Skip to main content
IUCrData logoLink to IUCrData
. 2021 Apr 20;6(Pt 4):x210397. doi: 10.1107/S2414314621003977

Aqua­(1,4,7,10-tetra­aza­cyclo­dodeca­ne)zinc(II) bis­(perchlorate)

Yoshimi Ichimaru a,, Koichi Kato a,*, Hiromasa Kurosaki a, Haruto Fujioka b, Misa Sakai a, Yoshihiro Yamaguchi c, Jin Wanchun a, Kirara Sugiura a, Masanori Imai a, Tohru Koike d
Editor: L Van Meervelte
PMCID: PMC9462334  PMID: 36339098

The cationic ZnII part of aqua­(1,4,7,10-tetra­aza­cyclo­dodeca­ne)zinc(II) diperchlorate, [Zn(C8H20N4)H2O](ClO4)2, exhibits a slightly distorted square-pyramidal coordination environment with a water mol­ecule in the apical position.

Keywords: crystal structure, zinc(II) complex, cyclen

Abstract

The cationic ZnII part of aqua­(1,4,7,10-tetra­aza­cyclo­dodeca­ne)zinc(II) bis­(perchlorate), [Zn(C8H20N4)(H2O)](ClO4)2, exhibits a slightly distorted square-pyramidal coordination environment with a water mol­ecule in the apical position. In the crystal, the macrocyclic ring alternates between two conformations with equal occupancies. Two of the three perchlorate anions are situated about a twofold rotation axis, and one of them shows disorder of the O atoms with occupancies of 0.62 (7) and 0.38 (7). In the crystal, the complexes are connected by inter­molecular hydrogen bonding via the perchlorate anions. graphic file with name x-06-x210397-scheme1-3D1.jpg

Structure description

The title complex, [Zn(C8H20N4)H2O](ClO4)2, comprises a cationic ZnII complex and three perchlorate anions, two of which are located about a twofold rotation axis with one of them disordered [occupancy ratio for the corresponding O atoms is 0.62 (7):0.38 (7)]. The macrocyclic ring is disordered, and two alternate conformations of each N–C–C–N bridge can be observed (conformation A and B) (Fig. 1), in which four carbon atoms (C2, C4, C6, and C8) are shared. The central ZnII cation is ligated by four N atoms of 1,4,7,10-tetra­aza­cyclo­dodecane (cyclen) in the basal plane, with a ZnII-bound H2O mol­ecule occupying the apical position. Addison et al. (1984) proposed the geometry index [τ = (β − α)/60°] to determine if the five-coordinate atom has a square-pyramidal or trigonal–pyramidal coordination environment. The bond angles β and α are the largest and second-largest in the coordination sphere, respectively; an ideal square pyramid and an ideal trigonal bipyramid have τ = 0 and 1, respectively. In conformation A, the N—ZnII—N bond angles α and β are 138.2 (3)° and 138.7 (3)°, respectively; the corresponding bond angles in conformation B are 137.4 (4)° and138.7(4)°. The τ values are 0.008 and 0.022 for conformations A and B, respectively. Therefore, the coordination geometry around the central ZnII cation can be described as slightly distorted square-pyramidal. The occupancies for the non-hydrogen atoms of cyclen except for the four carbon atoms (C2, C4, C6, and C8) were set to 0.50. Atom Zn1 is 0.755 (5) and 0.763 (3) Å above the basal plane formed by four N atoms in conformations A and B, respectively. The Zn1—O1 bond length [1.9721 (4) Å] is within the typical range [1.94–2.03 Å] for similar five-coordinated Zn complexes (Bazzicalupi et al., 1995; Chen et al., 1994; Kato & Ito, 1985; Koike et al., 1994; Murthy & Karlin, 1993; Schrodt et al.; 1997). In addition, the mean Zn1—N bond length (2.13 Å) in the title complex is similar to that in the crystal structure of [Zn(cyclen)EtOH](ClO4)2 (Schrodt et al., 1997).

Figure 1.

Figure 1

The structures of the molecular entities within the title complex showing 50% displacement ellipsoids. [Symmetry codes: (i) −x + 1, y, −z +  Inline graphic ; (ii) −x, y, −z +  Inline graphic ].

The two perchlorate ions are involved in inter­molecular hydrogen bonds with the cationic ZnII complex (Table 1). In the crystal, inter­molecular hydrogen-bonding inter­actions connect neighboring mol­ecules, forming a three-dimensional network (Fig. 2). As far as we know, an aqua­(cyclen)copper(II) complex has already been reported (Pérez-Toro et al., 2015), but the aqua­(cyclen)zinc(II) complex has not. The title aqua­(cyclen)zinc(II) complex has been well studied as ZnII-containing enzyme models, such as alkaline phosphatase, β-lactamase, and carbonic anhydrase, to elucidate the essential roles of ZnII (Kimura et al., 1995; Kitajima et al., 1993; Zhang et al., 1993; Zhang & van Eldik, 1995). We succeeded in determining its crystal structure at this time.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O9A 0.86 2.48 3.12 (3) 132
O1—H1A⋯O9B 0.86 1.94 2.68 (4) 145
O1—H1B⋯O6 0.85 2.06 2.914 (9) 173
O1—H1B⋯O7 0.85 2.54 3.088 (7) 123
N2A—H2A⋯O7 0.98 2.37 3.144 (12) 135
N2B—H2B⋯O4i 0.98 2.49 3.086 (11) 119
N3A—H3A⋯O2ii 0.98 2.59 3.312 (10) 130
N3B—H3B⋯O2ii 0.98 2.47 3.170 (12) 128
N4A—H4A⋯O5iii 0.98 2.18 3.094 (9) 155
N4A—H4A⋯O8iii 0.98 2.49 3.103 (10) 120
N4B—H4B⋯O5iii 0.98 2.1 3.030 (11) 157
N1A—H1AA⋯O8 0.98 2.15 3.099 (10) 162
N1B—H1BA⋯O8 0.98 2.16 3.105 (13) 163

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 2.

Figure 2

A view of the crystal packing of the title complex. Dashed lines denote the hydrogen bonds.

Synthesis and crystallization

The title complex was prepared as fine white solid according to a previously reported method (Koike et al., 1994) and then crystallized from aqueous ethanol.

Caution! Perchlorate salts of metal complexes with organic ligands are potentially explosive. Only small amounts of material should be prepared, and these should be handled with care.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. In the final cycles of refinement, 12 outliers were omitted.

Table 2. Experimental details.

Crystal data
Chemical formula [Zn(C8H20N4)(H2O)](ClO4)2
M r 454.56
Crystal system, space group Monoclinic, P2/c
Temperature (K) 93
a, b, c (Å) 12.3428 (6), 8.4603 (4), 16.0543 (6)
β (°) 92.881 (4)
V3) 1674.33 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.48
Crystal size (mm) 0.29 × 0.16 × 0.04
 
Data collection
Diffractometer Rigaku Synergy-i
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2020)
T min, T max 0.535, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7740, 3025, 2670
R int 0.057
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.067, 0.186, 1.08
No. of reflections 3025
No. of parameters 301
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.15, −0.84

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a ), SHELXL (Sheldrick, 2015b ) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621003977/vm4048sup1.cif

x-06-x210397-sup1.cif (274.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621003977/vm4048Isup2.hkl

x-06-x210397-Isup2.hkl (241.8KB, hkl)

CCDC reference: 2067247

Additional supporting information: crystallographic information; 3D view; checkCIF report

full crystallographic data

Crystal data

[Zn(C8H20N4)(H2O)](ClO4)2 F(000) = 936
Mr = 454.56 Dx = 1.803 Mg m3
Monoclinic, P2/c Cu Kα radiation, λ = 1.54184 Å
a = 12.3428 (6) Å Cell parameters from 3951 reflections
b = 8.4603 (4) Å θ = 5.5–68.1°
c = 16.0543 (6) Å µ = 5.48 mm1
β = 92.881 (4)° T = 93 K
V = 1674.33 (13) Å3 Block, clear light colourless
Z = 4 0.29 × 0.16 × 0.04 mm

Data collection

Rigaku_Synergy-i diffractometer 3025 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2670 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.057
Detector resolution: 10.0000 pixels mm-1 θmax = 68.4°, θmin = 3.6°
ω scans h = −14→14
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2020) k = −10→9
Tmin = 0.535, Tmax = 1.000 l = −19→8
7740 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0991P)2 + 7.9372P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
3025 reflections Δρmax = 1.15 e Å3
301 parameters Δρmin = −0.84 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. All hydrogen atoms were placed on calculated positions and refined in riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for water molecule O1).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.26041 (6) 0.65100 (8) 0.40586 (4) 0.0237 (3)
Cl1 0.77745 (10) 0.74888 (14) 0.44398 (7) 0.0253 (3)
Cl3 0.500000 0.3592 (2) 0.250000 0.0379 (5)
Cl2 0.000000 0.4021 (3) 0.250000 0.0427 (5)
O2 0.8653 (4) 0.6503 (5) 0.4747 (3) 0.0376 (10)
O1 0.2571 (4) 0.4307 (5) 0.3658 (3) 0.0380 (10)
H1A 0.288342 0.423897 0.319539 0.057*
H1B 0.191532 0.403407 0.353540 0.057*
O5 0.6950 (4) 0.6530 (4) 0.4022 (2) 0.0354 (10)
O4 0.8158 (4) 0.8651 (5) 0.3871 (3) 0.0386 (10)
O3 0.7314 (4) 0.8284 (5) 0.5133 (3) 0.0450 (11)
O8 0.5265 (5) 0.4556 (6) 0.3200 (3) 0.0565 (14)
O7 0.0864 (5) 0.4984 (7) 0.2230 (3) 0.0672 (17)
C6 0.1725 (5) 0.7292 (7) 0.5681 (3) 0.0337 (13)
H6AA 0.166719 0.628890 0.596708 0.040* 0.5
H6AB 0.130034 0.806911 0.596576 0.040* 0.5
H6BC 0.133141 0.634016 0.581254 0.040* 0.5
H6BD 0.182279 0.791458 0.618632 0.040* 0.5
O9A 0.430 (3) 0.243 (3) 0.2710 (8) 0.066 (6) 0.62 (7)
C8 0.4612 (5) 0.7428 (8) 0.5014 (4) 0.0414 (15)
H8AA 0.487825 0.803166 0.549486 0.050* 0.5
H8AB 0.512480 0.658178 0.492711 0.050* 0.5
H8BC 0.524175 0.810202 0.510715 0.050* 0.5
H8BD 0.479795 0.636990 0.520513 0.050* 0.5
C4 0.0710 (5) 0.8437 (8) 0.3503 (4) 0.0392 (14)
H4AA 0.018566 0.760976 0.337036 0.047* 0.5
H4AB 0.043655 0.941480 0.325667 0.047* 0.5
H4BC 0.031273 0.783663 0.307339 0.047* 0.5
H4BD 0.023943 0.927003 0.368971 0.047* 0.5
C2 0.3599 (6) 0.8620 (7) 0.2838 (4) 0.0377 (14)
H2AA 0.351470 0.797633 0.233856 0.045* 0.5
H2AB 0.412558 0.944234 0.274066 0.045* 0.5
H2BC 0.399202 0.791877 0.248175 0.045* 0.5
H2BD 0.352000 0.963274 0.255853 0.045* 0.5
N4A 0.3533 (8) 0.6720 (10) 0.5194 (5) 0.0214 (17) 0.5
H4A 0.362285 0.569147 0.546981 0.026* 0.5
N2A 0.1762 (9) 0.8030 (13) 0.3149 (5) 0.0256 (18) 0.5
H2A 0.163507 0.746012 0.262159 0.031* 0.5
N1A 0.3988 (8) 0.7609 (10) 0.3570 (6) 0.0238 (18) 0.5
H1AA 0.446853 0.678514 0.336943 0.029* 0.5
N3A 0.1304 (7) 0.7131 (10) 0.4792 (7) 0.0243 (18) 0.5
H3A 0.074948 0.630179 0.475250 0.029* 0.5
C3A 0.2519 (10) 0.9354 (13) 0.3034 (6) 0.028 (2) 0.5
H3AA 0.259465 0.998537 0.353821 0.034* 0.5
H3AB 0.225447 1.002771 0.257917 0.034* 0.5
C5A 0.0848 (9) 0.8626 (12) 0.4440 (8) 0.025 (2) 0.5
H5AA 0.133508 0.949844 0.457747 0.030* 0.5
H5AB 0.015347 0.884647 0.467187 0.030* 0.5
C7A 0.2892 (10) 0.7804 (15) 0.5691 (7) 0.027 (2) 0.5
H7AA 0.293554 0.886458 0.546567 0.033* 0.5
H7AB 0.319046 0.782356 0.626111 0.033* 0.5
C1A 0.4564 (10) 0.8461 (13) 0.4278 (7) 0.029 (2) 0.5
H1AB 0.529179 0.873893 0.413020 0.034* 0.5
H1AC 0.417900 0.942758 0.439999 0.034* 0.5
N1B 0.4265 (8) 0.7403 (14) 0.4110 (8) 0.034 (2) 0.5
H1BA 0.471976 0.663912 0.382960 0.041* 0.5
C1B 0.4205 (10) 0.8823 (15) 0.3617 (8) 0.037 (3) 0.5
H1BB 0.386928 0.964996 0.393325 0.045* 0.5
H1BC 0.493463 0.916393 0.350715 0.045* 0.5
N4B 0.2823 (11) 0.6851 (12) 0.5371 (6) 0.033 (2) 0.5
H4B 0.308024 0.586973 0.563809 0.040* 0.5
C7B 0.3640 (11) 0.8079 (15) 0.5489 (7) 0.037 (3) 0.5
H7BA 0.383889 0.822821 0.607646 0.044* 0.5
H7BB 0.338491 0.907531 0.525404 0.044* 0.5
N3B 0.1035 (9) 0.7343 (14) 0.4242 (7) 0.039 (3) 0.5
H3B 0.052515 0.645734 0.426759 0.047* 0.5
C5B 0.1084 (10) 0.8221 (16) 0.5035 (8) 0.037 (3) 0.5
H5BA 0.035586 0.839754 0.521684 0.044* 0.5
H5BB 0.142278 0.924175 0.495850 0.044* 0.5
N2B 0.2492 (10) 0.7937 (12) 0.2972 (6) 0.033 (2) 0.5
H2B 0.224070 0.730603 0.248759 0.039* 0.5
C3B 0.1686 (14) 0.914 (2) 0.3155 (7) 0.044 (3) 0.5
H3BA 0.147684 0.971106 0.264677 0.053* 0.5
H3BB 0.200630 0.989686 0.355062 0.053* 0.5
O9B 0.384 (3) 0.296 (5) 0.255 (3) 0.066 (12) 0.38 (7)
O6 0.0412 (6) 0.3127 (13) 0.3175 (6) 0.138 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0349 (4) 0.0181 (4) 0.0184 (4) −0.0015 (3) 0.0045 (3) −0.0025 (2)
Cl1 0.0352 (7) 0.0198 (6) 0.0207 (6) −0.0012 (5) 0.0004 (5) −0.0014 (4)
Cl3 0.0561 (13) 0.0208 (9) 0.0381 (11) 0.000 0.0146 (9) 0.000
Cl2 0.0591 (13) 0.0369 (11) 0.0334 (10) 0.000 0.0138 (9) 0.000
O2 0.041 (2) 0.033 (2) 0.039 (2) 0.0041 (18) 0.0003 (18) 0.0095 (17)
O1 0.052 (3) 0.024 (2) 0.040 (2) −0.0067 (19) 0.0189 (19) −0.0098 (17)
O5 0.049 (3) 0.023 (2) 0.032 (2) −0.0112 (17) −0.0131 (18) 0.0006 (15)
O4 0.058 (3) 0.029 (2) 0.029 (2) −0.0082 (19) 0.0013 (18) 0.0091 (16)
O3 0.056 (3) 0.041 (2) 0.039 (2) −0.003 (2) 0.018 (2) −0.0173 (19)
O8 0.071 (3) 0.031 (2) 0.064 (3) 0.009 (2) −0.020 (3) −0.017 (2)
O7 0.089 (4) 0.059 (3) 0.057 (3) −0.030 (3) 0.036 (3) −0.019 (3)
C6 0.054 (4) 0.026 (3) 0.023 (3) 0.003 (3) 0.016 (2) −0.003 (2)
O9A 0.089 (13) 0.052 (8) 0.053 (6) −0.048 (8) −0.021 (6) 0.024 (6)
C8 0.042 (3) 0.050 (4) 0.032 (3) 0.004 (3) −0.003 (3) −0.013 (3)
C4 0.042 (3) 0.038 (3) 0.036 (3) 0.008 (3) −0.008 (3) −0.010 (3)
C2 0.056 (4) 0.032 (3) 0.027 (3) −0.004 (3) 0.014 (3) 0.007 (2)
N4A 0.026 (5) 0.015 (4) 0.024 (4) 0.008 (4) 0.003 (4) 0.000 (3)
N2A 0.039 (6) 0.021 (6) 0.017 (4) −0.007 (5) 0.003 (4) −0.004 (4)
N1A 0.030 (5) 0.016 (5) 0.026 (5) 0.002 (4) 0.003 (4) 0.001 (4)
N3A 0.030 (5) 0.015 (5) 0.028 (5) 0.004 (4) 0.000 (4) −0.006 (4)
C3A 0.042 (7) 0.027 (6) 0.016 (5) −0.001 (5) −0.003 (4) −0.002 (4)
C5A 0.023 (5) 0.016 (5) 0.036 (7) 0.003 (4) 0.000 (4) −0.006 (4)
C7A 0.036 (7) 0.027 (6) 0.019 (5) 0.004 (5) 0.000 (5) −0.001 (5)
C1A 0.039 (6) 0.013 (5) 0.035 (7) −0.012 (5) 0.009 (5) −0.008 (4)
N1B 0.022 (5) 0.044 (8) 0.037 (6) 0.005 (5) 0.002 (4) −0.001 (5)
C1B 0.040 (7) 0.035 (7) 0.038 (7) −0.014 (5) 0.018 (5) −0.007 (5)
N4B 0.068 (9) 0.013 (5) 0.019 (5) 0.011 (5) 0.000 (5) 0.002 (4)
C7B 0.046 (8) 0.035 (7) 0.028 (6) 0.007 (6) −0.009 (5) −0.008 (5)
N3B 0.035 (6) 0.046 (7) 0.037 (7) −0.010 (5) 0.010 (5) −0.011 (5)
C5B 0.037 (6) 0.036 (7) 0.038 (7) −0.005 (5) 0.013 (5) −0.005 (6)
N2B 0.052 (7) 0.028 (5) 0.018 (4) 0.006 (5) −0.002 (4) −0.002 (4)
C3B 0.072 (12) 0.035 (9) 0.024 (6) 0.008 (7) −0.014 (6) −0.002 (5)
O9B 0.071 (17) 0.073 (17) 0.056 (18) −0.027 (15) 0.028 (13) −0.040 (13)
O6 0.074 (5) 0.188 (10) 0.156 (8) 0.037 (6) 0.033 (5) 0.136 (8)

Geometric parameters (Å, º)

Zn1—O1 1.971 (4) C6—C7A 1.503 (14)
Zn1—N4A 2.111 (9) C6—N4B 1.513 (14)
Zn1—N2A 2.171 (10) C6—C5B 1.495 (15)
Zn1—N1A 2.129 (9) C8—N4A 1.501 (12)
Zn1—N3A 2.104 (9) C8—C1A 1.468 (13)
Zn1—N1B 2.183 (10) C8—N1B 1.492 (13)
Zn1—N4B 2.130 (10) C8—C7B 1.555 (15)
Zn1—N3B 2.096 (11) C4—N2A 1.484 (13)
Zn1—N2B 2.121 (9) C4—C5A 1.514 (13)
Cl1—O2 1.436 (4) C4—N3B 1.542 (14)
Cl1—O5 1.440 (4) C4—C3B 1.479 (19)
Cl1—O4 1.438 (4) C2—N1A 1.512 (12)
Cl1—O3 1.442 (4) C2—C3A 1.519 (14)
Cl3—O8i 1.413 (5) C2—C1B 1.435 (15)
Cl3—O8 1.413 (5) C2—N2B 1.510 (14)
Cl3—O9A 1.364 (14) N4A—C7A 1.472 (14)
Cl3—O9Ai 1.364 (14) N2A—C3A 1.476 (15)
Cl3—O9B 1.53 (3) N1A—C1A 1.496 (15)
Cl3—O9Bi 1.53 (3) N3A—C5A 1.485 (14)
Cl2—O7ii 1.427 (5) N1B—C1B 1.439 (17)
Cl2—O7 1.427 (5) N4B—C7B 1.454 (18)
Cl2—O6ii 1.397 (7) N3B—C5B 1.473 (16)
Cl2—O6 1.397 (7) N2B—C3B 1.466 (18)
C6—N3A 1.500 (12)
O1—Zn1—N4A 111.3 (3) O6—Cl2—O7 107.3 (5)
O1—Zn1—N2A 109.8 (3) O6—Cl2—O6ii 114.4 (11)
O1—Zn1—N1A 107.2 (3) N3A—C6—C7A 108.8 (6)
O1—Zn1—N3A 114.5 (3) C5B—C6—N4B 110.7 (7)
O1—Zn1—N1B 110.1 (3) C1A—C8—N4A 113.1 (7)
O1—Zn1—N4B 116.8 (3) N1B—C8—C7B 107.0 (7)
O1—Zn1—N3B 111.1 (3) N2A—C4—C5A 110.4 (7)
O1—Zn1—N2B 105.7 (3) C3B—C4—N3B 110.4 (7)
N4A—Zn1—N2A 138.7 (3) N1A—C2—C3A 108.5 (6)
N4A—Zn1—N1A 82.6 (4) C1B—C2—N2B 111.0 (7)
N1A—Zn1—N2A 81.9 (4) C8—N4A—Zn1 108.4 (5)
N3A—Zn1—N4A 83.8 (4) C7A—N4A—Zn1 103.7 (7)
N3A—Zn1—N2A 82.9 (4) C7A—N4A—C8 111.2 (8)
N3A—Zn1—N1A 138.2 (3) C4—N2A—Zn1 106.2 (5)
N4B—Zn1—N1B 81.0 (5) C3A—N2A—Zn1 104.4 (7)
N3B—Zn1—N1B 138.7 (4) C3A—N2A—C4 116.3 (10)
N3B—Zn1—N4B 83.6 (5) C2—N1A—Zn1 107.7 (6)
N3B—Zn1—N2B 84.4 (5) C1A—N1A—Zn1 106.8 (7)
N2B—Zn1—N1B 81.8 (5) C1A—N1A—C2 116.0 (8)
N2B—Zn1—N4B 137.4 (4) C6—N3A—Zn1 108.5 (5)
O2—Cl1—O5 109.7 (3) C5A—N3A—Zn1 106.5 (7)
O2—Cl1—O4 110.4 (3) C5A—N3A—C6 113.0 (8)
O2—Cl1—O3 109.0 (3) N2A—C3A—C2 106.4 (9)
O5—Cl1—O3 109.0 (3) N3A—C5A—C4 108.1 (8)
O4—Cl1—O5 109.7 (2) N4A—C7A—C6 110.8 (10)
O4—Cl1—O3 109.1 (3) C8—C1A—N1A 108.8 (9)
O8—Cl3—O8i 109.5 (4) C8—N1B—Zn1 105.3 (6)
O8i—Cl3—O9B 94 (3) C1B—N1B—Zn1 104.2 (8)
O8—Cl3—O9B 109.6 (8) C1B—N1B—C8 121.9 (10)
O8—Cl3—O9Bi 94 (3) C2—C1B—N1B 112.9 (10)
O8i—Cl3—O9Bi 109.6 (8) C6—N4B—Zn1 106.7 (6)
O9A—Cl3—O8 110.2 (8) C7B—N4B—Zn1 106.2 (8)
O9Ai—Cl3—O8 119.3 (9) C7B—N4B—C6 114.0 (10)
O9Ai—Cl3—O8i 110.2 (8) N4B—C7B—C8 103.3 (9)
O9A—Cl3—O8i 119.3 (9) C4—N3B—Zn1 107.4 (6)
O9Ai—Cl3—O9A 88 (3) C5B—N3B—Zn1 107.0 (8)
O9Ai—Cl3—O9Bi 29.6 (13) C5B—N3B—C4 111.1 (10)
O9A—Cl3—O9Bi 112 (3) N3B—C5B—C6 109.3 (11)
O7—Cl2—O7ii 110.4 (5) C2—N2B—Zn1 108.2 (6)
O6ii—Cl2—O7ii 107.3 (5) C3B—N2B—Zn1 104.4 (8)
O6ii—Cl2—O7 108.8 (5) C3B—N2B—C2 113.0 (10)
O6—Cl2—O7ii 108.8 (5) N2B—C3B—C4 111.6 (13)

Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O9A 0.86 2.48 3.12 (3) 132
O1—H1A···O9B 0.86 1.94 2.68 (4) 145
O1—H1B···O6 0.85 2.06 2.914 (9) 173
O1—H1B···O7 0.85 2.54 3.088 (7) 123
N2A—H2A···O7 0.98 2.37 3.144 (12) 135
N2B—H2B···O4i 0.98 2.49 3.086 (11) 119
N3A—H3A···O2iii 0.98 2.59 3.312 (10) 130
N3B—H3B···O2iii 0.98 2.47 3.170 (12) 128
N4A—H4A···O5iv 0.98 2.18 3.094 (9) 155
N4A—H4A···O8iv 0.98 2.49 3.103 (10) 120
N4B—H4B···O5iv 0.98 2.1 3.030 (11) 157
N1A—H1AA···O8 0.98 2.15 3.099 (10) 162
N1B—H1BA···O8 0.98 2.16 3.105 (13) 163

Symmetry codes: (i) −x+1, y, −z+1/2; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1.

References

  1. Addison, W. A., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bazzicalupi, C., Bencini, A., Bianchi, A., Fusi, V., Paoletti, P. & Valtancoli, B. (1995). J. Chem. Soc. Chem. Commun. pp. 1555–1556.
  3. Chen, X.-M., Deng, Q.-Y., Wang, G. & Xu, Y.-J. (1994). Polyhedron, 13, 3085–3089.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Kato, M. & Ito, T. (1985). Inorg. Chem. 24, 509–514.
  6. Kimura, E., Kodama, Y., Koike, T. & Shiro, M. (1995). J. Am. Chem. Soc. 117, 8304–8311.
  7. Kitajima, N., Hikichi, S., Tanaka, M. & Morooka, Y. (1993). J. Am. Chem. Soc. 115, 5496–5508.
  8. Koike, T., Takamura, M. & Kimura, E. (1994). J. Am. Chem. Soc. 116, 8443–8449.
  9. Murthy, N. N. & Karlin, K. D. (1993). J. Chem. Soc. Chem. Commun. pp. 1236–1238.
  10. Pérez-Toro, I., Domínguez-Martín, A., Choquesillo-Lazarte, D., Vílchez-Rodríguez, E., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2015). J. Inorg. Biochem. 148, 84–92. [DOI] [PubMed]
  11. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  12. Schrodt, A., Neubrand, A. & van Eldik, R. (1997). Inorg. Chem. 36, 4579–4584. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  14. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  15. Zhang, X. & van Eldik, R. (1995). Inorg. Chem. 34, 5606–5614.
  16. Zhang, X., van Eldik, R., Koike, T. & Kimura, E. (1993). Inorg. Chem. 32, 5749–5755.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314621003977/vm4048sup1.cif

x-06-x210397-sup1.cif (274.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621003977/vm4048Isup2.hkl

x-06-x210397-Isup2.hkl (241.8KB, hkl)

CCDC reference: 2067247

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES