Skip to main content
. 2022 Aug 23;22(17):6338. doi: 10.3390/s22176338

Table 5.

Performance matrix of the used models in the fault diagnosis task.

Model Fault Class Accuracy Precision Recall Sensitivity Specificity F1
LR HCV_L 0.981 0.731 0.828 0.828 0.987 0.776
HR_NW 0.995 0.932 0.971 0.971 0.996 0.951
CCV_S 0.997 0.888 0.972 0.972 0.997 0.928
FPES_M 0.999 0.996 1 1 0.999 0.998
CCV_C 0.985 0.791 0.748 0.748 0.993 0.769
Normal 0.883 0.954 0.889 0.889 0.861 0.920
Weighted 0.859 0.943 0.900 0.900 0.893 0.887
RF HCV_L 0.997 0.955 0.988 0.988 0.988 0.971
HR_NW 0.999 0.997 0.997 0.997 0.999 0.997
CCV_S 0.999 0.960 0.986 0.986 0.999 0.973
FPES_M 0.999 0.996 1 1 0.999 0.998
CCV_C 0.999 0.999 0.989 0.989 0.999 0.993
Normal 0.995 0.996 0.994 0.994 0.998 0.997
Weighted 0.993 0.996 0.994 0.994 0.998 0.994
XGB HCV_L 0.998 0.974 0.982 0.982 0.998 0.978
HR_NW 0.999 0.997 0.997 0.997 0.999 0.997
CCV_S 0.999 0.973 1 1 0.999 0.986
FPES_M 0.999 0.996 1 1 0.999 0.998
CCV_C 1 1 1 1 1 1
Normal 0.997 0.998 0.997 0.997 0.996 0.998
Weighted 0.996 0.997 0.997 0.997 0.997 0.997

LR—logistic regression; RF—random forest; XGB—XGBoost.