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ABSTRACT
Background  Although genome-wide association studies 
(GWASs) have identified more than 100 loci associated 
with rheumatoid arthritis (RA) susceptibility, the causal 
genes and biological mechanisms remain largely unknown.
Methods  A cross-tissue transcriptome-wide association 
study (TWAS) using the unified test for molecular 
signaturestool was performed to integrate GWAS summary 
statistics from 58 284 individuals (14 361 RA cases and 
43 923 controls) with gene-expression matrix in the 
Genotype-Tissue Expression project. Subsequently, a 
single tissue by using FUSION software was conducted to 
validate the significant associations. We also compared the 
TWAS with different gene-based methodologies, including 
Summary Data Based Mendelian Randomization (SMR) 
and Multimarker Analysis of Genomic Annotation (MAGMA). 
Further in silico analyses (conditional and joint analysis, 
differential expression analysis and gene-set enrichment 
analysis) were used to deepen our understanding of 
genetic architecture and comorbidity aetiology of RA.
Results  We identified a total of 47 significant candidate 
genes for RA in both cross-tissue and single-tissue test 
after multiple testing correction, of which 40 TWAS-
identified genes were verified by SMR or MAGMA. Among 
them, 13 genes were situated outside of previously 
reported significant loci by RA GWAS. Both TWAS-based 
and MAGMA-based enrichment analyses illustrated the 
shared genetic determinants among autoimmune thyroid 
disease, asthma, type I diabetes mellitus and RA.
Conclusion  Our study unveils 13 new candidate genes 
whose predicted expression is associated with risk of 
RA, providing new insights into the underlying genetic 
architecture of RA.

INTRODUCTION
Rheumatoid arthritis (RA), a chronic auto-
immune disease, is characterised by persis-
tent synovial inflammation affecting around 
0.5%–1.0% of general population world-
wide.1 Currently, there is no completely cura-
tive therapy available for this highly disabling 
disease. Hence, a better knowledge of the 

underlying mechanisms of RA will contribute 
to the development of effective therapeutic 
targets.

Based on twin studies, the relative contri-
bution of genetic variation to the liability of 
having RA has been estimated to be around 
60%.2 Although genome-wide association 
studies (GWASs) have identified more than 
100 RA risk loci, these variants can only 
explain 15% of RA heritability.3 In addition, 
the biological interpretation and functional 
comprehension of these associations remain 
elusive.4 5 Most GWAS signals are located in 
non-coding regions, where often overlap with 
gene regulatory elements and highly enrich 
expression quantitative trait loci (eQTL).6 7 
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These clues point to a crucial role of transcriptional regu-
lation in impacting RA susceptibility.

Transcriptome-wide association study (TWAS) lever-
ages eQTL and GWAS data to identify novel suscepti-
bility genes whose genetically predicted expression is 
associated with disease risk.8 This method aggregates 
several variants into a functional gene unit, reducing 
the number of multiple comparisons and mapping 
to the candidate gene directly. As a powerful gene-
based method, TWAS has been successfully applied to 
decipher the genetic architecture of several complex 
traits.9–12 The majority of existing TWAS studies 
calculated genetic–expression matrix in each tissue 
separately, which might neglect the sharing local regu-
lation of gene expression across different tissues.13 
Evidence has shown that eQTL with large effects can 
regulate gene expression across multiple tissues.14 
A recent cross-tissue TWAS approach, called the 
unified test for molecular signatures (UTMOST), was 
developed to perform gene-level association analysis 
across different tissues, improving the accuracy and 
effectiveness of imputation model than that of single 
tissue method.15 By imposing a group-lasso penalty on 
the effect sizes of single nucleotide polymorphisms 
(SNPs) across tissues, UTMOST encourages eQTL 
that are shared across tissues and keeps tissue-specific 
eQTL with strong effects. In recent years, cross-tissue 
association analysis have been widely used in screening 
candidate susceptibility genes for complex multisys-
temic disorders whose biologically relevant tissues 
are not entirely clear, such as inflammatory bowel 
diseases, schizophrenia and Alzheimer’s disease.16 17

In this work, we carried out a cross-tissue TWAS of RA 
by integrating eQTL data from Genotype-Tissue Expres-
sion (GTEx) project with largest European RA GWAS. A 
single tissue TWAS using another Functional Summary-
based Imputation (FUSION) method was adopted to 
validate candidate susceptibility genes synchronously. 
Follow-up bioinformatic analyses were performed to 
explore the biological characterisation for these candi-
date genes.

METHODS
RA GWAS data source
We obtained the summary statistics from the largest 
meta-analysis of RA GWAS, comprising 14 361 cases and 
43 923 controls of European ancestry.18 The participants 
enrolled in the GWAS meta-analysis were obtained from 
18 separately studies. All patients were diagnosed with RA 
by professional rheumatologists according to the 1987 
American College of Rheumatology criteria. Detailed 
description of the quality control, genotyping and 
imputation procedures were provided in the published 
studies.19 20

TWAS analyses in cross-tissue and single tissue
A two-stage TWAS design of the study is shown 
in figure  1. In the discovery stage, we performed 

a cross-tissue association test by using UTMOST 
method.15 RA GWAS summary data were integrated 
with eQTL data of 44 tissues from GTEx to impute 
the genetic component of gene expression in each 
tissue. Then, a generalised Berk-Jones test was applied 
to combine gene–trait associations in 44 GTEx 
human tissues based on the covariance from single 
tissue statistics (online supplemental table S1). For 
each gene, UTMOST trains a cross-tissue expression 
imputation model based on a penalised multivariate 
regression, which has considered the different direc-
tions and effect sizes of eQTL signals across tissues. 
To reduce noise in the cross-tissue association test 
and the risk of false positive rate, we performed a 
validation to incorporate RA GWAS and eQTL data 
of whole blood from GTEx by using the FUSION soft-
ware,8 a widely used method in prior TWAS analysis. 
FUSION builds predictive models with several penal-
ised linear models (GBLUP, LASSO, Elastic Net, etc) 
for those significant cis-heritability genes estimated 
by using SNPs within 500 kb on both sides of the gene 
boundary, and then chooses the best model based 
on the R2 calculated by a fivefold cross-validation of 
each model. In the external validation, we repeated 
the analysis using the eQTL data of peripheral blood 
from The Netherlands Twin Register (NTR)21 and 
calculated Pearson’s correlation coefficient to analyse 
the effect sizes of testable TWAS genes between GTEx 
and NTR. TWAS significance for both cross-tissue and 
single-tissue analysis was established as Benjamini-
Hochberg corrected false discovery rate (FDR) value 
below 0.05.

Conditional and joint analysis
Conditional and joint analysis for genome-wide FDR-
corrected significant TWAS signals was used to evaluate 
the GWAS association signal after removing the TWAS 
association signal. Each RA GWAS SNP association was 
conditioned on the joint gene model. To investigate 
inflation of imputed association statistics under the 
null of no GWAS association, the permutation test was 
employed with a maximum of 100 000 permutations and 
permutation-based p value threshold of 0.05 for each of 
the significant loci.

Gene-based association study
Summary data-based Mendelian randomization (SMR) 
is a novel gene-based approach to prioritise functional 
genes in GWAS loci, which uses cis-eQTL SNPs, gene 
expression and RA GWAS as instrumental variables, 
exposure and outcome, respectively.22 Multimarker anal-
ysis of genomic annotation (MAGMA) uses a multiple 
regression model to calculate the cumulative effect of 
several SNPs that assigned to a specific gene (±10 kb).23 
The phase 3 of 1000 Genomes European population was 
used for reference panel to calculate the linkage disequi-
librium (LD).24
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Validation of TWAS results by mRNA expression profiles of RA
To explore whether the expression levels of TWAS 
identified genes associated with RA risk were dysreg-
ulated in RA patients compared with controls, we 
obtained whole blood gene expression microarray 
data of RA from Gene Expression Omnibus dataset 
GSE93272.25 The genome-wide transcript profiling 
of whole blood was collected from 232 RA patients 
and 43 healthy controls. The gene expression data 
were processed with log transformation followed 
by quantile normalisation using the linear models 
for microarray data package to identify differen-
tially expressed genes. We selected the differentially 
expressed genes based on FDR corrected p<0.05.

Pathway enrichment analysis
To uncover the biologically relevant pathways in aeti-
ology of RA, we conducted two gene-set methodologies 
including TWAS-based gene set enrichment analysis 
(TWAS-GSEA) and MAGMA-based gene-set analysis 
synchronously. TWAS-GSEA performs gene enrichment 
based on a mixed model test, in that it can directly use the 
results of TWAS. In MAGMA, the second gene-set anal-
ysis is established in a linear regression model by using 

the gene p value and gene correlation matrix. KEGG, 
BioCarta and Reactome pathways were downloaded from 
MSigDB database V.7.5.1 (https://www.gsea-msigdb.org/​
gsea/msigdb).

RESULTS
Transcriptome-wide association study results of RA
For the cross-tissue discovery, a total of 262 genes showed a 
statistically significant signal after FDR correction (p<0.05) 
and 96 of them remained significant after Bonferroni 
correction (p<2.89×10−6) (online supplemental table S2) 
(online supplemental figure S1). For single-tissue internal 
validation, of all the 8125 genes modelled in our geno-
type data with significant cis-heritable expression in the 
whole blood from GTEx dataset, 187 genes displayed a 
significant TWAS association signal with PFDR<0.05 (online 
supplemental table S3). In all, we identified 47 over-
lapped candidate genes with the stringent threshold in 
both cross-tissue and single-tissue test, including 13 genes 
located in novel loci (table 1).

Conditional and joint analysis
As shown in table 2, 11 loci represented the independent 
signal containing multiple significant genes, including 

Figure 1  Overview of the transcriptome-wide association study design of rheumatoid arthritis (RA). FDR, false discovery rate; 
GWAS, genome-wide association study; TWAS, transcriptome-wide association study.
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1p36.32 (TTC34), 5q21.1 (PPIP5K2), 6p21.31 (IP6K3, 
C6orf106), 6p22.1 (PGBD1, TRIM10), 6p22.2 (HIST1H2BG, 
ZNF322), 9q33.2 (PHF19, TRAF1), 11q12.2 (TMEM258), 
12q13.2 (SUOX), 12q14.1 (TSPAN31), 16p11.2 (SPNS1, 
RNF40) and 17q21.1 (ORMDL3) (conditional p<0.05). We 
observed that several GWAS signals were driven by genet-
ically modulated gene expression. For instance, SUOX 
explained most of the signal at 12q13.2 locus, while TWAS 
signal for RPS26 dropped obviously when conditioned on 
the predicted expression of SUOX (figure 2A). Similarly, a 
cluster of three TWAS significant associations (ORMDL3, 
GSDMB and PGAP3) were found at 17q21.1 locus, condi-
tional analysis indicated that ORMDL3 explained most of 
the signals in this region (figure 2B).

Integrating peripheral blood eQTL for external validation
Compared with the whole blood eQTL dataset from 
GTEx, peripheral blood eQTL yielded fewer testable 
genes (n=2454) (online supplemental table S4). Across 
all common testable genes (n=1686), the effect sizes of 
those genes between GTEx and NTR were highly corre-
lated (R=0.60, p<0.001) (online supplemental figure S2). 
Among the 47 TWAS significant genes, there were 15 test-
able genes in the replication stage. Finally, TWAS anal-
ysis using the independent peripheral blood eQTL data 
successfully validated 11 genes as RA risk genes (online 
supplemental table S5).

Comparison of TWAS with different gene-based 
methodologies
Venn plots illustrated the number of nominal signifi-
cant genes achieved by the four methodologies. The 

Table 2  Conditional analysis result of multigene loci

CytoBand Genes in locus Gene TWAS.Z TWAS.P Cond.Z Cond.P

1p36.32 TTC34, MMEL1, FAM213B TTC34 −5.20 2.00E-07 −5.20 2.00E-07

FAM213B 4.30 1.50E-05 −0.07 9.50E-01

MMEL1 4.20 2.30E-05 −0.07 9.50E-01

5q21.1 PPIP5K2, PAM PPIP5K2 3.50 5.30E-04 3.50 5.30E-04

PAM −3.30 8.10E-04 −1.10 2.50E-01

6p21.31 IP6K3, C6orf106 IP6K3 6.90 3.90E-12 6.90 3.90E-12

C6orf106 3.30 1.10E-03 3.30 1.10E-03

6p22.1 PGBD1, TRIM10, TRIM27 PGBD1 −6.50 1.00E-10 −6.50 1.00E-10

TRIM10 4.40 1.20E-05 2.35 1.90E-02

TRIM27 −4.10 3.80E-05 0.04 9.68E-01

6p22.2 HIST1H2BG, ZNF322 HIST1H2BG −3.30 9.20E-04 −2.30 2.08E-02

ZNF322 3.70 1.80E-04 2.90 3.90E-03

9q33.2 PHF19, TRAF1, PSMD5 PHF19 −5.10 2.80E-07 −3.70 1.80E-04

TRAF1 4.30 2.10E-05 2.40 1.62E-02

PSMD5 3.80 1.70E-04 −0.24 8.10E-01

11q12.2 TMEM258, FADS1 TMEM258 −4.80 1.90E-06 −4.80 1.90E-06

FADS1 −4.60 5.30E-06 0.07 9.50E-01

12q13.2 SUOX, RPS26 SUOX 5.40 7.00E-08 5.40 7.00E-08

RPS26 −5.10 4.20E-07 −0.13 9.00E-01

12q14.1 TSPAN31, METTL21B TSPAN31 4.40 9.60E-06 4.40 9.60E-06

METTL21B −4.40 1.10E-05 −1.30 1.80E-01

16p11.2 SPNS1, RNF40 SPNS1 4.20 3.20E-05 4.20 3.30E-05

RNF40 3.90 1.10E-04 3.90 1.10E-04

17q21.1 ORMDL3, IKZF3, GSDMB ORMDL3 −5.60 1.60E-08 −5.60 1.60E-08

IKZF3 5.60 2.30E-08 0.76 4.50E-01

GSDMB −5.40 5.30E-08 0.14 8.90E-01

*Bold gene was the independent Transcriptome-wide association study signal in the locus.
Cond.P, p values of the gene after conditional analysis; Cond.Z, Z-score of the gene after conditional analysis; FUSION, Functional 
Summary-based Imputation; TWAS, transcriptome-wide association study; TWAS.P, p values of the gene in FUSION TWAS analysis; 
TWAS.Z, Z-score of the gene in FUSION TWAS analysis.

https://dx.doi.org/10.1136/rmdopen-2022-002529
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cross-tissues test achieved more significantly associated 
genes, showing 67.6%, 148.7% improvement compared 
with FUSION and SMR, respectively (online supplemental 
figure S3A). Consistently, such improvement was observed 
within FDR-corrected thresholds. Among the 47 identified 
TWAS-significant associations, 85.1% (40/47) were recov-
ered by SMR or MAGMA after FDR correction (online 
supplemental figure S3B).

Differentiation analysis in RA and controls
To explore whether these 47 risk genes identified in 
TWAS analysis are differentially expressed between RA 

patients and health controls, we evaluated their mRNA 
expression levels in whole blood from RA patients and 
healthy controls. In lines with TWAS results, eight genes 
including PTPN22, PUS10, PPIP5K2, ZNF322, IRF5, 
PSMD5, YAF2 and TMEM50B were remarkably overex-
pressed, while seven genes including PGBD1, PHF19, 
PGAP3, GSDMB, ORMDL3, TYK2 and UBASH3A were 
decreased in RA patients compared with healthy controls 
(online supplemental table S6).

Figure 2  Regional association of transcriptome-wide association study (TWAS) hits. (A) Chromosome 12q13.2 regional 
association plot. (B) Chromosome 17q21.1 regional association plot. The top panel highlights all genes in the region. The 
marginally associated TWAS genes are shown in blue, and the jointly significant genes are shown in green. The bottom panel 
show a regional Manhattan plot of the genome-wide association study (GWAS) data before (grey) and after (blue) conditioning 
on the predicted expression of the green genes.

https://dx.doi.org/10.1136/rmdopen-2022-002529
https://dx.doi.org/10.1136/rmdopen-2022-002529
https://dx.doi.org/10.1136/rmdopen-2022-002529
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Pathway enrichment analysis
Across all the 828 gene-sets with at least 10 cis-heritable 
genes, 10 gene-sets were significantly enriched after 
multiple testing correction (online supplemental table 
S7). MAGMA-based gene-set analysis suggested that 45 
gene-sets were significantly enriched (PFDR<0.05) (online 
supplemental table S8). Among the top 20 enriched 
pathways, nine significant gene-sets were consistent in 
both TWAS-GSEA and MAGMA (figure  3). The results 
provided strong evidence of shared aetiology among auto-
immune thyroid disease, asthma, type I diabetes and RA 
and pointed out several crucial immune-related signal-
ling such as the Th1/Th2, intestinal immune network for 
IGA production, antigen processing and presentation in 
the pathogenesis of RA.

DISCUSSION
With the currently released largest RA GWAS dataset, we 
systematically estimated the associations between geneti-
cally predicted gene expressions and RA risk. A total of 
47 susceptibility genes for RA were prioritised through a 
two-stage TWAS design, and 13 of which resided in the 
novel loci. Together with in silico analysis deepened our 
understanding of genetic architecture and comorbidity 
aetiology of RA.

According to our results, the cross-tissue TWAS 
approach can effectively achieve more significantly asso-
ciated genes compared with other two single-tissue gene-
based methodologies. A recent cross-tissue TWAS has 
discovered two novel carcinogenic susceptibility genes 
for lung cancer, of which the design is similar to that of 
our study.26 Liu et al27 conducted a cross-tissue TWAS for 
pancreatic cancer, in which they revealed 13 significant 
gene-level associations at an FDR below 0.05, including 
six new susceptibility genes. Focused on RA, there has 
been a study of TWAS that generates genetic expression 
matrix in four tissues from GTEx dataset separately with 
FUSION software.28 The authors reported a total of 692 

significant TWAS genes with p value less than 0.05. To 
circumvent the drawbacks of single-tissue analysis, we 
adopted cross-tissue analyses for discovery strategy in 
order to identify more reliable genes. Additionally, with 
expanded data from GTEx project and a more strict 
threshold of significance, our study is likely to achieve 
stable and accurate results.

Several TWAS-significant genes with strong evidence 
from previous functional studies were located at the 
known RA loci. For example, hyperactivity of PTPN22 
in vitro might lead to produce reactive oxygen species, 
driving RA through abnormal inflammatory response 
and joint damage.29 PTPN22 has also been suggested 
as a preclinical molecular signature for RA.30 Existing 
evidence has proved that a part of novel RA genes 
exhibits immune-related features. For instance, ZNF322 
at 6p22.2, which belongs to the zinc finger protein family, 
has been reported to act as a transcriptional activator in 
MAPK signalling pathways.31 Apart from this, ZNF322 
can regulate the expression of two cell-cycle genes (P27 
and CDK2), which were characterised as crucial regula-
tors involved in synoviocytes proliferation.32–35 SPNS1, 
which encodes Spinster homologue 1 protein, is a trans-
membrane protein that can modulate the metabolism 
of autophagic lysosomal and critically associate with 
cellular ageing and survival.36 37 Notably, SPNS1 has 
recently been considered as a core component of T cell 
receptor signalling.38 A slew of studies have shown that 
TRIM10 and TRIM27 were involved in several inflam-
mation processes.39–41 TRIM10 exhibited a lower expres-
sion in patients with systemic lupus erythematosus than 
in healthy individuals, which negatively induced the 
IFN/JAK/STAT signalling pathway through impacting 
the interaction between IFNAR1 and TYK2.39 Of note 
is that TRIM10 has been reported to be associated with 
systemic juvenile idiopathic arthritis.42 Moreover, Liu et 
al43 demonstrated that TRIM27 modulated the prolifera-
tion of mesangial cell in kidneys of lupus nephritis. It has 

Figure 3  The top 20 most significant gene set enrichment results based on (A) TWAS-based gene set enrichment analysis 
(TWAS-GSEA) (B) MAGMA-based gene set enrichment analysis. nine gene-sets shared between TWAS-GSEA and MAGMA-
based gene set enrichment analysis with FDR <0.05 were marked in red. FDR, false discovery rate; MAGMA, multimarker 
analysis of genomic annotation; TWAS, transcriptome-wide association study.

https://dx.doi.org/10.1136/rmdopen-2022-002529
https://dx.doi.org/10.1136/rmdopen-2022-002529
https://dx.doi.org/10.1136/rmdopen-2022-002529
https://dx.doi.org/10.1136/rmdopen-2022-002529
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been suggested that knockdown of TRIM27 inhibited the 
endothelial cells injuries in lupus nephritis via the FoxO1 
signalling pathway.44

Numerous observational studies have observed the 
coexistence of RA and other immune-mediated diseases, 
consistent with significant genetic correlations between 
them.45–48 In our work, both TWAS-based and MAGMA-
based enrichment analysis also illustrated the shared 
genetic determinants between autoimmune thyroid 
disease, asthma, type I diabetes mellitus and RA. Specu-
latively, there are common immune regulatory mecha-
nisms among these diseases. Insights gained from these 
results will provide further therapeutic directions for 
immune-mediated diseases.

Although TWAS has advantages in improving statis-
tical power and avoiding reverse causality, some caveats 
should be noted in this study. First, not all genes can be 
captured due to the criterion of significant cis-heritability 
genes in the TWAS analyses, and those SNPs influencing 
RA but are independent of cis expression will be ignored. 
Second, the genetically predicted models were measured 
in multiple tissues but not in the biologically relevant 
tissues such as synovial tissues and immune cells. As high-
throughput data continue to be released for more cell 
types and tissues, as well as a larger RA GWAS dataset of 
276 020 samples from five ancestral groups,49 cross-tissue 
association analysis promises to show even better effec-
tiveness and provides greater insights for RA genetics. 
Finally, the underlying mechanisms of association 
signals have not been validated through experimental 
techniques.

In summary, we reveals 13 novel susceptibility genes 
whose genetically predicted expression is associated 
with risk of RA, providing new insights into the under-
lying genetic architecture of RA. However, further func-
tional studies are still needed to elucidate the underlying 
biological activities of these significant signals.
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