TABLE 3.
Classification performance of each model evaluated externally on the community dataset.
| Method | Sensitivity | Specitivity | Accuracy | AUROC | Precision | F1-score | AUPRC |
| Logistic regression | 0.6215 | 0.8895 | 0.8464 | 0.8435 | 0.5189 | 0.5656 | 0.5199 |
| SVM_l | 0.5763 | 0.9458 | 0.8864 | 0.9282 | 0.6711 | 0.6201 | 0.6652 |
| SVM_r | 0.6102 | 0.9404 | 0.8873 | 0.9137 | 0.6626 | 0.6353 | 0.6395 |
| SVM_s | 0.5650 | 0.9437 | 0.8827 | 0.9177 | 0.6579 | 0.6079 | 0.6560 |
| SVM_p | 0.6045 | 0.9415 | 0.8873 | 0.9213 | 0.6646 | 0.6331 | 0.6549 |
| Neural network | 0.5876 | 0.9426 | 0.8855 | 0.9139 | 0.6624 | 0.6228 | 0.6513 |
| Random forest | 0.5706 | 0.9437 | 0.8836 | 0.9259 | 0.6601 | 0.6121 | 0.6623 |
| XGBoost | 0.5424 | 0.9415 | 0.8773 | 0.9006 | 0.6400 | 0.5872 | 0.6323 |
| LASSO | 0.5932 | 0.9393 | 0.8836 | 0.9023 | 0.6522 | 0.6213 | 0.6284 |
| Best subset | 0.4859 | 0.9274 | 0.8564 | 0.8483 | 0.5621 | 0.5212 | 0.5432 |