Skip to main content
IUCrData logoLink to IUCrData
. 2020 Apr 7;5(Pt 4):x200454. doi: 10.1107/S241431462000454X

2,3-Di­ethyl­benzo[g]quinoxaline

Guy Crundwell a,*, Ashley Leeds b
Editor: W T A Harrisonc
PMCID: PMC9462215  PMID: 36338306

In the title compound, one of the pendant methyl groups lies close to the fused-ring plane and the other is significantly displaced.

Keywords: crystal structure, benzoquinoxaline

Abstract

The title compound, C16H16N2, was synthesized by dispersing 3,4-hexa­nedione in a methanol–water solution containing the acid catalyst NH4HF2, then adding 1,2-di­aminona­phthalene. The fused-ring system of the title compound is close to planar (r.m.s. deviation = 0.028 Å); one of the pendant methyl C atoms lies close to the ring plane [deviation = 0.071 (2) Å; N—C—C—C = −0.27 (18)°] whereas the other is significantly displaced [–1.7136 (18) Å; 91.64 (16)°]. The mol­ecules pack in space group I Inline graphic in a distinctive criss-cross motif supported by numerous aromatic π–π stacking inter­actions [shortest centroid–centroid separation = 3.5805 (6) Å]. graphic file with name x-05-x200454-scheme1-3D1.jpg

Structure description

The bond lengths and angles in the title compound fall within their expected values and the C3–C14/N1/N2 fused-ring system is close to planar (r.m.s. deviation = 0.028 Å). The C1 methyl atom lies close to the ring plane [deviation = 0.071 (2) Å; N1—C3—C2—C1 = −0.027 (16)°] whereas C16 is significantly displaced [deviation = −1.7136 (18) Å; N2—C14—C15—C16 = 91.64 (16)°] (Fig. 1).

Figure 1.

Figure 1

A view of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the molecles pack in a distinctive criss-cross motif (Fig. 2) in space group I Inline graphic with stacks of mol­ecules propagating in the [001] direction. Numerous aromatic π–π stacking inter­actions help to consolidate the packing [shortest centroid–centroid separation = 3.5805 (6) Å].

Figure 2.

Figure 2

A view of the unit cell of the title compound along [001].

Synthesis and crystallization

2,3-Di­ethyl­benzo[g]quinoxaline, C16H16N2, was prepared using the method used by Lassagne et al. (2015) to create 2,3-di­aryl­pyrido­pyrazines. In a 50-ml Erlenmeyer flask equipped with a stir bar, 10.0 mmol of hexa­nedione (1.14 g) was dispersed in 20 ml of a 2.5 × 10−3 M NH4HF2 solution in MeOH and 2 ml of distilled water. To that stirred solution, 10.0 mmol of 1,2-naphthalenedi­amine (1.58 g) was added. The solution was allowed to stir overnight despite evidence of product after the first hour: 1.44 grams of a pale whitish powder was filtered and washed with two 2 ml aliquots of ice-cold methanol (60.9% yield). The crude product was mostly pure by NMR but was further purified by recrystallization from a 50:50 methanol/toluene solution (1.11 g recovered, 47.0% yield overall). (m.p. 411 K) ATR–IR (cm−1) 2981, 2934, 1703, 1575, 1455, 1351, 1325, 910, 889, 754; 1H NMR (300 MHz, CDCl3): δ 8.58 (s, 1H), 8.07 (m, 1H), 7.55 (m, 1H) 3.09 (q, 2H), 1.49 (t, 3H); 13C (300 MHz, CDCl3): δ 158.14, 138.06, 133.24, 128.35, 126.57, 126.15, 28.63, 12.07. Crystals for the diffraction experiment were grown from slow evaporation of a methyl­ene chloride solution. FTIR, 1H NMR, and 13C NMR spectra are given as supporting information.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The absolute structure of the crystal chosen for data collection was indeterminate in the refinement reported here.

Table 1. Experimental details.

Crystal data
Chemical formula C16H16N2
M r 236.31
Crystal system, space group Tetragonal, I Inline graphic
Temperature (K) 293
a, c (Å) 13.93535 (18), 13.1629 (3)
V3) 2556.16 (7)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.39 × 0.33 × 0.27
 
Data collection
Diffractometer Rigaku Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2018)
T min, T max 0.922, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 31103, 4779, 3869
R int 0.031
(sin θ/λ)max−1) 0.778
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.136, 1.04
No. of reflections 4779
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.14

Computer programs: CrysAlis PRO (Rigaku, 2018), SHELXM (Sheldrick, 2008), SHELXL (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462000454X/hb4346sup1.cif

x-05-x200454-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462000454X/hb4346Isup2.hkl

x-05-x200454-Isup2.hkl (234.2KB, hkl)

Supporting information file. DOI: 10.1107/S241431462000454X/hb4346Isup4.cml

Supplementary Material (FTIR, 1H NMR, 13C NMR). DOI: 10.1107/S241431462000454X/hb4346sup3.pdf

x-05-x200454-sup3.pdf (5.1MB, pdf)

CCDC reference: 1994287

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was funded by a CCSU–AAUP research grant.

full crystallographic data

Crystal data

C16H16N2 Melting point: 411 K
Mr = 236.31 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4 Cell parameters from 7488 reflections
a = 13.93535 (18) Å θ = 4.6–31.8°
c = 13.1629 (3) Å µ = 0.07 mm1
V = 2556.16 (7) Å3 T = 293 K
Z = 8 Block, white
F(000) = 1008 0.39 × 0.33 × 0.27 mm
Dx = 1.228 Mg m3

Data collection

Rigaku Xcalibur, Sapphire3 diffractometer 4779 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source 3869 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
Detector resolution: 16.1790 pixels mm-1 θmax = 33.6°, θmin = 4.3°
ω scans h = −21→21
Absorption correction: multi-scan (CrysAlisPro; Rigaku, 2018) k = −21→21
Tmin = 0.922, Tmax = 1.000 l = −20→19
31103 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0756P)2 + 0.2732P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4779 reflections Δρmax = 0.28 e Å3
165 parameters Δρmin = −0.14 e Å3
0 restraints Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: dual Absolute structure parameter: 0 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms were included in calculated positions with C—H = 0.93–0.97 Å and refined as riding atoms with Uiso = 1.2Ueq(C) or 1.5Ueq(methyl C). Reflections affected by the beam stop were omitted from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.29561 (13) −1.16936 (12) −0.44274 (13) 0.0600 (4)
H1A −0.3206 −1.1110 −0.4711 0.090*
H1B −0.3333 −1.2227 −0.4659 0.090*
H1C −0.2302 −1.1776 −0.4640 0.090*
C2 −0.29974 (10) −1.16422 (10) −0.32887 (12) 0.0493 (3)
H2A −0.2793 −1.2256 −0.3016 0.059*
H2B −0.3660 −1.1546 −0.3087 0.059*
C3 −0.23964 (8) −1.08656 (8) −0.28133 (10) 0.0379 (2)
C4 −0.13277 (8) −0.96118 (8) −0.29463 (9) 0.0328 (2)
C5 −0.07941 (9) −0.89899 (9) −0.35476 (9) 0.0378 (2)
H5 −0.0815 −0.9047 −0.4251 0.045*
C6 −0.02254 (8) −0.82781 (8) −0.31001 (9) 0.0360 (2)
C7 0.03189 (10) −0.76181 (10) −0.36928 (12) 0.0475 (3)
H7 0.0310 −0.7661 −0.4398 0.057*
C8 0.08527 (12) −0.69247 (11) −0.32317 (15) 0.0567 (4)
H8 0.1199 −0.6493 −0.3627 0.068*
C9 0.08872 (12) −0.68520 (11) −0.21668 (15) 0.0608 (4)
H9 0.1253 −0.6372 −0.1867 0.073*
C10 0.03930 (10) −0.74736 (11) −0.15731 (12) 0.0515 (3)
H10 0.0430 −0.7421 −0.0870 0.062*
C11 −0.01854 (8) −0.82097 (9) −0.20173 (10) 0.0369 (2)
C12 −0.07119 (8) −0.88458 (9) −0.14191 (9) 0.0380 (2)
H12 −0.0676 −0.8806 −0.0715 0.046*
C13 −0.12889 (8) −0.95376 (8) −0.18678 (8) 0.0333 (2)
C14 −0.23818 (8) −1.07610 (9) −0.17124 (10) 0.0381 (2)
C15 −0.30438 (11) −1.13340 (11) −0.10459 (12) 0.0522 (3)
H15A −0.2763 −1.1398 −0.0375 0.063*
H15B −0.3123 −1.1972 −0.1328 0.063*
C16 −0.40207 (12) −1.08493 (14) −0.09594 (16) 0.0684 (5)
H16A −0.4299 −1.0786 −0.1623 0.103*
H16B −0.3945 −1.0225 −0.0661 0.103*
H16C −0.4434 −1.1231 −0.0539 0.103*
N1 −0.18907 (7) −1.03067 (7) −0.34033 (9) 0.0388 (2)
N2 −0.18387 (7) −1.01278 (8) −0.12633 (8) 0.0388 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0616 (8) 0.0543 (8) 0.0641 (10) −0.0115 (7) −0.0117 (8) −0.0176 (7)
C2 0.0434 (6) 0.0432 (7) 0.0613 (9) −0.0115 (5) −0.0068 (6) −0.0058 (6)
C3 0.0336 (5) 0.0337 (5) 0.0463 (6) −0.0024 (4) −0.0068 (5) −0.0029 (4)
C4 0.0293 (5) 0.0313 (5) 0.0377 (5) −0.0020 (4) −0.0033 (4) −0.0039 (4)
C5 0.0381 (5) 0.0396 (6) 0.0358 (5) −0.0027 (4) −0.0006 (4) −0.0041 (4)
C6 0.0306 (5) 0.0336 (5) 0.0439 (6) −0.0011 (4) 0.0009 (4) −0.0024 (4)
C7 0.0441 (6) 0.0445 (6) 0.0539 (8) −0.0059 (5) 0.0057 (6) 0.0018 (6)
C8 0.0494 (8) 0.0470 (7) 0.0738 (11) −0.0151 (6) 0.0073 (7) 0.0010 (7)
C9 0.0510 (8) 0.0494 (8) 0.0820 (12) −0.0184 (6) −0.0056 (8) −0.0122 (8)
C10 0.0467 (7) 0.0515 (7) 0.0563 (8) −0.0122 (6) −0.0081 (6) −0.0113 (6)
C11 0.0302 (5) 0.0360 (5) 0.0446 (6) 0.0000 (4) −0.0049 (4) −0.0058 (4)
C12 0.0365 (6) 0.0423 (6) 0.0353 (5) −0.0022 (4) −0.0059 (4) −0.0042 (4)
C13 0.0292 (5) 0.0340 (5) 0.0368 (5) 0.0016 (4) −0.0041 (4) 0.0006 (4)
C14 0.0341 (5) 0.0356 (5) 0.0445 (6) 0.0005 (4) −0.0041 (5) 0.0067 (5)
C15 0.0550 (8) 0.0455 (7) 0.0561 (8) −0.0093 (6) −0.0022 (6) 0.0152 (6)
C16 0.0504 (8) 0.0754 (11) 0.0794 (11) −0.0118 (8) 0.0130 (8) 0.0169 (9)
N1 0.0364 (5) 0.0390 (5) 0.0409 (5) −0.0054 (4) −0.0047 (4) −0.0056 (4)
N2 0.0384 (5) 0.0402 (5) 0.0378 (5) −0.0016 (4) −0.0044 (4) 0.0044 (4)

Geometric parameters (Å, º)

C1—H1A 0.9600 C8—H8 0.9300
C1—H1B 0.9600 C8—C9 1.406 (3)
C1—H1C 0.9600 C9—H9 0.9300
C1—C2 1.502 (2) C9—C10 1.355 (2)
C2—H2A 0.9700 C10—H10 0.9300
C2—H2B 0.9700 C10—C11 1.4296 (16)
C2—C3 1.5047 (17) C11—C12 1.3943 (17)
C3—C14 1.4566 (18) C12—H12 0.9300
C3—N1 1.3062 (16) C12—C13 1.3873 (15)
C4—C5 1.3894 (15) C13—N2 1.3772 (15)
C4—C13 1.4245 (15) C14—C15 1.5027 (18)
C4—N1 1.3839 (13) C14—N2 1.3042 (16)
C5—H5 0.9300 C15—H15A 0.9700
C5—C6 1.3997 (16) C15—H15B 0.9700
C6—C7 1.4247 (17) C15—C16 1.524 (2)
C6—C11 1.4296 (17) C16—H16A 0.9600
C7—H7 0.9300 C16—H16B 0.9600
C7—C8 1.362 (2) C16—H16C 0.9600
H1A—C1—H1B 109.5 C10—C9—C8 120.77 (14)
H1A—C1—H1C 109.5 C10—C9—H9 119.6
H1B—C1—H1C 109.5 C9—C10—H10 119.7
C2—C1—H1A 109.5 C9—C10—C11 120.63 (14)
C2—C1—H1B 109.5 C11—C10—H10 119.7
C2—C1—H1C 109.5 C6—C11—C10 118.53 (12)
C1—C2—H2A 108.4 C12—C11—C6 120.01 (10)
C1—C2—H2B 108.4 C12—C11—C10 121.46 (12)
C1—C2—C3 115.34 (12) C11—C12—H12 119.8
H2A—C2—H2B 107.5 C13—C12—C11 120.42 (10)
C3—C2—H2A 108.4 C13—C12—H12 119.8
C3—C2—H2B 108.4 C12—C13—C4 119.79 (10)
C14—C3—C2 119.57 (11) N2—C13—C4 120.75 (10)
N1—C3—C2 118.81 (11) N2—C13—C12 119.44 (10)
N1—C3—C14 121.62 (10) C3—C14—C15 121.27 (11)
C5—C4—C13 120.14 (10) N2—C14—C3 121.79 (11)
N1—C4—C5 119.49 (10) N2—C14—C15 116.81 (12)
N1—C4—C13 120.37 (10) C14—C15—H15A 109.5
C4—C5—H5 119.8 C14—C15—H15B 109.5
C4—C5—C6 120.35 (10) C14—C15—C16 110.89 (12)
C6—C5—H5 119.8 H15A—C15—H15B 108.1
C5—C6—C7 121.91 (11) C16—C15—H15A 109.5
C5—C6—C11 119.27 (11) C16—C15—H15B 109.5
C7—C6—C11 118.82 (11) C15—C16—H16A 109.5
C6—C7—H7 119.8 C15—C16—H16B 109.5
C8—C7—C6 120.31 (13) C15—C16—H16C 109.5
C8—C7—H7 119.8 H16A—C16—H16B 109.5
C7—C8—H8 119.5 H16A—C16—H16C 109.5
C7—C8—C9 120.93 (14) H16B—C16—H16C 109.5
C9—C8—H8 119.5 C3—N1—C4 117.69 (10)
C8—C9—H9 119.6 C14—N2—C13 117.71 (10)

References

  1. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  2. Lassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680–2689.
  3. Rigaku (2018). CrysAlis PRO. Rigaku Inc., Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S241431462000454X/hb4346sup1.cif

x-05-x200454-sup1.cif (16.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S241431462000454X/hb4346Isup2.hkl

x-05-x200454-Isup2.hkl (234.2KB, hkl)

Supporting information file. DOI: 10.1107/S241431462000454X/hb4346Isup4.cml

Supplementary Material (FTIR, 1H NMR, 13C NMR). DOI: 10.1107/S241431462000454X/hb4346sup3.pdf

x-05-x200454-sup3.pdf (5.1MB, pdf)

CCDC reference: 1994287

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES