Table 3.
CNN Model | Accuracy | Precision | Recall | Specificity | F1_score | |
---|---|---|---|---|---|---|
Non-Normalized | GoogleNet | 83.87% | 0.8373 | 0.8404 | 0.9677 | 0.8379 |
VGG16 | 88.71% | 0.8885 | 0.8889 | 0.9774 | 0.8835 | |
VGG19 | 87.10% | 0.8674 | 0.8725 | 0.9742 | 0.8681 | |
DenseNet201 | 89.86% | 0.9005 | 0.9005 | 0.9797 | 0.8986 | |
AlexNet | 86.18% | 0.8764 | 0.8629 | 0.9722 | 0.8554 | |
Normalized Augmented | GoogleNet | 85.24% | 0.8492 | 0.8524 | 0.9705 | 0.8480 |
VGG16 | 87.14% | 0.8723 | 0.8714 | 0.9743 | 0.8677 | |
VGG19 | 85.00% | 0.8465 | 0.8500 | 0.9700 | 0.8454 | |
DenseNet201 | 88.33% | 0.8795 | 0.8833 | 0.9767 | 0.8797 | |
AlexNet | 82.38% | 0.8588 | 0.8238 | 0.9648 | 0.7975 | |
Non-Normalized Augmented | GoogleNet | 82.03% | 0.8235 | 0.8219 | 0.9640 | 0.8158 |
VGG16 | 82.72% | 0.8515 | 0.8279 | 0.9653 | 0.8202 | |
VGG19 | 81.11% | 0.8128 | 0.8120 | 0.9622 | 0.7920 | |
DenseNet201 | 83.41% | 0.8460 | 0.8364 | 0.9668 | 0.8368 | |
AlexNet | 79.72% | 0.8100 | 0.8004 | 0.9594 | 0.7899 |