Skip to main content
IUCrData logoLink to IUCrData
. 2020 Mar 5;5(Pt 3):x200307. doi: 10.1107/S2414314620003077

The head-to-head photodimer of indeno­indene

Heiner Detert a,*, Nina Jacobs a, Dieter Schollmeyer a
Editor: C Rizzolib
PMCID: PMC9462202  PMID: 36339486

The crystal structure of the head-to-head photodimer of indeno­indene, obtained by irradiation of 1-(1-benzo­cyclo­butenyl­idene)benzo­cyclo­butene, is reported.

Keywords: crystal structure, polycyclic hydro­carbon, strain, cyclo­butane

Abstract

Irradiation of 1-(1-benzo­cyclo­butenyl­idene)benzo­cyclo­butene gives indeno­indene and its head-to-head photodimer nona­cyclo­[9.7.7.72,10.01,11.02,10.03,8.012,17.019,24.026,31]dotriaconta-3,5,7,12,14,16,19,21,23,26,28,30-dodeca­ene, C32H24. The mol­ecule is built from four essentially planar indane units attached to an elongated cyclo­butane ring. In the crystal, C—H⋯π inter­actions connect mol­ecules into layers parallel to the bc plane. graphic file with name x-05-x200307-scheme1-3D1.jpg

Structure description

The photo­cyclo­addition of 5,10-di­hydro­indeno­[2,1-a]indene (Detert & Schollmeyer, 2019) has been studied by Shim (Shim et al., 1983) and Wolff (Wolff et al., 1992). Head-to-head and head-to-tail photodimers have been found in a 1: 2 ratio (Shim & Chae, 1982). As part of a project on strained (Detert et al., 2009; Dobryakov et al., 2016; Krohn et al., 2019) and polycyclic hydro­carbons (Krämer et al., 2009; Detert & Meier, 1997a ,b ), indeno­indene was prepared in a photochemical rearrangement of 1-(1-benzo­cyclo­butenyl­idene)benzo­cyclo­butene; concomitant 2 + 2-cyclo­addition of indeno­indene produced the title compound as a byproduct.

The monoclinic unit cell of the title compound (Fig. 1) contains two centrosymmetrical mol­ecules. The indane units, though containing sp 3 carbons, are essentially planar with a maximum deviation of 0.043 (2) Å at C16 from the mean plane. An angle of 51.53 (5)° is opened by the least-squares planes of indanes annulated to the cyclo­butane [C8, C16, C8i, C16i; symmetry code: (i) 1 − x, 1 − y, 1 − z], nearly identical to the angle of 52.28 (8)° between the planes of indanes on opposite sides of the cyclo­butane. The C—C bonds in the central cyclo­butane ring are largely elongated, the C8—C16 bond is 1.569 (3) Å long and the C8–C16i bond, connecting the indanoindane units, is even more stretched to 1.597 (3) Å. This is due to the ecliptic conformation of vicinal methyl­ene groups, the minimal distance between C7—H and C15i—H is 1.95 Å, lower than the sum of the van der Waals radii. Bond angles in the cyclo­butane are close to orthogonal, C8—C16—C8i = 90.41 (15) and C16—C8—C16i = 89.59 (15)°. Bond angles on the cyclo­butane are much larger, C1—C16—C8i = 115.12 (17), C1—C16—C15 = 116.65 (19)° and C15—C16—C8i = 118.80 (19)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions (Fig. 2, Table 1), forming layers parallel to the bc plane.

Figure 1.

Figure 1

Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The second part of the mol­ecule is generated by the symmetry operation 1 − x, 1 − y, 1 − z.

Figure 2.

Figure 2

Partial packing diagram of the title compound. View along the a axis.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.95 2.77 3.713 (3) 171

Symmetry code: (i) Inline graphic .

Synthesis and crystallization

Indeno­[2,1-a]indene (Detert & Schollmeyer, 2019) was prepared from benzo­cyclo­butenone (Schiess & Heitzmann, 1977), according to literature procedures (Detert & Schollmeyer, 2018; Oelgemöller et al., 2002). The photochemical rearrangement was performed in a falling film photoreactor (Normag, Ilmenau) equipped with a medium pressure mercury lamp (TQ 718) in a diluted solution (0.1%) in petroleum ether. Contrary to the irradiation of indeno­indene in benzene (Shim & Chae, 1982), the head-to-head isomer was the main dimerization product. Crystals were obtained by slow evaporation of a petroleum ether solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C32H24
M r 408.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 9.3106 (11), 8.7232 (8), 13.4776 (12)
β (°) 91.959 (8)
V3) 1093.99 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.40 × 0.32 × 0.17
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 5905, 2604, 1416
R int 0.051
(sin θ/λ)max−1) 0.661
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.061, 0.196, 0.97
No. of reflections 2604
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.22

Computer programs: X-AREA and X-RED (Stoe & Cie, 1996), SIR2004 (Burla et al., 2005), SHELXL2018/3 (Sheldrick, 2015) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620003077/rz4037sup1.cif

x-05-x200307-sup1.cif (220.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620003077/rz4037Isup2.hkl

x-05-x200307-Isup2.hkl (208.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620003077/rz4037Isup3.cml

CCDC reference: 1988066

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

C32H24 F(000) = 432
Mr = 408.51 Dx = 1.240 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.3106 (11) Å Cell parameters from 4760 reflections
b = 8.7232 (8) Å θ = 2.8–28.4°
c = 13.4776 (12) Å µ = 0.07 mm1
β = 91.959 (8)° T = 193 K
V = 1093.99 (19) Å3 Block, colourless
Z = 2 0.40 × 0.32 × 0.17 mm

Data collection

Stoe IPDS 2T diffractometer 1416 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus Rint = 0.051
Detector resolution: 6.67 pixels mm-1 θmax = 28.0°, θmin = 2.8°
rotation method scans h = −12→12
5905 measured reflections k = −11→11
2604 independent reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.1156P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
2604 reflections Δρmax = 0.19 e Å3
145 parameters Δρmin = −0.22 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.95–0.99 Å, and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4266 (2) 0.5319 (2) 0.65609 (14) 0.0434 (5)
C2 0.3996 (3) 0.4508 (3) 0.74264 (16) 0.0586 (7)
H2 0.455901 0.363472 0.760360 0.070*
C3 0.2908 (4) 0.4981 (3) 0.80229 (18) 0.0738 (9)
H3 0.271851 0.442967 0.861199 0.089*
C4 0.2099 (3) 0.6238 (4) 0.77730 (18) 0.0675 (8)
H4 0.134797 0.654571 0.818923 0.081*
C5 0.2357 (3) 0.7075 (3) 0.69200 (18) 0.0566 (7)
H5 0.179057 0.794881 0.675228 0.068*
C6 0.3453 (2) 0.6613 (3) 0.63188 (15) 0.0450 (5)
C7 0.3945 (3) 0.7366 (3) 0.53776 (17) 0.0553 (6)
H7A 0.435041 0.839524 0.551922 0.066*
H7B 0.313791 0.746705 0.488456 0.066*
C8 0.5100 (2) 0.6283 (2) 0.49985 (14) 0.0399 (5)
C9 0.6561 (2) 0.6969 (2) 0.48827 (14) 0.0384 (5)
C10 0.6955 (3) 0.8137 (2) 0.42436 (16) 0.0490 (6)
H10 0.625938 0.861017 0.381202 0.059*
C11 0.8370 (3) 0.8597 (3) 0.42464 (19) 0.0635 (7)
H11 0.865113 0.939744 0.381628 0.076*
C12 0.9381 (3) 0.7905 (3) 0.48689 (19) 0.0618 (7)
H12 1.035286 0.823562 0.486287 0.074*
C13 0.9004 (3) 0.6743 (3) 0.54978 (18) 0.0521 (6)
H13 0.970946 0.626587 0.591988 0.063*
C14 0.7580 (2) 0.6277 (2) 0.55081 (16) 0.0429 (5)
C15 0.6931 (3) 0.5091 (3) 0.6165 (2) 0.0581 (7)
H15A 0.700371 0.541016 0.686992 0.070*
H15B 0.741669 0.408951 0.609403 0.070*
C16 0.5354 (2) 0.4997 (2) 0.57990 (15) 0.0419 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0536 (13) 0.0476 (12) 0.0287 (10) −0.0135 (10) −0.0022 (8) 0.0010 (9)
C2 0.091 (2) 0.0540 (14) 0.0302 (11) −0.0209 (13) 0.0020 (11) 0.0007 (10)
C3 0.120 (3) 0.0679 (18) 0.0344 (12) −0.0366 (18) 0.0200 (14) −0.0072 (13)
C4 0.081 (2) 0.0788 (19) 0.0440 (13) −0.0325 (16) 0.0233 (13) −0.0229 (13)
C5 0.0526 (15) 0.0684 (16) 0.0492 (13) −0.0105 (12) 0.0069 (11) −0.0150 (12)
C6 0.0465 (13) 0.0534 (13) 0.0350 (10) −0.0082 (10) 0.0017 (9) −0.0040 (9)
C7 0.0527 (15) 0.0652 (15) 0.0483 (12) 0.0166 (12) 0.0070 (10) 0.0127 (11)
C8 0.0440 (12) 0.0416 (11) 0.0342 (10) 0.0045 (9) 0.0033 (8) 0.0083 (9)
C9 0.0483 (13) 0.0309 (10) 0.0363 (10) 0.0003 (9) 0.0061 (8) −0.0011 (8)
C10 0.0686 (17) 0.0380 (11) 0.0406 (11) −0.0071 (11) 0.0058 (10) 0.0011 (9)
C11 0.082 (2) 0.0577 (15) 0.0518 (14) −0.0284 (14) 0.0125 (13) −0.0015 (12)
C12 0.0597 (17) 0.0669 (16) 0.0597 (15) −0.0245 (13) 0.0148 (12) −0.0135 (12)
C13 0.0468 (14) 0.0509 (13) 0.0587 (14) −0.0052 (11) 0.0030 (11) −0.0090 (11)
C14 0.0435 (13) 0.0358 (11) 0.0494 (12) −0.0013 (9) 0.0017 (9) −0.0015 (9)
C15 0.0492 (14) 0.0524 (14) 0.0719 (16) −0.0063 (12) −0.0124 (12) 0.0219 (12)
C16 0.0439 (12) 0.0439 (11) 0.0377 (11) −0.0032 (9) −0.0024 (9) 0.0117 (9)

Geometric parameters (Å, º)

C1—C6 1.392 (3) C8—C16 1.569 (3)
C1—C2 1.395 (3) C8—C16i 1.597 (3)
C1—C16 1.494 (3) C9—C14 1.386 (3)
C2—C3 1.379 (4) C9—C10 1.392 (3)
C2—H2 0.9500 C10—C11 1.376 (4)
C3—C4 1.366 (4) C10—H10 0.9500
C3—H3 0.9500 C11—C12 1.379 (4)
C4—C5 1.389 (4) C11—H11 0.9500
C4—H4 0.9500 C12—C13 1.374 (3)
C5—C6 1.384 (3) C12—H12 0.9500
C5—H5 0.9500 C13—C14 1.388 (3)
C6—C7 1.513 (3) C13—H13 0.9500
C7—C8 1.532 (3) C14—C15 1.501 (3)
C7—H7A 0.9900 C15—C16 1.535 (3)
C7—H7B 0.9900 C15—H15A 0.9900
C8—C9 1.500 (3) C15—H15B 0.9900
C6—C1—C2 119.7 (2) C14—C9—C10 120.4 (2)
C6—C1—C16 111.58 (18) C14—C9—C8 111.53 (17)
C2—C1—C16 128.7 (2) C10—C9—C8 128.0 (2)
C3—C2—C1 119.5 (3) C11—C10—C9 119.0 (2)
C3—C2—H2 120.3 C11—C10—H10 120.5
C1—C2—H2 120.3 C9—C10—H10 120.5
C4—C3—C2 120.5 (2) C10—C11—C12 120.5 (2)
C4—C3—H3 119.8 C10—C11—H11 119.8
C2—C3—H3 119.8 C12—C11—H11 119.8
C3—C4—C5 121.1 (3) C13—C12—C11 121.0 (2)
C3—C4—H4 119.5 C13—C12—H12 119.5
C5—C4—H4 119.5 C11—C12—H12 119.5
C6—C5—C4 118.9 (3) C12—C13—C14 119.1 (2)
C6—C5—H5 120.5 C12—C13—H13 120.4
C4—C5—H5 120.5 C14—C13—H13 120.4
C5—C6—C1 120.3 (2) C9—C14—C13 120.0 (2)
C5—C6—C7 128.0 (2) C9—C14—C15 112.24 (19)
C1—C6—C7 111.7 (2) C13—C14—C15 127.7 (2)
C6—C7—C8 104.37 (18) C14—C15—C16 104.30 (17)
C6—C7—H7A 110.9 C14—C15—H15A 110.9
C8—C7—H7A 110.9 C16—C15—H15A 110.9
C6—C7—H7B 110.9 C14—C15—H15B 110.9
C8—C7—H7B 110.9 C16—C15—H15B 110.9
H7A—C7—H7B 108.9 H15A—C15—H15B 108.9
C9—C8—C7 115.99 (18) C1—C16—C15 115.65 (19)
C9—C8—C16 103.94 (16) C1—C16—C8 104.37 (17)
C7—C8—C16 107.62 (17) C15—C16—C8 107.63 (17)
C9—C8—C16i 115.41 (17) C1—C16—C8i 115.12 (17)
C7—C8—C16i 118.91 (19) C15—C16—C8i 118.80 (19)
C16—C8—C16i 89.59 (15) C8—C16—C8i 90.41 (15)
C6—C1—C2—C3 1.2 (3) C10—C9—C14—C13 −0.2 (3)
C16—C1—C2—C3 −178.4 (2) C8—C9—C14—C13 179.10 (18)
C1—C2—C3—C4 −0.2 (4) C10—C9—C14—C15 177.7 (2)
C2—C3—C4—C5 −0.5 (4) C8—C9—C14—C15 −3.0 (3)
C3—C4—C5—C6 0.1 (4) C12—C13—C14—C9 0.6 (3)
C4—C5—C6—C1 0.9 (3) C12—C13—C14—C15 −176.9 (2)
C4—C5—C6—C7 −178.3 (2) C9—C14—C15—C16 5.6 (3)
C2—C1—C6—C5 −1.6 (3) C13—C14—C15—C16 −176.7 (2)
C16—C1—C6—C5 178.12 (19) C6—C1—C16—C15 116.9 (2)
C2—C1—C6—C7 177.8 (2) C2—C1—C16—C15 −63.4 (3)
C16—C1—C6—C7 −2.5 (3) C6—C1—C16—C8 −1.1 (2)
C5—C6—C7—C8 −175.6 (2) C2—C1—C16—C8 178.6 (2)
C1—C6—C7—C8 5.1 (3) C6—C1—C16—C8i −98.5 (2)
C6—C7—C8—C9 −121.4 (2) C2—C1—C16—C8i 81.2 (3)
C6—C7—C8—C16 −5.5 (2) C14—C15—C16—C1 −122.1 (2)
C6—C7—C8—C16i 94.1 (2) C14—C15—C16—C8 −6.0 (2)
C7—C8—C9—C14 116.93 (19) C14—C15—C16—C8i 94.6 (2)
C16—C8—C9—C14 −1.0 (2) C9—C8—C16—C1 127.77 (17)
C16i—C8—C9—C14 −97.3 (2) C7—C8—C16—C1 4.2 (2)
C7—C8—C9—C10 −63.9 (3) C16i—C8—C16—C1 −116.11 (18)
C16—C8—C9—C10 178.2 (2) C9—C8—C16—C15 4.4 (2)
C16i—C8—C9—C10 81.9 (3) C7—C8—C16—C15 −119.2 (2)
C14—C9—C10—C11 −0.3 (3) C16i—C8—C16—C15 120.5 (2)
C8—C9—C10—C11 −179.5 (2) C9—C8—C16—C8i −116.13 (18)
C9—C10—C11—C12 0.4 (4) C7—C8—C16—C8i 120.3 (2)
C10—C11—C12—C13 0.1 (4) C16i—C8—C16—C8i −0.002 (1)
C11—C12—C13—C14 −0.6 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C9–C14 ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···Cg1ii 0.95 2.77 3.713 (3) 171

Symmetry code: (ii) −x+1, y−1/2, −z+3/2.

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  2. Detert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. 2009, 1181–1190.
  3. Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, 1997, 1557–1563.
  4. Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, 1997, 1565–1570.
  5. Detert, H. & Schollmeyer, D. (2018). IUCrData, 3, x181550.
  6. Detert, H. & Schollmeyer, D. (2019). IUCrData, 4, x191179.
  7. Dobryakov, A., Quick, M., Lenoir, D., Detert, H., Ernsting, N. & Kovalenko, S. A. (2016). Chem. Phys. Lett. 652, 225–229.
  8. Krämer, G., Detert, H. & Meier, H. (2009). Tetrahedron Lett. 50, 4810–4812.
  9. Krohn, O., Quick, M., Ioffe, I., Mazaleva, O., Lenoir, D., Detert, H. & Kovalenko, S. (2019). J. Phys. Chem. B, 123, 4291–4300. [DOI] [PubMed]
  10. Oelgemöller, M., Brem, B., Frank, R., Schneider, S., Lenoir, D., Hertkorn, N., Origane, Y., Lemmen, P., Lex, J. & Inoue, Y. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1760–1771.
  11. Schiess, P. & Heitzmann, M. (1977). Angew. Chem. 89, 485–485.
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Shim, S. C. & Chae, J. S. (1982). Bull. Chem. Soc. Jpn, 55, 1310–1312.
  14. Shim, S. C., Chae, J. S. & Choi, J. H. (1983). J. Org. Chem. 48, 417–421.
  15. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  16. Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.
  17. Wolff, T., Schmidt, F. & Volz, P. (1992). J. Org. Chem. 57, 4255–4262.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314620003077/rz4037sup1.cif

x-05-x200307-sup1.cif (220.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314620003077/rz4037Isup2.hkl

x-05-x200307-Isup2.hkl (208.5KB, hkl)

Supporting information file. DOI: 10.1107/S2414314620003077/rz4037Isup3.cml

CCDC reference: 1988066

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES