Skip to main content
. 2022 Sep 9;2:100066. doi: 10.1016/j.cmpbup.2022.100066

Table 3.

Predictive models and their primary metrics observed in reviewed studies.

Predictive model used
Data type No. Ada-Boost CNN GRU KNN LR LSTM MLP NB Proposed Algo RF DT SVM XGBOOST Others Primary Performance metrices Performance range(for data type) Language of Data Samples Analyzed Range of participants References
twitter 18 Y Y Y Y Y Y Y Y Y Y Y BRR, NLP,SVR F1 score: 7 Accuracy: 8 RMSE: 1 Not used:1 0.47 to 0.99 English - 14 Bangla-1 Indonesian- 1 Spanish- 1 55 - 20,000 S2,S9,S12,S13, S17,S21,S22,S31,S34,S35,S36,S42,S45,S46,S47, S48,S50,S52
facebook 6 Y Y Y Y Y GPR F1 score: 3 Accuracy: 3 0.61 to 0.90 English - 6 90 - 5,947 S11,S16,S20,S27,S42,S43
Instagram 2 Y lr Accuracy: 1 AUC:1 0.60 to 0.71 English - 2 749 - 1,908 S14,S28
Reditt 13 Y Y Y Y Y Y Y Y Y Y Y F1 score:10 Accuracy: 2 ERDE: 1 0.043 to 0.96 English -13 365 - 48,537 S1,S3,S7,S8,S19,S23, S24,S25,S33,S41,S44,S49,S54
Sina Weibo 6 Y Y Y Bert,MFFN, built models based on linguistic and behavioral features F1 score: 3 Accuracy: 2 Precision-:1 0.5-0.97 English - 3 Chinese- 3 1000 - 30,000 S4,S6,S10,S30,S37, S39
facebook + twitter 4 Y Y Y Y Y VGG-Net F1 score: 1 Accuracy: 2 Pearson correlation: 1 0.56 to 0.77 English - 4 Bangla- 1 150 - 3,498 S15,S32,S38,S53
others 5 Y Y Y Y Y GBM,Multi-class tree models F1 score: 3 Accuracy: 1 Recall: 1 0.86 to 0.96 English - 5 619 - 1,000,500 S5,S18,S26,S31,S51