX(u)
p

= E ∫0

sk
gγk(u)dX(u)

p
,

where the second equality uses the fact the distribution of X does not change if it is run in 

reverse, i.e.

(X(t))t ∈ ℝ =d (X( − t))t ∈ ℝ

It is well known that X(t) satisfies (39) for β = 1/α. Therefore, by Lemma 5

E gγk * dX (0) p = E ∫0

sk
w u

sk
eiξkudX(u)

p

= sk
p/αE ∫0

1
w(u)eiξkskudX(u)

p
.

So,

E gγk * dX (0) p

sk
p/α = E ∫0

1
w(u)eiξkskudX(u)

p
.

The proof will be complete as soon as we show that

lim
k ∞

E ∫0
1

w(u)eiξkskudX(u)
p 1/p

= E ∫0
1

w(u)eiLudX(u)
p 1/p

.

By the triangle inequality,

E ∫0
1

w(u)eiξkskudX(u)
p 1/p

− E ∫0
1

w(u)eiLudX(u)
p 1/p

⩽ E ∫0
1

w(u) eiξksku − eiLu dX(u)
p 1/p

.
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Since 1 ⩽ p < α, we may choose p′ strictly greater than 1 such that p ⩽ p′ < α, and note that 

by Jensen’s inequality

E ∫0
1

w(u) eiξksku − eiLu dX(u)
p 1/p

⩽ E ∫0
1

w(u) eiξksku − eiLu dX(u)
p′ 1/p′

,

and since X(t) is a p′-integrable martingale, the boundedness of martingale transforms (see 

[16] and also [17]) implies

E ∫0
1

w(u) eiξksku − eiLu dX(u)
p′ 1/p′

⩽ Cp′ sup
0 ⩽ u ⩽ 1

w(u) eiξksku − eiLu E X1 p′

⩽ Cp′ skξk − L ‖w‖∞E X1 p′ ,

which converges to zero by the continuity of w on [0, 1] and the assumption that skξk 

converges to L.

Similarly, in the case where (X(t))t ∈ ℝ is a fractional Brownian motion with Hurst parameter 

H, we again need to show

lim
k ∞

E ∫0
1

w(u) eiξksku − eiLu dX(u)
p 1/p

= 0.

However, fractional Brownian motion is not a semi-martingale so we cannot apply 

Burkholder’s theorem as we did in the proof of Theorem 5. Instead, we use the Young-

Lóeve estimate [18] which states that if xpuq is any (deterministic) function with bounded 

variation, and y(u) is any function which is α-Hölder continuous, 0 < α < 1, then

∫0
1

x(u) dy(u)

is well-defined as the limit of Riemann sums and

∫0
1

x(u) dy(u) − x(0) (y(1) − y(0)) ⩽ Cα‖x‖BV ‖y‖α,

where ∥·∥BV and ∥·∥α are the bounded variation and α-Hölder seminorms respectively. For 

all k, the function ℎk(u) :=w(u) eiξksku − eiLu : = w(u)fk(u) satisfies, hk(0) = 0 and

ℎk BV ⩽ ‖w‖∞ fk BV + ‖w‖BV fk ∞ .
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One can check that the fact that skξk converges to L implies that fk converges to zero in 

both L∞ and in the bounded variation seminorm, and that therefore that ∥hk∥BV converges to 

zero.

It is well-known that fractional Brownian motion with Hurst parameter H admits a 

continuous modification which is α-Hölder continuous for any α < H. Therefore,

E ∫0
1

w(u) eiξksku − eiLu dX(u)
p

⩽ Cαp ℎk BV
p E ‖X‖αp .

Lastly, one can use the Garsia-Rodemich-Rumsey inequality [19], to show that

E ‖X‖αp < ∞ .

for all 1 < p < ∞. For details we refer the reader to the survey article [20]. Therefore,

lim
k 0

E ∫0
1

w(u) eiξksku − eiLu dX(u)
p

= 0

as desired.

Remark 1.—The assumption that w has bounded-variation was used to justify that the 

stochastic integral against fractional Brownian motion was well defined as the limit of 

Riemann sums because of its Hölder continuity and the above mentioned result of [18]. This 

allowed us to avoid the technical complexities of defining such an integral using either the 

Malliavin calculus or the Wick product.

F. DETAILS OF NUMERICAL EXPERIMENTS

F.1. Definition of Filters—For all the numerical experiments, we take the window 

function w to be the smooth bump function
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w(t) =
exp − 1

4t − 4t2
, t ∈ (0, 1)

0, otherwise.

Therefore for γ = (s, ξ), our filters are given by

gγ(t) = eiξtw(t) = eiξte−s2/ 4ts − 4t2 , t ∈ (0, s)
0, otherwise

.

F.2. Frequencies—In all of our experiments, we hold the frequency, ξ, which we 

sample uniformly at random from (0, 2π), constant while allowing the scale to decrease 

to zero.

F.3. Simulation of Poisson point process—We use the standard method to generate 

a realization of a Poisson point process. For Poisson point process with intensity λ, the time 

interval between two neighbor jumps follows exponential distribution:

Δj: = tj − tj − 1 Exp(λ) .

Therefore, taking the inverse cumulative distribution function, we sample the time interval 

between two neighbor jumps through:

Δj = −
logUj

λ ,

where Uj are i.i.d. uniform random variables on [0, 1], and assign the charge Aj to the jump 

at location tj.

For inhomogeneous Poisson process with intensity funciton λ(t), we simulate the time 

interval based on a well-known algorithm. We, first define the cumulated intensity:

Λ(t) = ∫0
t
λ(s)ds,

then generate the location of jumps tj by the Algorithm 1.
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Fig. 1. 
First-order invariant scattering moments of homogeneous compound Poisson point processes 

with the same intensity λ0 and different Ai. Left: Realizations of the process with arrival 

rates given by Top: Ai = 1 Middle: Ai are normal random variables Bottom: Ai are 

Rademacher random variables. Middle: Plots of normalized first-order scattering SY (s, ξ, 1)
s‖w‖1

moments with p = 1.Right: Plots of normalized first-order scattering SY (s, ξ, 2)
s w 2

2  moments 

with p = 2.
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Fig. 2. 
First-order scattering moments for inhomogeneous Poisson point processes. Left: Sample 

realization with λ(t) = 0.01 1 + 0.5sin 2πt
N . Right: Time-dependent scattering moments 

Sγ, pY (t)

s‖w‖P
p  at t1 = N

4 , t2 = N
2 ,t3 = 3N

4 . Note that the scattering coefficients at times t1, t2, t3 

converges to λ(t1) = 0.015, λ(t2) = 0.01, λ(t3) = 0.005.
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Fig. 3. 
First-order invariant scattering moments for standard Brownian motion and Poisson point 

process. Left: Sample realizations Top: Brownian motion. Bottom: Ordinary Poisson point 

process. Middle: Normalized scattering moments 
SYpoisson(x, ξ, p)

λE A1 p‖w‖pp
 and 

SXBM(s, ξ, p)

λE |Z |p‖w‖pp
 for 

Poisson and BM with p = 1. Right: The same but with p = 2.
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