Table 5.
Model | Fault Class | Accuracy | Precision | Recall | Sensitivity | Specificity | F1 |
---|---|---|---|---|---|---|---|
LR | HCV_L | 0.981 | 0.731 | 0.828 | 0.828 | 0.987 | 0.776 |
HR_NW | 0.995 | 0.932 | 0.971 | 0.971 | 0.996 | 0.951 | |
CCV_S | 0.997 | 0.888 | 0.972 | 0.972 | 0.997 | 0.928 | |
FPES_M | 0.999 | 0.996 | 1 | 1 | 0.999 | 0.998 | |
CCV_C | 0.985 | 0.791 | 0.748 | 0.748 | 0.993 | 0.769 | |
Normal | 0.883 | 0.954 | 0.889 | 0.889 | 0.861 | 0.920 | |
Weighted | 0.859 | 0.943 | 0.900 | 0.900 | 0.893 | 0.887 | |
RF | HCV_L | 0.997 | 0.955 | 0.988 | 0.988 | 0.988 | 0.971 |
HR_NW | 0.999 | 0.997 | 0.997 | 0.997 | 0.999 | 0.997 | |
CCV_S | 0.999 | 0.960 | 0.986 | 0.986 | 0.999 | 0.973 | |
FPES_M | 0.999 | 0.996 | 1 | 1 | 0.999 | 0.998 | |
CCV_C | 0.999 | 0.999 | 0.989 | 0.989 | 0.999 | 0.993 | |
Normal | 0.995 | 0.996 | 0.994 | 0.994 | 0.998 | 0.997 | |
Weighted | 0.993 | 0.996 | 0.994 | 0.994 | 0.998 | 0.994 | |
XGB | HCV_L | 0.998 | 0.974 | 0.982 | 0.982 | 0.998 | 0.978 |
HR_NW | 0.999 | 0.997 | 0.997 | 0.997 | 0.999 | 0.997 | |
CCV_S | 0.999 | 0.973 | 1 | 1 | 0.999 | 0.986 | |
FPES_M | 0.999 | 0.996 | 1 | 1 | 0.999 | 0.998 | |
CCV_C | 1 | 1 | 1 | 1 | 1 | 1 | |
Normal | 0.997 | 0.998 | 0.997 | 0.997 | 0.996 | 0.998 | |
Weighted | 0.996 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 |
LR—logistic regression; RF—random forest; XGB—XGBoost.