Skip to main content
IUCrData logoLink to IUCrData
. 2021 Jul 9;6(Pt 7):x210694. doi: 10.1107/S2414314621006945

tert-Butyl 3-amino-5-bromo-1H-indazole-1-carboxyl­ate

Aravazhi Amalan Thiruvalluvar a,*, Raviraj Kusanur b, Makuteswaran Sridharan b
Editor: W T A Harrisonc
PMCID: PMC9462357  PMID: 36340663

In the packing of the title compound, π–π, C—H⋯O, C—H⋯Br, and N—H⋯N inter­actions are present.

Keywords: crystal structure, 1H-indazole, inversion dimer

Abstract

In the title compound, C12H14BrN3O2, the pyrazole and benzene rings are nearly co-planar with a dihedral angle between the rings of 2.36 (5)°. In the crystal, inversion dimers linked by pairwise N—H⋯N hydrogen bonds generate R 2 2(8) loops. The dimers are linked into a three-dimensional network by weak aromatic π–π stacking inter­actions [centroid–centroid separation = 3.7394 (6) Å] and C—H⋯O and C—H⋯Br hydrogen bonds. graphic file with name x-06-x210694-scheme1-3D1.jpg

Structure description

Indazole derivatives possess pharmacological properties against infectious, neurodegenerative and inflammatory disorders and are also good anti-microbial agents (e.g., Kusanur & Mahesh, 2013). To generate a library of compounds using 3-amino-6-bromo indazole, the boc protection of the ring NH group was carried out to form the title compound. From the crystal data, it is confirmed that, as expected, the boc protection happened only at the ring NH grouping.

In this structure (Fig. 1), the fused pyrazole (N1/N2/C7/C6/C1) and benzene (C1–C6) rings are nearly co-planar, subtending a dihedral angle of 2.36 (5)°. The dihedral angle between the C8/O1/O2 ester group and the fused-ring system is 10.01 (4)°. One of the methyl groups (C10) of the tert-butyl substituent lies close to the ester-group plane [displacement = −0.068 (1) Å], whereas C11 and C12 are displaced above and below it. Very weak C2—H2⋯O2, C11—H11C⋯O2 and C12—H12B⋯O2 intra­molecular inter­actions are present (Table 1).

Figure 1.

Figure 1

A view of the structure of the title compound with displacement ellipsoids drawn at the 70% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 2.46 2.9609 (13) 113
C11—H11C⋯O2 0.98 2.38 2.9559 (15) 117
C12—H12B⋯O2 0.98 2.46 3.0475 (15) 118
N3—H3B⋯N2i 0.865 (18) 2.165 (19) 3.0249 (12) 172.8 (16)
C2—H2⋯O2ii 0.95 2.62 3.4133 (12) 141
C5—H5⋯Br1iii 0.95 3.11 3.8871 (10) 140
C12—H12A⋯O2iv 0.98 2.62 3.5582 (14) 161

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic ; (iv) Inline graphic .

In the extended structure, pairwise N3—H3B⋯N2 links form centrosymmetric dimers with an Inline graphic (8) ring motif (Fig. 2). The dimers are linked into a three-dimensional network by C2—H2⋯O2, C5—H5⋯Br1 and C12—H12A⋯O2 hydrogen bonds and a π–π stacking inter­action (Fig. 3) also occurs with Cg1⋯Cg1(2 − x, 1 − y, −z) = 3.7394 (6) Å, where Cg1 is the centroid of the pyrazole ring.

Figure 2.

Figure 2

Partial packing viewed along b-axis direction showing the Inline graphic (8) ring motif.

Figure 3.

Figure 3

A view of the π–π inter­action along the a-axis direction.

Synthesis and crystallization

5-Bromo-1 H -indazol-3-amine (1): To a solution of 5-bromo-2-fluoro benzo­nitrile (1.0 mmol) in ethanol (20 ml) was added hydrazine hydrate (99%) (10.0 mmol). The reaction mixture was heated in sealed tube at 343 K for 4 h and progress of the reaction was monitored by TLC. The reaction mixture was concentrated to dryness. The brown-coloured solid was purified by recrystallization from ethanol solution to afford pale-yellow needles (90%), m.p. 407 K (Fig. 4).

Figure 4.

Figure 4

Synthesis scheme for the title compound.

tert -Butyl 3-amino-5-bromo-1 H -indazole-1-carboxyl­ate (2): To a solution of compound (1) (5.0 mmol) in di­chloro­methane (40 ml) was added DMAP (5.0 mmol). The reaction mixture cooled to 273 K and boc anhydride (5.0 mmol) was added. The reaction mixture was slowly warmed to room temperature and stirred for 15 h. Progress of the reaction was monitored by TLC. The reaction mixture was diluted with di­chloro­methane (50 ml) and washed with water and brine (25 ml), dried over anhydrous sodium sulfate and concentrated. The crude compound was purified by column chromatography (silica gel, 20–30% ethyl acetate in hexa­ne) to afford a gummy solid, which solidifies as transparent crystals after 2 d (62%), m.p. 389 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C12H14BrN3O2
M r 312.17
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 5.8281 (2), 10.5313 (3), 11.0917 (3)
α, β, γ (°) 85.954 (1), 78.801 (2), 75.105 (1)
V3) 645.23 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.18
Crystal size (mm) 0.45 × 0.32 × 0.30
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.502, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 19603, 7076, 5872
R int 0.018
(sin θ/λ)max−1) 0.895
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.027, 0.070, 1.08
No. of reflections 7076
No. of parameters 174
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.53

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314621006945/hb4388sup1.cif

x-06-x210694-sup1.cif (658KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621006945/hb4388Isup2.hkl

x-06-x210694-Isup2.hkl (562.1KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621006945/hb4388Isup3.cdx

Supporting information file. DOI: 10.1107/S2414314621006945/hb4388Isup4.cml

CCDC reference: 2094667

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

MS thanks the academic and administrative authorities of RV College of Engineering for their support and encouragement. The authors are grateful to Dr M. Zeller for the single-crystal X-ray diffraction data.

full crystallographic data

Crystal data

C12H14BrN3O2 F(000) = 316
Mr = 312.17 Dx = 1.607 Mg m3
Triclinic, P1 Melting point: 389 K
a = 5.8281 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.5313 (3) Å Cell parameters from 2120 reflections
c = 11.0917 (3) Å θ = 2.7–25.5°
α = 85.954 (1)° µ = 3.18 mm1
β = 78.801 (2)° T = 100 K
γ = 75.105 (1)° Fragment, colourless
V = 645.23 (3) Å3 0.45 × 0.32 × 0.30 mm
Z = 2

Data collection

Bruker SMART APEXII CCD diffractometer 5872 reflections with I > 2σ(I)
φ and ω scans Rint = 0.018
Absorption correction: multi-scan (SADABS; Bruker, 2012) θmax = 39.5°, θmin = 1.9°
Tmin = 0.502, Tmax = 0.748 h = −10→10
19603 measured reflections k = −18→18
7076 independent reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: mixed
wR(F2) = 0.070 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0327P)2 + 0.1773P] where P = (Fo2 + 2Fc2)/3
7076 reflections (Δ/σ)max = 0.002
174 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. The amino –NH2 H atoms were located in a difference Fourier map and their positions were freely refined. The C-bound H atoms were placed in calculated positions (C—H = 0.95–0.98 Å) and were refined with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.90907 (17) 0.59306 (9) 0.21941 (9) 0.01265 (14)
C2 1.04771 (18) 0.62182 (10) 0.29904 (9) 0.01532 (16)
H2 1.063744 0.574273 0.374242 0.018*
C3 1.16027 (19) 0.72288 (10) 0.26285 (10) 0.01661 (17)
H3 1.255405 0.745757 0.314333 0.020*
C4 1.13572 (18) 0.79194 (10) 0.15122 (10) 0.01534 (16)
C5 1.00073 (18) 0.76403 (10) 0.07169 (9) 0.01467 (16)
H5 0.987132 0.811006 −0.003982 0.018*
C6 0.88544 (17) 0.66311 (9) 0.10852 (9) 0.01246 (14)
C7 0.73941 (17) 0.60237 (9) 0.05102 (9) 0.01226 (14)
C8 0.76837 (18) 0.40037 (10) 0.31328 (9) 0.01421 (15)
C9 0.61429 (18) 0.20590 (10) 0.36754 (9) 0.01514 (16)
C10 0.5067 (2) 0.12827 (12) 0.29308 (11) 0.0236 (2)
H10A 0.356430 0.184090 0.272305 0.035*
H10B 0.472695 0.051548 0.341495 0.035*
H10C 0.621570 0.099056 0.217351 0.035*
C11 0.8457 (2) 0.11997 (11) 0.40268 (11) 0.02108 (19)
H11A 0.963638 0.090441 0.328004 0.032*
H11B 0.810398 0.043417 0.450934 0.032*
H11C 0.912110 0.170719 0.451721 0.032*
C12 0.4299 (2) 0.26645 (12) 0.47786 (11) 0.0218 (2)
H12A 0.285095 0.320478 0.450072 0.033*
H12B 0.498911 0.321461 0.521026 0.033*
H12C 0.386670 0.196475 0.533695 0.033*
Br1 1.30179 (2) 0.92671 (2) 0.10637 (2) 0.01982 (3)
N1 0.78125 (15) 0.49788 (8) 0.22385 (8) 0.01335 (13)
N2 0.67956 (15) 0.50413 (8) 0.11849 (7) 0.01299 (13)
N3 0.67793 (17) 0.63640 (9) −0.06185 (8) 0.01576 (15)
O1 0.66674 (15) 0.31183 (8) 0.27930 (7) 0.01632 (13)
O2 0.84393 (16) 0.40048 (8) 0.40767 (7) 0.01973 (15)
H3A 0.669 (3) 0.7159 (19) −0.0811 (17) 0.029 (5)*
H3B 0.575 (3) 0.6006 (17) −0.0839 (16) 0.025 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0122 (4) 0.0141 (4) 0.0128 (3) −0.0042 (3) −0.0033 (3) −0.0017 (3)
C2 0.0155 (4) 0.0186 (4) 0.0141 (4) −0.0059 (3) −0.0051 (3) −0.0017 (3)
C3 0.0160 (4) 0.0194 (4) 0.0172 (4) −0.0068 (3) −0.0054 (3) −0.0041 (3)
C4 0.0148 (4) 0.0145 (4) 0.0181 (4) −0.0059 (3) −0.0020 (3) −0.0031 (3)
C5 0.0160 (4) 0.0137 (4) 0.0156 (4) −0.0059 (3) −0.0031 (3) −0.0004 (3)
C6 0.0123 (4) 0.0132 (4) 0.0131 (3) −0.0039 (3) −0.0038 (3) −0.0009 (3)
C7 0.0119 (3) 0.0136 (4) 0.0124 (3) −0.0042 (3) −0.0032 (3) −0.0006 (3)
C8 0.0144 (4) 0.0157 (4) 0.0136 (4) −0.0049 (3) −0.0041 (3) 0.0008 (3)
C9 0.0158 (4) 0.0163 (4) 0.0147 (4) −0.0065 (3) −0.0044 (3) 0.0039 (3)
C10 0.0311 (6) 0.0252 (5) 0.0218 (5) −0.0178 (4) −0.0103 (4) 0.0064 (4)
C11 0.0169 (4) 0.0192 (4) 0.0260 (5) −0.0022 (3) −0.0055 (4) 0.0031 (4)
C12 0.0161 (4) 0.0275 (5) 0.0193 (4) −0.0035 (4) −0.0008 (4) 0.0033 (4)
Br1 0.01951 (5) 0.01624 (5) 0.02640 (6) −0.00958 (4) −0.00275 (4) −0.00328 (4)
N1 0.0151 (3) 0.0157 (3) 0.0120 (3) −0.0067 (3) −0.0058 (3) 0.0013 (3)
N2 0.0140 (3) 0.0156 (3) 0.0115 (3) −0.0055 (3) −0.0052 (3) 0.0005 (3)
N3 0.0205 (4) 0.0166 (4) 0.0136 (3) −0.0080 (3) −0.0077 (3) 0.0022 (3)
O1 0.0216 (3) 0.0177 (3) 0.0137 (3) −0.0105 (3) −0.0069 (3) 0.0039 (2)
O2 0.0260 (4) 0.0218 (4) 0.0159 (3) −0.0096 (3) −0.0111 (3) 0.0037 (3)

Geometric parameters (Å, º)

C1—N1 1.3874 (12) C9—O1 1.4835 (12)
C1—C6 1.4006 (13) C9—C10 1.5177 (15)
C1—C2 1.4019 (13) C9—C12 1.5185 (16)
C2—C3 1.3859 (15) C9—C11 1.5222 (15)
C2—H2 0.9500 C10—H10A 0.9800
C3—C4 1.4039 (15) C10—H10B 0.9800
C3—H3 0.9500 C10—H10C 0.9800
C4—C5 1.3815 (14) C11—H11A 0.9800
C4—Br1 1.9021 (10) C11—H11B 0.9800
C5—C6 1.3954 (13) C11—H11C 0.9800
C5—H5 0.9500 C12—H12A 0.9800
C6—C7 1.4453 (13) C12—H12B 0.9800
C7—N2 1.3141 (12) C12—H12C 0.9800
C7—N3 1.3671 (12) N1—N2 1.3998 (11)
C8—O2 1.2122 (12) N3—H3A 0.840 (19)
C8—O1 1.3351 (12) N3—H3B 0.865 (18)
C8—N1 1.3824 (13)
N1—C1—C6 106.05 (8) C10—C9—C11 110.23 (10)
N1—C1—C2 132.33 (9) C12—C9—C11 112.91 (9)
C6—C1—C2 121.59 (9) C9—C10—H10A 109.5
C3—C2—C1 116.85 (9) C9—C10—H10B 109.5
C3—C2—H2 121.6 H10A—C10—H10B 109.5
C1—C2—H2 121.6 C9—C10—H10C 109.5
C2—C3—C4 120.95 (9) H10A—C10—H10C 109.5
C2—C3—H3 119.5 H10B—C10—H10C 109.5
C4—C3—H3 119.5 C9—C11—H11A 109.5
C5—C4—C3 122.74 (9) C9—C11—H11B 109.5
C5—C4—Br1 118.85 (8) H11A—C11—H11B 109.5
C3—C4—Br1 118.40 (7) C9—C11—H11C 109.5
C4—C5—C6 116.38 (9) H11A—C11—H11C 109.5
C4—C5—H5 121.8 H11B—C11—H11C 109.5
C6—C5—H5 121.8 C9—C12—H12A 109.5
C5—C6—C1 121.49 (8) C9—C12—H12B 109.5
C5—C6—C7 133.15 (9) H12A—C12—H12B 109.5
C1—C6—C7 105.28 (8) C9—C12—H12C 109.5
N2—C7—N3 122.92 (9) H12A—C12—H12C 109.5
N2—C7—C6 111.54 (8) H12B—C12—H12C 109.5
N3—C7—C6 125.46 (9) C8—N1—C1 126.18 (8)
O2—C8—O1 127.43 (9) C8—N1—N2 122.33 (8)
O2—C8—N1 121.75 (9) C1—N1—N2 111.27 (8)
O1—C8—N1 110.82 (8) C7—N2—N1 105.85 (8)
O1—C9—C10 102.25 (8) C7—N3—H3A 113.2 (13)
O1—C9—C12 109.28 (9) C7—N3—H3B 118.0 (12)
C10—C9—C12 110.83 (9) H3A—N3—H3B 117.7 (17)
O1—C9—C11 110.84 (8) C8—O1—C9 119.35 (8)
N1—C1—C2—C3 177.48 (10) O2—C8—N1—C1 10.52 (16)
C6—C1—C2—C3 0.02 (15) O1—C8—N1—C1 −169.07 (9)
C1—C2—C3—C4 −0.25 (15) O2—C8—N1—N2 −175.37 (10)
C2—C3—C4—C5 −0.10 (16) O1—C8—N1—N2 5.04 (13)
C2—C3—C4—Br1 −178.60 (8) C6—C1—N1—C8 175.41 (9)
C3—C4—C5—C6 0.68 (15) C2—C1—N1—C8 −2.34 (17)
Br1—C4—C5—C6 179.17 (7) C6—C1—N1—N2 0.75 (11)
C4—C5—C6—C1 −0.91 (14) C2—C1—N1—N2 −177.00 (10)
C4—C5—C6—C7 −177.26 (10) N3—C7—N2—N1 177.97 (9)
N1—C1—C6—C5 −177.46 (9) C6—C7—N2—N1 0.84 (11)
C2—C1—C6—C5 0.59 (15) C8—N1—N2—C7 −175.90 (9)
N1—C1—C6—C7 −0.22 (10) C1—N1—N2—C7 −1.00 (11)
C2—C1—C6—C7 177.83 (9) O2—C8—O1—C9 6.31 (16)
C5—C6—C7—N2 176.37 (10) N1—C8—O1—C9 −174.13 (8)
C1—C6—C7—N2 −0.41 (11) C10—C9—O1—C8 −179.09 (9)
C5—C6—C7—N3 −0.68 (18) C12—C9—O1—C8 63.43 (12)
C1—C6—C7—N3 −177.45 (9) C11—C9—O1—C8 −61.63 (12)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2 0.95 2.46 2.9609 (13) 113
C11—H11C···O2 0.98 2.38 2.9559 (15) 117
C12—H12B···O2 0.98 2.46 3.0475 (15) 118
N3—H3B···N2i 0.865 (18) 2.165 (19) 3.0249 (12) 172.8 (16)
C2—H2···O2ii 0.95 2.62 3.4133 (12) 141
C5—H5···Br1iii 0.95 3.11 3.8871 (10) 140
C12—H12A···O2iv 0.98 2.62 3.5582 (14) 161

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+2, −z; (iv) x−1, y, z.

References

  1. Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Kusanur, R. & Mahesh, R. (2013). Int. J. Life Pharma. Res. 3, 6–10.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2414314621006945/hb4388sup1.cif

x-06-x210694-sup1.cif (658KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314621006945/hb4388Isup2.hkl

x-06-x210694-Isup2.hkl (562.1KB, hkl)

Supporting information file. DOI: 10.1107/S2414314621006945/hb4388Isup3.cdx

Supporting information file. DOI: 10.1107/S2414314621006945/hb4388Isup4.cml

CCDC reference: 2094667

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES