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Abstract

Longitudinal regression analysis for clinical imaging studies is essential to investigate unknown 

relationships between subject-wise changes over time and subject-specific characteristics, 

represented by covariates such as disease severity or a level of genetic risk. Image-derived data 

in medical image analysis, e.g. diffusion tensors or geometric shapes, are often represented on 

nonlinear Riemannian manifolds. Hierarchical geodesic models were suggested to characterize 

subject-specific changes of nonlinear data on Riemannian manifolds as extensions of a linear 

mixed effects model. We propose a new hierarchical multi-geodesic model to enable analysis of 

the relationship between subject-wise anatomical shape changes on a Riemannian manifold and 

multiple subject-specific characteristics. Each individual subject-wise shape change is represented 

by a univariate geodesic model. The effects of subject-specific covariates on the estimated subject-

wise trajectories are then modeled by multivariate intercept and slope models which together form 

a multi-geodesic model. Validation was performed with a synthetic example on a S2 manifold. The 

proposed method was applied to a longitudinal set of 72 corpus callosum shapes from 24 autism 

spectrum disorder subjects to study the relationship between anatomical shape changes and the 

autism severity score, resulting in statistics for the population but also for each subject. To our 

knowledge, this is the first longitudinal framework to model anatomical developments over time as 

functions of both continuous and categorical covariates on a nonlinear shape space.

1 Introduction

Recent advances in medical image analysis allow researchers to track an individual subject’s 

development with multiple repeated observations [4]. Longitudinal regression analysis, 

which adequately accounts for intra-subject correlation, is essential to estimate unknown 

relationships between subject-specific temporal changes and characteristics of individuals 

via repeated observations [2].

Data derived from medical images, such as diffusion tensors, diffeomorphic deformations, or 

geometric shapes, are to be analyzed on their natural nonlinear spaces, e.g. Riemannian 

manifolds. For longitudinal analysis of nonlinear data on a Riemannian manifold, 
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hierarchical geodesic models were suggested as extensions of a linear mixed effects model 

on Euclidean space [6, 7, 9]. These methods estimate the same model for both subject 

and population levels which is a direct reformulation of a linear mixed effects model on 

a Riemannian manifold. The previous methods face challenges from too few observations 

per subject to hierarchically solve a multivariate model at a subject level even though 

the number of subjects may be sufficient. Despite the importance of including subject-

specific characteristics for longitudinal analysis, a hierarchical model that analyzes the 

relationship between subject-wise morphological changes over time and multiple covariates 

on a Riemannian manifold has not been shown before.

We propose a novel hierarchical multi-geodesic model for longitudinal analysis of subject-

specific morphological changes of anatomical structures on a Riemannian manifold. 

Each subject-wise morphological change over time is modeled by a univariate geodesic 

model which only requires a minimum of two observations per subject. The effects of 

subject-specific characteristics, represented by subject-specific covariates, on subject-wise 

trajectories are modeled by a multi-geodesic model. The covariates are fixed for an 

individual subject but varying across a population. The multi-geodesic model consists of 

multivariate intercept and slope models which account for the effects of the subject-specific 

characteristics to subject-wise baselines and developments over time, respectively. It is 

worth noting that the proposed method is different from the direct extension of a linear 

mixed effects model because the relationship between subject-specific characteristics and 

the slopes of subject-wise temporal trajectories cannot be modeled by linearly adding the 

covariates as additional explanatory variables.

A synthetic example on a S2 manifold with a comparison to the ground truth showed the 

feasibility of the proposed method. Experimental validation on 72 corpus callosum shapes 

represented on a nonlinear shape space from 24 autism spectrum disorder subjects with 

different autism severity scores demonstrate the capability of the proposed method for 

longitudinal analysis of the relationship between subject-specific morphological changes and 

multiple covariates.

2 Method

Background on Riemannian Geometry:

A geodesic is a zero-acceleration curve on an n-dimensional Riemannian manifold M. It 

has the minimizing property that there is no curve shorter than a geodesic between any two 

points within a small neighborhood. An exponential map Exp(p, v) = q is a mapping of p 
∈ M to q ∈ M along a geodesic going out from p in the direction and magnitude of v. Its 

inverse, Log(p, q) = v, is defined onto a neighborhood U(p) of p. The Riemannian distance 

between p and q is the length of a geodesic between the two, d(p, q) = ∥Log(p, q)∥. Parallel 

transport ψp→q(u) of a tangent vector u ∈ TpM along a differentiable curve c(t) : I → M 
from p to q is defined by a unique parallel vector field V (t) along c(t) where I = [0, 1], 

c(0) = p, and c(1) = q. V (t) satisfies V (t0) = u and DV
dt = 0, where DV

dt  is a covariant 

derivative of a vector field V. Parallel transport has the following angle and scale preserving 

properties: the angle of u along c(t) does not change, DV
dt = 0, and the scale of u also does 
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not change, ∥u∥ = ∥V (t)∥, at any t ∈ I [1]. ψp→q(u) is not unique and depends on a curve c 
that connects p and q. We will only use ψp→q along with the unique geodesic between p and 

q to guarantee the transport to be unique.

Subject-wise Trajectory Estimation:

Let yij ∈ M be the jth observation of the ith subject associated with time tij ∈ ℝ, i = 1,…, 

Ns,j = 1, …, Nobs
i . Ns and Nobs

i  are the number of subjects and the number of observations 

of the ith subject, respectively. We estimate a subject-wise trajectory Yi by the least squares 

geodesic regression model [3].

(ai, b i) = argmin
ai, bi

∑
j = 1

Nobs
i

d2 yij, Exp ai, bitij , Y i = Exp(ai, b it), (1)

where ai ∈ M and bi ∈ TaiM are an intercept and a slope tangent vector of the geodesic 

model Yi for the ith subject’s trajectory as shown in Fig. 1 (a). It is worth noting that Eq. 1 

only requires the minimum of two observations per subject to solve for two coefficients, an 

intercept ai and a slope bi.

Hierarchical Multi-Geodesic Model:

Let the ith subject be associated with two sets of subject-specific covariates for intercepts 

ηi = {η1
i , …, ηNη

i } and slopes θi = {θ1
i , …, θNθ

i }, where Nη and Nθ are the numbers of the 

covariates.

We aim to model the effects of η and θ on subject-wise trajectories. The proposed 

Hierarchical Multi-Geodesic model (HMG) consists of an intercept model f(η) and a slope 

model g(θ),

Y = Exp(Exp(f(η), g(θ)t), ϵ) . (2)

Intercept Model:

The intercept model f(η) is formulated as a multivariate geodesic model with a base 

intercept β0 ∈ M and tangent vectors βk ∈ Tβ0M [5],

f(η) = Exp β0, β1η1 + … + βNηηNη . (3)

βk, k = 1, …, Nη, are coefficients that represent the effects of subject-specific covariates 

ηk to the intercepts of subject-wise trajectories. For example, a hypothesis that a subject 

diagnosed with autism and a healthy subject might have different baseline corpus callosum 

shapes at 3-month after birth can be modeled by the intercept model f. The coefficients βk 

can be estimated by a least squares formulation of the multivariate geodesic model,

Hong et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2022 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(β0, β1, …, βNη) = argmin
β0, …, βNη

∑
i = 1

Ns
d2 f ηi , ai . (4)

We optimize Eq. 4 by a Euclideanized optimization scheme similar to [5] with an iterative 

update of an anchor point to the estimated intercept, instead of fixing it at the intrinsic mean 

of given data. The estimated intercept model is given as f(η) = Exp(β0, β1η1 + … + βNηηNη)

after optimization.

The least squares formulation Eq. 4 assumes that the distribution of subject-wise intercepts 

around f(η) is the generalized normal distribution [3],

ai = Exp(f ηi , ϵa) (5)

where ϵa N 0, σa2 ⋅ ϵa can be directly interpreted as random effects of subject-wise intercepts 

that indicate longitudinal effects of repeated observations of individual subjects [2]. Fig. 1 

(b) shows the illustration of the concept of the intercept model f with an example model with 

one continuous covariate c.

Tangent Vector Space of Slope Model:

The effects of covariates on the slopes of subject-wise trajectories are modeled as a linear 

model g0(θ) on a tangent vector space from a set of subject-wise slope tangent vectors b i,

g0(θ) = γ0 + γ1θ1 + … + γNθθNθ, (6)

where γk, k = 0, …, Nθ, are coefficient tangent vectors associated with θk. The model can 

explain a hypothesis on the relationship between covariates and the slopes. For example, a 

corpus callosum may develop differently from a baseline for a subject diagnosed with autism 

versus a healthy subject.

There are two problems that we need to consider to model subject-wise slopes. First, γk 

must be on a single tangent vector space to be linearly combined as in Eq. 6. For consistent 

modeling and comprehensible interpretation, we set γk to be on a tangent vector space of the 

base intercept of the intercept model, Tβ0M, which makes g0(θ) ∈ Tβ0M. Second, b i are not 

directly comparable to each other because they are on different tangent vector spaces TaiM. 

Therefore, we need to properly transport b i to Tβ0M to estimate γk.

Stop-Over Parallel Transport ϕ:

Recall that subject-wise intercepts ai are the combination of the fixed effects intercept model 

f ηi  and the random effects ϵa on subject-wise intercepts as explained in Eq. 5. In other 

words, each ai is randomly distributed in the normal distribution of the random effects 

centered at f ηi  [8]. Therefore, we need to transport a tangent vector on TaiM to Tf ηi M
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first to account for the random effects and then from Tf ηi M to Tβ0M to account for the 

fixed effects as shown in Fig. 1 (c) by a stop-over parallel transport ϕ,

bi = ϕ(b i) = ψf(ηi) β0(ψai f(ηi)(b i)), (7)

where bi ∈ Tβ0M. ψ is a parallel transport along with a geodesic between two points with 

the angle and scale preserving properties that suit our need to consistently transport b i
at each stage of the stop-over transport. Fig. A1 in the appendix shows the effect of the 

stop-over parallel transport with a synthetic experiment on a S2 manifold. The direct parallel 

transportation to the intercept point may arbitrarily rotate tangent vectors when the stop-over 

transport preserves the directions of the tangent vectors consistently.

Slope Model Estimation:

With b i transported to Tβ0M by ϕ, we estimate slope coefficients γk, k = 0, …, Nθ, in 

g0(θ). It can be formulated as the least squares formulation of a standard multivariate linear 

regression problem [2],

γ0, γ1, …, γNθ = argmin
γ0, γ1, …, γNθ

∑
i = 1

Ns
‖γ0 + γ1θ1

i + … + γNθθNθ
i − bi‖

2 . (8)

Eq. 8 is optimized by the closed-form solution of a multivariate linear regression 

problem with the assumption of no correlation in γk. The estimated slope model 

g0(θ) = γ0 + γ1θ1 + … + γNθθNθ is transported to the respective tangent vector space of the 

intercept model f(η),g(θ) = ψβ0 f(η) g0(θ) .

The least squares formulation in Eq. 8 is related to the random effects of subject-wise slopes, 

similar to Eq. 5 for the intercept model. The complete estimated multi-geodesic model is 

then formulated as y = Exp(f(η), g(θ)t).

3 Experiments

Synthetic Example on S2 Manifold:

We tested our method with a synthetic example on a S2 manifold. We used the exponential 

map, log map, and parallel transport of S2 manifold as in [7]. 3527 points of 1000 subjects 

were generated by the following model with time t ∈ (20, 70) and a continuous covariate c ∈ 
(0, 5),

y = Exp(Exp(f(c), g(c)t)), f(c) = Exp β0, β1c , g(c) = ψβ0 f(c) γ0 + γ1c ,

where we assigned β0 = [1, 0, 0], β1 = [0, 0, 0.4], γ0 = [0, 0.01, 0.02], and γ1 = [0, 0.002, 

−0.003] with random effects on intercepts ϵa ~ N(0, 0.052) and slopes ϵb ~ N(0, 0.0012) and 

the data observation noise ϵ ~ N(0, 0.0012).
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Fig. 2(a) shows the synthetic data colored by c from blue to green. The estimated subject 

level geodesic models are plotted as translucent white curves. Fig. 2(b) shows the estimated 

geodesic of a geodesic regression model (SG, magenta) with data points colored by t 
from black to white [3]. Fig. 2(c) illustrates the results of a Hierarchical Single Geodesic 

model (HSG, brown) [5, 7]. The results of the proposed Hierarchical Multi-Geodesic model 

(HMG) and the ground truth (yellow curves) are displayed in Fig. 2(d) with uniformly 

selected values of c with a unit interval from 0.5 to 4.5. The generalized R2 with respect to 

individual data of SG, HSG, and the proposed HMG were 0.31, 0.29, and 0.96, respectively 

[3]. The R2 with respect to subject-wise intercepts Ra
2 and slopes Rb

2 of the proposed HMG 

were 0.98 and 0.90. Ra
2 and Rb

2 of HSG are zero since the HSG is the average trajectory of 

the subject-wise trajectories [7]. Validation with respect to subject-wise trajectories is not 

available for non-longitudinal SG. Standard deviations of the random effects estimated by 

HMG of subject-wise intercepts and slopes are σa = 0.09 and σb = 0.002, respectively.

Longitudinal Corpus Callosum Shape Changes:

Previous research demonstrated differences of corpus callosum (CC) size in autism [10], 

stating that it is thicker in infants later diagnosed with autism by multi-level linear analysis 

of derived features from shapes, such as mean thickness. Applying the proposed framework, 

quantitative exploration of longitudinal shape changes as a function of diagnostic scores 

becomes possible, resulting in population level and subject-specific models. We modeled 

HMG with sex s and Autistic Diagnostic Observation Schedule (ADOS) severity score 

AS, which combines symptoms related to a social interaction and a repetitive behavior 

with scores ranging from 4 to 10 for autism spectrum disorder (ASD) subjects. Larger 

AS indicate higher severity of autism. Seventy-two CC shapes from 24 ASD subjects (9 

females and 15 males) from the ACE-IBIS study were used for the experiment [10]. Each 

subject was repeatedly scanned three times. Because the development of CC is known to be 

asymptotic to a logarithm [10], we reparametrized time t by taking the natural log to model 

the asymptotic shape changes over time.

y = Exp(Exp(f(s, AS), g(s, AS)log(t))),

f(s, AS) = Exp β0, β1s + β2AS , g(s, AS) = ψβ0 f(s, AS) γ0 + γ1s + γ2AS ,

with sex s, 0 for male and 1 for female, age(month) t = (6, 25), and AS = (4, 10).

CC shapes were represented on a product manifold M = ℝ × ℂPk − 2 of a scale ρ ∈ ℝ, which 

represents a shape size, and a Kendall shape z with k points in 2D Kendall shape space 

ℂPk − 2, where translation, rotation, and scale of shapes are removed. The squared distance 

between p = (ρp, zp) and q = (ρq, zq) on M is a weighted sum of the distances on the 

element spaces. The distance on ℂPk − 2 is normalized by the ratio of variances of data 

distributions of scales ρ and Kendall shapes z, d2(p, q) = log ρp, ρq
2 +

σρ2

σz2
log zp, zq

2, 
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where σρ2 and σz2 are the variances of the input data of scales ρ and shapes z, respectively 

[8]. One hundred landmark points were sampled at corresponding locations from each shape 

boundary. We used the exponential map, log map, and parallel transport of ℂPk − 2 as in [3]. 

The exponential and log maps of ℝ are addition and subtraction, respectively. The parallel 

transport of ℝ is an identity function.

Fig. 3 displays the estimated longitudinal trends with fixed s=0 of 15 male subjects. Fig. 

3 (a) shows the estimated longitudinal shape trends of the lowest and the highest ADOS 

scores over time. The difference of the shape changes is more evident in Fig. 3(b) illustrating 

estimated baseline and end point shapes with varying ADOS scores at 3 and 24-month 

of age. One can observe the increased expansion of the anterior CC (the genu and rostral 

body) for subjects with higher ADOS scores which confirms previous clinical finding that 

subjects diagnosed with autism tend to have larger corpus callosum [10]. The population 

level longitudinal trends of shape sizes estimated from the subject-wise trends in Fig. 3(c) 

quantitatively show increasing trends of shape sizes with higher ADOS scores in Fig. 3(d). 

The overall R2 values of SG, HSG, and HMG were 0.23, 0.23, and 0.27, respectively. The 

root mean squared error measured by average surface boundary landmark distances of SG, 

HSG, and HMG were 0.287, 0.287, and 0.277 (mm), respectively. Table 1 summarizes the 

quantitative evaluations. Mean and standard deviation of R2 values of the subject-wise trends 

were 0.89±0.04.

4 Discussion

The proposed hierarchical multi-geodesic model is a novel method for longitudinal analysis 

of subject-specific anatomical shape changes on a Riemannian manifold. It enables 

longitudinal analysis with multiple covariates directly on a nonlinear shape space which 

has not yet been possible for clinical studies. The application to subject-specific corpus 

callosum shape changes demonstrated promising results that confirmed clinical finding of 

the relationship between the anatomical development and diagnostic scores of individual 

subjects. We will focus on a hypothesis testing framework for the proposed model to further 

explore relationships between temporal change of anatomical structures and covariates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Illustration of the proposed method. (a) Subject-wise geodesic trajectory estimation. (b) The 

example of an intercept model f(c) with a single covariate c. (c) Stop-over parallel transport 

ϕ from a2 to β0.
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Fig. 2: 
Synthetic Example on a S2 manifold. (a) Generated data points colored by associated values 

of a covariate c (blue to green) with subject-wise trajectories (white lines). (b) Estimated 

single geodesic model (SG, magenta). Data points are colored by time (black to white). 

(c) Estimated hierarchical single geodesic model (HSG, brown). (d) Estimated hierarchical 

multi-geodesic model (HMG) and the ground truth (yellow) visualized with selected values 

of c.

Hong et al. Page 10

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2022 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Estimated longitudinal corpus callosum (CC) shape changes of 15 male subjects 

(A:Anterior, P:Posterior). (a) Population level longitudinal shape trends of subjects with 

the lowest and the highest ADOS scores. (b) Shape changes with varying ADOS scores of 

baseline shapes at 3-month and end point shapes at 24-month. (c) The observed shape sizes 

with estimated subject-level trends. (d) Population level longitudinal size trends with varying 

ADOS scores.

Hong et al. Page 11

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2022 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hong et al. Page 12

Table 1:

Quantitative comparisons of SG, HSG, and the proposed HMG. R2 with respect to observations(R2), subject-

wise intercepts(Ra
2) and slopes(Rb

2), the standard deviations of subject-wise intercepts(σa) and slopes(σb), and 

the root mean squared boundary landmark distances(RMSE) are listed.

Synthetic CC-Autism Spectrum

R 2 Ra
2 Rb

2 σa σb R 2 Ra
2 Rb

2 σa σa RMSE(mm)

SG 0.31 N/A N/A N/A N/A 0.23 N/A N/A N/A N/A 0.287

HSG 0.29 0.0 0.0 0.58 5.0e−3 0.23 0.0 0.0 1.02e−a 5.15e−3 0.287

HMG 0.96 0.98 0.90 0.09 2.0e −3 0.27 0.06 0.09 9.55e −3 4.68e −3 0.277
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