Skip to main content
. 2022 Aug 28;11(17):2230. doi: 10.3390/plants11172230

Table 3.

Comparison of experimental results using different well-known CNN architectures with their trained weights.

CNN Model Accuracy Precision Recall Specificity F1_score
Non-Normalized GoogleNet 83.87% 0.8373 0.8404 0.9677 0.8379
VGG16 88.71% 0.8885 0.8889 0.9774 0.8835
VGG19 87.10% 0.8674 0.8725 0.9742 0.8681
DenseNet201 89.86% 0.9005 0.9005 0.9797 0.8986
AlexNet 86.18% 0.8764 0.8629 0.9722 0.8554
Normalized Augmented GoogleNet 85.24% 0.8492 0.8524 0.9705 0.8480
VGG16 87.14% 0.8723 0.8714 0.9743 0.8677
VGG19 85.00% 0.8465 0.8500 0.9700 0.8454
DenseNet201 88.33% 0.8795 0.8833 0.9767 0.8797
AlexNet 82.38% 0.8588 0.8238 0.9648 0.7975
Non-Normalized Augmented GoogleNet 82.03% 0.8235 0.8219 0.9640 0.8158
VGG16 82.72% 0.8515 0.8279 0.9653 0.8202
VGG19 81.11% 0.8128 0.8120 0.9622 0.7920
DenseNet201 83.41% 0.8460 0.8364 0.9668 0.8368
AlexNet 79.72% 0.8100 0.8004 0.9594 0.7899