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Introduction
Although many laboratory tests measure injury to peripheral organs, such as liver or kidneys, quantify-
ing central nervous system (CNS) injury with peripheral blood biomarkers is extremely difficult because 
the concentrations of  analytes released during neuronal damage are below detection levels of  most of  the 
conventional immunoassays. Two developments in recent time have changed this reality: a) new, advanced 
immunoassays, such as Single Molecule Array (SIMOA), capable of  reliably measuring femtomolar con-
centrations of  proteins, and b) demonstration that neurofilament light chain (NFL), a protein exclusively 
expressed in neurons, remains elevated for weeks after acute neuro-axonal injury. Indeed, after traumatic 
brain injury, the serum levels of  some neuronal proteins, such as ubiquitin carboxy-terminal hydrolase L1 
and neuron-specific enolase, peak at 24 hours and become undetectable 96 hours later, while NFL levels rise 
gradually, peak in several days, and remain elevated for up to a few weeks (1). This unusual dynamic makes 
(serum/plasma) NFL an excellent biomarker of  acute neuronal injuries, such as those caused by trauma or 
hypoxia, and for monitoring of  chronic neurological diseases, including multiple sclerosis (MS).

Many papers demonstrated associations between CSF and serum NFL levels and formation of  acute 
MS lesions (i.e., contrast-enhancing lesions [CELs] on brain MRI; refs. 2, 3) or an association of  therapy- 
induced inhibition of  serum/CSF NFL concentration with therapeutic effect on CELs or MS relapses 
(4). These important observations raised a possibilityof  using serum NFL (sNFL) measurements for 
managing MS in individual patients.

BACKGROUND. Serum neurofilament light chain (sNFL) is becoming an important biomarker of 
neuro-axonal injury. Though sNFL correlates with CSF NFL (cNFL), 40% to 60% of variance remains 
unexplained. We aimed to mathematically adjust sNFL to strengthen its clinical value.

METHODS. We measured NFL in a blinded fashion in 1138 matched CSF and serum samples from 
571 patients. Multiple linear regression (MLR) models constructed in the training cohort were 
validated in an independent cohort.

RESULTS. An MLR model that included age, blood urea nitrogen, alkaline phosphatase, creatinine, 
and weight improved correlations of cNFL with sNFL (from R2 = 0.57 to 0.67). Covariate adjustment 
significantly improved the correlation of sNFL with the number of contrast-enhancing lesions (from 
R2 = 0.18 to 0.28; 36% improvement) in the validation cohort of patients with multiple sclerosis (MS). 
Unexpectedly, only sNFL, but not cNFL, weakly but significantly correlated with cross-sectional 
MS severity outcomes. Investigating 2 nonoverlapping hypotheses, we showed that patients with 
proportionally higher sNFL to cNFL had higher clinical and radiological evidence of spinal cord (SC) 
injury and probably released NFL from peripheral axons into blood, bypassing the CSF.

CONCLUSION. sNFL captures 2 sources of axonal injury, central and peripheral, the latter reflecting 
SC damage, which primarily drives disability progression in MS.
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The clinical value of  a laboratory test is assessed by sensitivity (i.e., the ability of  the test to cor-
rectly identify people with the measured process) and specificity (i.e., the ability of  the test to correctly 
identify people without the measured process). A large multicenter study with 286 paired serum/CSF 
NFL measurements in patients with MS demonstrated that CSF NFL (cNFL) has higher accuracy for 
predicting CELs or MS relapse (i.e., 75% specificity and 67% sensitivity with area under receiver opera-
tor characteristic [AUROC] curve 0.77) compared with sNFL (i.e., 80% specificity and 45% sensitivity 
with AUROC 0.66) (2, 3).

Because published cohorts showed only modest correlations between cNFL and sNFL (i.e., explain-
ing between 40% and 60% of  variance) (5–7), we asked whether we could improve accuracy of  sNFL in 
predicting MS activity (i.e., CEL or relapse) and MS severity (i.e., rate of  MS progression) by identifying 
physiological confounding factors that affect sNFL concentrations. Because cNFL more accurately iden-
tified patients with MS activity than sNFL, we hypothesized that by adjusting sNFL measurements for 
physiological covariates that may affect release of  NFL from CNS axons, distribution volume of  sNFL, 
and its metabolism using multiple linear regression models, we would derive a reproducible equation that 
would better approximate sNFL to cNFL values measured in parallel and therefore predict MS activity 
with enhanced accuracy. Although we could not identify publications that assessed accuracy of  NFL in 
predicting MS severity, we expected that cNFL would have superior accuracy than sNFL and that adjust-
ing for the same confounders would strengthen the accuracy of  sNFL in predicting MS severity, too.

Results
Adjusting sNFL levels for confounding factors using a multiple linear regression model improves the correlation between 
measured and predicted cNFL. We measured NFL levels in 1138 matching CSF and serum samples collect-
ed from 571 participants in 7 diagnostic groups: healthy donors (HD), relapsing-remitting MS (RRMS), 
primary progressive MS (PPMS), secondary progressive MS (SPMS), clinically isolated syndrome (CIS), 
noninflammatory neurological diseases (NIND), and other inflammatory neurological diseases (OIND). 
The NIND and OIND cohorts had evidence of  CNS injury. The cohort was split into training (2/3) and 
validation (1/3) data sets prior to running any analysis, with a balanced distribution of  each diagnosis in 
each data set. Because our first goal was to develop a generally valid mathematical adjustment that would 
better approximate sNFL levels to cNFL, we deliberately included patients with varied diagnoses.

The correlation between sNFL and cNFL in the training cohort showed that cNFL explained 57% of  
the variance of  sNFL (Figure 1A), which falls into the higher-end estimate from the published studies (5–7). 
To search for confounding factors responsible for the remaining 43% of  variance between cNFL and sNFL 
(Figure 1B), we assumed that NFL is released from CNS axons into CSF, which is then drained (partially 
via lymph) to blood. Because of  the prolonged dynamic of  NFL release after acute injury, a steady state 
between cNFL and sNFL will ensue. We considered following confounding factors that may influence this 
steady state by modifying: a) release of  NFL from the CNS (e.g., age); b) distribution volume of  sNFL (i.e., 
reflected by body mass index [BMI], height, weight, and estimated blood volume) and c) sNFL metabolism/ 
clearance from body (i.e., reflected by liver function tests: alanine transaminase [ALT], aspartate amino-
transferase [AST]; by phagocytosis via the reticulo-endothelial system reflected by alkaline phosphatase 
[AP]; by protein metabolism reflected by blood urea nitrogen [BUN]; and by kidney clearance reflected by 
serum creatinine and estimated glomerular filtration rate [eGFR]; Figure 1C). Of these, the stepwise multi-
ple linear regression (MLR) retained only weight, AP, BUN, creatinine, and age (Figure 1, D and E).

Although our goal is to adjust sNFL measurements to better approximate cNFL, the mathematical strat-
egy to derive such an adjustment is counterintuitive: because we assume that the source of  sNFL is CNS (all 
patients other than HD have CNS disease) and the route of  NFL release is via CSF to blood, the sNFL con-
centration is cNFL modified by confounders. Without confounding factors, the sNFL would depend on only 
cNFL, which was approximated by a linear equation derived from the training cohort in Figure 1F, where 
it explained 57% of  variance. When applied to the independent validation cohort (Figure 1H), this linear 
model explained 53% of  the variance with a very low P value. In an MLR model, the sNFL concentration 
depended on cNFL, but its concentration was further modified by 5 confounders, reflected by the equation 
in Figure 1G derived from the training cohort, where it enhanced the proportion of  variance explained from 
57% to 67% (Figure 1F versus Figure 1G; 10% absolute and 15% relative gain in accuracy). This gain in 
accuracy was reproducible, with improvement from 53% to 65% of  variance explained in an independent 
validation cohort (Figure 1H versus Figure 1I; 12% absolute and 18.5% relative gain in accuracy).

https://doi.org/10.1172/jci.insight.161415
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To ensure that longitudinal samples (i.e., multiple samples per patient) did not affect the model’s per-
formance, we showed analogous validation in the cohort that contained only the first collected sample 
per patient or the median value of  all samples per patient (Supplemental Figure 1; supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.161415DS1).

Reshuffling the equation from the final MLR model, we now have the correct adjustment of  measured 
sNFL values that better predicts cNFL: sNFL-predicted cNFL = (log10 sNFL – [0.005 × age] + [0.004 × 
weight] – [0.001 × AP] – [0.01 × BUN] – [0.14 × creatinine] + 0.75)/0.54.

Adjusted sNFL correlates better with MRI CELs than measured sNFL. The most important question is 
whether the proposed mathematical adjustment enhances the clinical value of  sNFL, including its 
ability to predict MS activity.

Thus, for all subsequent studies, we compared the effects of  measured cNFL, measured sNFL, 
and sNFL-predicted cNFL (i.e., sNFL adjusted for validated confounders) on clinical and imaging 
outcomes in the MS cohort only.

There are 2 approaches for assessing MS activity. One is to dichotomize patients into those who do 
or do not have CELs or MS exacerbation at the time of  NFL measurement and use the training cohort 
data to select the optimal NFL value based on area under the curve (AUC; Figure 2, A–G). This approach 
was used previously (2, 3) and is expanded here by assessing AUCs after applying NFL dichotomization 
cutoffs from the training cohort (measured cNFL = 3699 pg/mL, measured sNFL = 57 pg/mL, and sNFL- 
predicted cNFL = 5172 pg/mL; Figure 2, B–D) to the validation cohort. We reproduced the published 
observation that cNFL is a stronger predictor of  MS activity as compared with sNFL in the training cohort: 
i.e., cNFL achieved AUC 78.4% versus 61.8% for sNFL (Figure 2, B and C). This hierarchy was validated 
in the independent cohort, where the AUC of  cNFL was 73.5% and sNFL 65.1% (Figure 2, E and F). The 
mathematical adjustment of  sNFL for confounding factors increased AUCs as compared with measured 
sNFL in both training (Figure 2C versus Figure 2D; from AUC 61.8% to 69.2%) and validation (Figure 2F 
versus Figure 2G; from AUC 65.1% to 75.3%) cohorts.

However, simply dichotomizing patients is suboptimal. The true clinical value of  laboratory tests 
resides in their quantitative aspect. For example, dichotomizing liver function tests into normal and 
abnormal would not inform clinical care of  the patients in the abnormal category. Therefore, we also 
assessed accuracy of  NFL in estimating the level of  disease activity, by generating models that predict 
the number of  CELs in the independent validation cohort.

We observed that cNFL correlated stronger with number of CELs than sNFL. In linear regression models, 
cNFL explained 21% of variance of CELs (P < 2.2 × 10–16; Figure 2H), while sNFL explained 5.6% of variance 
(P = 3.1 × 10–6; Figure 2I) in the training cohort. Similar correlations were observed in an independent valida-
tion cohort (Figure 2, K and L). Adjusting sNFL for confounders (Figure 2, J and M) improved the correlation 
with the number of CELs in comparison with measured sNFL by increasing the variance explained from 5.6% 
to 12% in the training cohort (Figure 2I versus Figure 2J) and from 18% to 28% in an independent validation 
cohort (Figure 2L versus Figure 2M). This translates into relative improvement of 36% in the validation cohort.

Supplemental Figure 2 contains additional sensitivity analyses assessing exponential models and Poisson 
regressions that show analogous results. We also tested whether the improvement was statistically significant 
and observed significantly lower confounder-adjusted sNFL residuals of CELs from the Poisson regression 
models compared with unadjusted sNFL residuals (P = 0.003, paired Wilcoxon rank sum test).

This validates the hypothesis that adjusting measured sNFL levels for identified covariates meaningfully 
improves their ability to predict MS activity in an independent validation cohort.

Figure 1. Variance between sNFL and cNFL concentrations. (A) Linear regression model between log10-transformed concentration (pg/mL) of sNFL and 
cNFL in the training cohort of samples where cNFL levels explain 57% of variance of sNFL levels. (B) Remaining 43% of variance shown as NFL residuals 
generated as differences between measured sNFL concentration and predicted sNFL concentration calculated from measured cNFL using linear regres-
sion model. (C) Eleven potential confounders related to distribution volume (BMI = body mass index, Est Blood Vol = estimated blood volume, height, 
and weight), protein metabolism/clearance (ALT = alanine transaminase, AP = alkaline phosphatase, AST = aspartate transaminase, BUN = blood urea 
nitrogen, creatinine, and eGFR = estimated glomerular filtration rate), and age were used as explanatory variables in a multiple linear regression model 
resulting in varied importance represented as a t statistic of each variable in the model (D). Stepwise regression resulted in retention of 5 confounders in 
the model (E) that showed increased correlation between measured and predicted sNFL levels both in the training (G) and in the validation (I) cohort in 
comparison with correlations between measured and predicted values using a simple linear regression model in the same training (F) and validation cohort 
(H). Confounders in color are the ones selected in the multiple linear regression model that underwent stepwise regression. Green line represents linear 
regression model with gray shading corresponding to 95% confidence interval. ns, number of samples measured; np, number of patients represented by the 
samples; CCC, concordance correlation coefficient.
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All NFL measurements are poor predictors of  MS severity, but sNFL shows at least weak but significant correlations 
with MS severity outcomes. As increased levels of  NFL reflect MS-related acute CNS injury, with cNFL demon-
strating higher accuracy than sNFL, we hypothesized that elevated NFL levels would be associated with 
faster accumulation of  clinical disability and expected that cNFL would again demonstrate higher accuracy.

MS-related clinical disability is traditionally measured by the ordinal Expanded Disability Status Scale 
(EDSS) (8). However, natural history studies show that patients with MS progress, on average, by approx-
imately 1 EDSS point per decade. This has been validated in MS clinical trials, where approximately  

Figure 2. Adjustment for 5 confounders improves correlation of sNFL with number of MRI CELs and eliminates noise. (A) CELs have been used as a 
surrogate outcome of blood-brain barrier opening and active inflammation in the brains of patients with MS. Logistic regression that predicts probability 
of CEL presence/absence and linear regression between NFL and total number of CELs have been tested. A binomial regression classifier was generated 
to predict dichotomous outcome of present/absent CEL. The area under the curve (AUC), sensitivity, and specificity have been calculated for classifiers 
using measured cNFL (B and E), measured sNFL (C and F), and sNFL-predicted cNFL (D and G) to predict probability of presence of CELs. Dotted line rep-
resents the best probability cutoff value determined in the training cohort with corresponding NFL concentration displayed above the line. Horizontal lines 
represent medians. Two-sided Wilcoxon 2-sample test evaluated the significance of differences between 2 groups of patients. The linear model between 
number of CELs (y axes, transformed as natural logarithm of [CEL+1]) and NFL (x axes) shows higher predictive power of cNFL in both training (H) and 
validation (K) cohorts, compared with sNFL in training (I) and validation (L) cohorts. Adjustment of sNFL for 5 confounders (age, weight, AP, BUN, and cre-
atinine) improved the correlation with number of CELs in both training (J) and validation (M) cohorts compared with measured sNFL. Purple line represents 
linear regression model with gray shading corresponding to 95% confidence interval.

https://doi.org/10.1172/jci.insight.161415
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10% of  placebo-treated patients experience sustained disability progression on the EDSS for each 1 year 
of  trial duration. Thus, the EDSS cannot correctly quantify patient-specific MS progression in observa-
tional studies with follow-up shorter than 10 years; most patients in our cohort had follow-up shorter 
than 10 years. Consequently, we assessed correlations between 3 NFL values and cross-sectional MS 
severity outcomes: Multiple Sclerosis Disease Severity Scale (MS-DSS) (9), Multiple Sclerosis Severity 
Scale (MSSS) (10), and Age-Related Multiple Sclerosis Severity (ARMSS) (11) (Figure 3). Note that these 
outcomes reflect past rates of  disability accumulation by normalizing cross-sectional disability to patients’ 
age (ARMSS and MS-DSS) or disease duration (MSSS).

Contrary to our predictions, sNFL consistently outperformed cNFL (Figure 3). None of  the severity 
outcomes showed a statistically significant correlation with cNFL, but all 3 showed a weak but statistical-
ly significant correlation with sNFL (Figure 3B). Specifically, unadjusted sNFL measurements explained 
2.6% (MS-DSS), 6.3% (MSSS), and 3.5% (ARMSS) of  MS severity variance in the training cohort. These 
unexpected observations were validated in an independent validation cohort, where sNFL explained 12% 
of  MS-DSS, 13% of  MSSS, and 4.3% of  ARMSS (Figure 3C). As would be expected from the adjustment 
that better approximates sNFL to cNFL levels, adjusting sNFL for covariates generally weakened correla-
tions with MS severity outcomes, although all remained statistically significant (Figure 3, B and C).

Why sNFL correlates stronger with MS severity outcomes compared with cNFL. We generated and tested 2 
mutually nonexclusive hypotheses that may explain why sNFL correlates stronger with MS severity com-
pared with cNFL: a) brain atrophy–associated MS progression leads to dilution of  cNFL due to compensa-
tory increase in CSF volume (Figure 4A) and b) spinal cord (SC) injury, associated with MS disability, such 
as injury to lower motor neurons or the autonomic nervous system, leads to release of  NFL from axons of  
peripheral nerves into blood, bypassing the CSF (Figure 4D).

Both hypotheses were tested by focusing on patients with either comparable sNFL levels and highly dif-
ferent cNFL levels (testing hypothesis 1), or, conversely, comparable cNFL levels and highly different sNFL 
levels (testing hypothesis 2). We tested these using quartiles of  appropriate sNFL-cNFL residuals (Figure 
4, B and E) or by propensity score–matched samples (Supplemental Figure 3). Because both approaches 
provided analogous results, we present here only the simpler approach.

To test the hypothesis that increased CSF volume dilutes cNFL concentration, we asked whether patients 
with proportionally lower cNFL compared with sNFL concentrations have higher brain atrophy (and thus 
enlarged CSF volume) compared with patients with proportionally higher cNFL concentration. We tested 
2 brain atrophy outcomes (Figure 4A): a) a fully quantitative BPFr measured retrospectively and b) prospec-
tively acquired semiquantitative grading of  the atrophy into 4 categories (none, mild, moderate, and severe) 
as part of  a previously validated Combinatorial MRI scale (COMRIS) of  CNS tissue destruction (12).

Consistent with the stated hypothesis, people with proportionally lower cNFL concentration had 
a marginally significant increase in brain atrophy measured by semiquantitative outcome (P = 0.0049) 
and BPFr (P = 0.053) in the training cohort. However, these weak differences were not validated in an 
independent validation cohort (Figure 4C).

To test the second hypothesis, we used prospectively acquired SC injury outcomes (Figure 4D). The 
first outcome was a semiquantitative assessment of  lesion load and atrophy of  the upper cervical SC graded 
from brain MRI images that extend to C5 level. This outcome has been previously validated as clinical-
ly meaningful (12, 13). Because it does not capture the damage to the thoracic or lumbosacral SC, we 
employed complementary information from NeurEx, which provides granular measurements of  neurolog-
ical disability (14). Two parts of  NeurEx can be used for our purpose: grading of  muscle atrophy, as a sur-
rogate of  injury to lower motor neurons and, by inference, to associated motor axons of  peripheral nerves, 
as well as bowel, bladder, sexual, and autonomic (BBSA) dysfunctions, which in MS are likely caused by 
injury of  the autonomic neurons that project axons to the autonomic ganglia.

Using these 2 outcomes, we observed a statistically significant increase in both imaging and clinical 
SC damage outcomes in the subgroup of  patients with proportionally higher sNFL compared with cNFL, 
fitting the proposed model. These findings were robustly validated in an independent validation cohort 
(Figure 4F and Supplemental Figure 4).

We conclude MS-associated SC injury leads to release of  NFL to blood, bypassing the CSF, likely 
because of  Wallerian degeneration of  peripheral axons. Thus, SC damage, which is a strong predictor of  
MS severity, is preferentially reflected by sNFL as compared with cNFL, leading to stronger correlation 
of  sNFL with MS severity outcomes. This conclusion is supported by the fact that including SC damage 
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outcomes (i.e., MRI SC atrophy, muscle atrophy, and BBSA) into the MLR model further strengthened 
the correlation between measured and predicted sNFL in an independent cohort (Supplemental Figure 5).

Discussion
We started this work with the premise that cNFL is a clinically more relevant biomarker of  CNS injury 
than sNFL and that we might enhance the clinical value of  sNFL by adjusting for relevant confounders.

We validated this premise partially: we identified general confounders and validated an MLR model 
that adjusted sNFL to better approximate cNFL concentrations. The covariates selected by the MLR model 
are logical and affect sNFL concentration in a biologically predictable manner: high BUN, AP, and creati-
nine increase sNFL concentrations as they slow down NFL metabolism and clearance, while diluting NFL 
in larger distribution volume reflected by higher weight lowers sNFL concentration.

Some of  these confounders (e.g., age, BMI and creatinine) were inferred in previous studies analyz-
ing only sNFL in healthy volunteers (15, 16) or in patients with diabetes mellitus and renal dysfunction 
(16). However, lack of  matched cNFL concentrations in these studies precludes eliminating the alter-
native explanation that these confounders, such as renal dysfunction, cause subclinical axonal damage, 
which increases sNFL. The current study rules out this alternative explanation and extends previous 
studies by identifying the most comprehensive set of  confounders to our knowledge and showing that 

Figure 3. sNFL correlates better with MS disease severity outcomes than cNFL. (A) Disease severity in MS is a measure of how fast patients accumulate 
disability. Slow accumulation of disability over time results in low MS severity (green); fast accumulation of disability results in high MS severity (red). 
Because it is difficult to measure rates of disability progression prospectively and longitudinally, MS severity outcomes are collected cross-sectionally, 
measuring past rates of disability progression by normalizing disability to the patient’s age (Age-Related Multiple Sclerosis Severity Score [ARMSS] and 
Multiple Sclerosis Disease Severity Scale [MS-DSS]) or disease duration (MSSS). Correlation analysis of 3 MS severity outcomes, MS-DSS, MSSS, and 
ARMSS, with 3 NFL values, measured cNFL, measured sNFL, and sNFL-predicted cNFL, in 2 independent cohorts: training cohort (B) and validation cohort 
(C). Purple line represents linear regression model with gray shading corresponding to 95% confidence interval. Difference in number of patients/samples 
used for these analyses is because of exclusion of samples due to missing respective MS severity data.
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this comprehensive adjustment of  sNFL values further improves their correlation with cNFL (Supple-
mental Figure 6). Most importantly, when we applied these adjustments to the MS cohort only, we 
observed that covariate-adjusted sNFL demonstrated a statistically significant increase in correlations 
with number of  CELs and improved dichotomized prediction of  MS activity when compared with mea-
sured sNFL. These improvements were validated in an independent validation cohort, where covari-
ate-adjusted sNFL reached 36% relative enhancement of  accuracy to predict presence of  CEL. This 
is substantial improvement for a test aimed to be used in individual patients. These data validate and 
strengthen previous reports of  using sNFL to identify patients with MS activity; in comparison with pre-
viously reported AUC = 0.66 for sNFL (measured in the training cohort only) (2, 3), we achieved AUC = 
0.753 in an independent validation cohort for covariate-adjusted sNFL. Although this AUC approaches 
the accuracy of  a clinically meaningful cross-sectional test, it should be noted that the test has high spec-
ificity (96.7%) but poor sensitivity (29.2%). Therefore, a positive test adds clinical value in identifying 
MS patients with disease activity, e.g., during monitoring of  treatment efficacy. However, due to poor 
sensitivity, a clinician must supplement NFL measurements with CNS imaging, perhaps performed less 
frequently, to verify that prescribed treatment truly abrogates formation of  new MS lesions.

The potentially novel and intriguing findings from our study are that sNFL outperformed cNFL in 
correlating with cross-sectional MS severity outcomes and that this is due to sNFL’s ability to capture 
NFL released from 2 sources: axons in the CNS but also from SC injury affecting lower motor neurons 
and the autonomic nervous system. The strength of  our study resides in prospective acquisition of  
complementary clinical and imaging data that reliably capture SC injury and associated damage to 
lower motor and autonomic neurons. These data were locked into a database before any NFL mea-
surements were collected, and NFL was measured in a blinded fashion by investigators who had no 
access to clinical or imaging data. The congruency of  observations between training and validation 
cohorts and very low P values provide high confidence that our conclusions are valid. The fact that 
adding imaging and clinical outcomes of  SC damage to the MLR model further strengthened the cor-
relation between cNFL and sNFL shows that release of  NFL from these SC sources is captured only 
by sNFL, not by cNFL. Although we logically infer that the source of  NFL associated with imaging 
and clinical outcomes of  SC injury is Wallerian degeneration of  peripheral axons, we have not mea-
sured PNS injury in this study. Nevertheless, our conclusion, potentially novel for the MS field, is 
supported by the observation that patients with PNS disorders, such as Guillain-Barré syndrome, have 
proportionally higher sNFL to cNFL levels compared with patients with CNS disorders, such as Alz-
heimer’s disease, or compared with patients with combined involvement of  CNS and peripheral axons, 
such as amyotrophic lateral sclerosis (17).

Despite its ability to (at least partially) reflect both brain and SC injury, the power of  sNFL measure-
ment to predict MS severity is, unfortunately, rather weak (i.e., explaining between 2.6% and 13% of  
variance of  different MS severity outcomes). This observation suggests that sNFL will have limited value 
in guiding therapeutic decisions in patients who no longer form CELs. However, our data set is subop-
timal for determining prognostic value of  sNFL in MS: this is an observational, natural history cohort 
with duration of  follow-up less than 10 years in most patients, which precluded us from evaluating the 
ability of  sNFL to predict (future) rates of  EDSS progression. Recently the ability of  sNFL to predict dis-
ability progression was evaluated in 2 placebo-controlled phase III clinical trials of  progressive MS: the 

Figure 4. Two hypotheses explaining superiority of sNFL in predicting MS severity. (A) Hypothesis 1: Dilution of cNFL due to brain atrophy while sNFL con-
centration remains unaffected. Brain atrophy was evaluated by brain parenchymal fraction (BPFr) and by semiquantitative measure of brain atrophy (none, 
mild, moderate, and severe). (B) NFL residuals that fall within IQR (gray) were removed, resulting in a subset of samples with proportionally higher (above the 
third quartile [teal]) and lower cNFL (below the first quartile [salmon]), with comparable sNFL levels. (C) Paired Wilcoxon rank sum test showed marginally 
significant difference in BPFr (top left) and total brain atrophy (bottom left) between samples with different cNFL levels in the training cohort. These obser-
vations were not confirmed in the validation cohort (top and bottom right). (D) Hypothesis 2: Increase of sNFL due to spinal cord (SC) damage. NFL from dam-
aged peripheral nerves and SC roots is released directly into blood, increasing sNFL concentration while cNFL remains unchanged. SC damage was evaluated 
using a semiquantitative MRI outcome (a sum of lesion load and atrophy at the level of medulla and cervical spine) and by clinical outcome capturing damage 
of lower motor neurons (sum of muscle atrophy scores) and damage to peripheral/autonomous nervous system (score for bowel, bladder, sexual, and auto-
nomic dysfunctions) generated from neurological exams digitalized using the NeurEx app. (E) NFL residuals that fall within IQR (gray) were removed, resulting 
in a subset of samples with proportionally higher sNFL (above the third quartile [teal]) and lower sNFL (below the first quartile [salmon]), with comparable 
cNFL levels. (F) Paired Wilcoxon rank sum test showed a statistically significant difference in MRI (top left) and clinical (bottom left) outcomes between sam-
ples with different sNFL levels in the training cohort; the observed differences were confirmed in the validation cohort (top and bottom right). The box plots 
depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. The length of the box represents the IQR.
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EXPAND trial that evaluated efficacy of  siponimod in SPMS and INFORMS trial that evaluated efficacy  
of  fingolimod in PPMS (4). There, sNFL (the authors measured plasma NFL, which is comparable to 
sNFL) dichotomized to “low” (<30 pg/mL) and “high” (≥30 pg/mL) has significant predictive value to 
identify patients at risk of  MS progression. Unfortunately, this study did not report AUC, sensitivity/
specificity, and predictive values of  dichotomized sNFL, which are necessary to assess clinical utility of  
a test. Patients with CELs constituted 21.6% of  EXPAND and 10.1% of  INFORMS participants, and in 
both trials, presence of  CELs was the strongest predictor of  elevated sNFL. Nevertheless, the subgroup 
analyses demonstrated that even patients without CELs had a statistically significant increase in the risk 
of  disability progression if  they had high sNFL. But this study analyzed thousands of  sNFL samples and 
achieved marginal P values for patients without CELs (e.g., P = 0.0274 for n = 1147 predicting 3 months 
confirmed disability progression in EXPAND trial). Because both effect size and number of  participants 
contribute to P value, the marginal P value can be obtained from such large cohorts only if  the effect size 
is very low. Thus, these data, generated from gold standard clinical trials, support our conclusion that 
while sNFL correlates with MS severity at a group level, its accuracy is likely too low to be clinically 
meaningful at an individual patient level. We discourage clinicians from interpreting our data, or (con-
curring) group data from other publications, as proof  that sNFL provides actionable insight on a patient 
when caring for people with MS who no longer form CELs.

The final question is why sNFL does not predict MS progression with much higher accuracy when it 
is likely that neuronal loss causes development of  brain atrophy and MS disability. Loss of  neurons must 
lead to loss of  axons, so why do many people with progressive MS have sNFL levels indistinguishable 
from HD? We speculate that the answer lies in the spatiotemporal dynamics of  axonal damage. Pathol-
ogy studies show concentrated axonal transections inside acute MS lesions but not outside of  them. 
Such temporary and spatially concentrated axonal transections must release large amounts of  NFL that 
likely overwhelms local phagocytes, leading to spillover of  NFL into circulation. But if  neuronal loss is 
distributed over a large CNS volume, microglia may have time to phagocytose dissolving axons and the 
NFL spillover is minimized. The type of  neuronal death is probably also important: inflammation causes 
axonal transections associated with NFL release, whereas orderly apoptosis retains neuronal molecules 
encapsulated by membranes before they are phagocytosed.

Obviously, these are only speculations and are difficult to investigate in living systems. Nevertheless, 
our study and thus far all reported NFL studies in MS demonstrate that nonphysiological increase in NFL 
preferentially reflects acute axonal injury associated with formation of  focal MS lesions. NFL levels are 
rather insensitive for capturing slow neuro-axonal loss associated with MS progression in people who no 
longer form CELs. If  NFL should play a role in clinical care of  such patients with MS, we need publica-
tions that quantify the predictive value of  NFL on an individual patient level.

Methods
Patients. Matching CSF and serum samples (1138 each) were prospectively collected from 571 patients 
(Table 1) from 7 diagnostic categories: HD, RRMS, PPMS, SPMS, CIS, NIND, and OIND. Collected 
samples were split into training (2/3) and validation (1/3) cohorts, controlling for diagnoses and keeping 
longitudinal samples in the same cohort to ensure complete independence of  the participants in 2 cohorts.

All laboratory, clinical, and MRI outcomes (see Supplemental Methods) were prospectively collect-
ed in a database, quality controlled during weekly clinical care meetings, and locked to prevent further 
modifications. These data were collected prior to blinded evaluation of  CSF and serum NFL levels from 
cryopreserved samples.

Laboratory, clinical, and MRI outcomes. Height and weight measurements were taken, and laboratory tests 
were performed at CSF/blood collection at the NIH Department of  Laboratory Medicine and recorded  
in the NIH electronic medical records. MS patients underwent a full neurological exam and brain MRI at 
sample collection. The neurological exam was documented electronically using the NeurEx app (14) that 
contains algorithms calculating traditional disability scales (e.g., EDSS, including Kurtzke Functional System 
Scores) that eliminate noise stemming from inaccuracy of  translating neurological examination into disability 
scales by clinicians. The research brain MRI (with or without gadolinium contrast) was performed on 1.5 
T (Signa; GE Healthcare) and 3 T (MAGNETOM Skyra; Siemens) scanners. MRI sequences included T1 
magnetization–prepared rapid gradient echo or fast spoiled gradient echo and T2-weighted 3-dimensional 
fluid attenuation inversion recovery sequences that were reviewed and graded by a board-certified neurologist  
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and recorded using the previously published COMRIS tool (12) on a research database. The brain MRI 
protocol used extends sagittal and axial cuts distally to the C5 level, allowing determination of  semiquan-
titative MRI biomarkers of  medulla/upper SC atrophy and lesion load. The quantitative MRI outcomes 
(e.g., brain parenchymal fraction) were generated using the cloud-based medical image-processing plat-
form, QMENTA, using the LesionTOADS algorithm (18). MS severity outcomes per MS-DSS, MSSS, and 
ARMSS were calculated as described (9–11). Although MSSS and ARMSS are both based on EDSS related  
to disease duration and age, respectively, MS-DSS is a more complex, machine learning–based model  
with the strongest variable being combinatorial weight-adjusted disability score/age (19).

Sample collection. Samples were collected following the laboratory standard operating procedures. 
Briefly, CSF, collected by lumbar puncture, was kept on ice and processed within 15 minutes of  collec-
tion by centrifugation at 335g for 10 minutes at 4°C; the supernatant was aliquoted and stored at –80°C. 
Blood was collected by venipuncture (SST tube), incubated at room temperature for 30 minutes, and 

Table 1. Demographic details of training and validation cohorts

Diagnosis CIS HD NIND OIND PPMS RRMS SPMS
Training cohort (n = 376)

N (female/male) 10/4 16/11 41/20 21/36 36/41 47/38 37/18
Avg age in yearsA (SD) 41.0 (13.0) 37.9 (13.6) 47.4 (14.2) 49.1 (13.9) 54.5 (9.5) 39.9 (10.1) 51.7 (10.4)
Age range 20.8–64.2 19.7–71.3 19.3–73.4 18.0–74.2 25.3–74.7 18.3–67.8 22.0–71.0
N of matching CSF and serum samples 18 42 73 105 216 168 124
Avg N of samples per patient (SD) 1.3 (0.6) 1.6 (0.9) 1.2 (0.4) 1.8 (1.5) 2.8 (1.8) 2.0 (1.3) 2.3 (1.6)
Avg cNFL in pg/mL (SD) 1053 (1150) 544 (230) 2054 (3833) 11,318 (15,011) 1289 (1007) 2292 (4888) 1627 (1828)
Avg sNFL in pg/mL (SD) 10.1 (6.2) 8.7 (5.2) 18.3 (22.8) 104.0 (201.0) 19.7 (11.3) 15.7 (19.9) 19.8 (17.1)
Race

American Indian/Alaska Native 0 0 1 0 0 0 0
Asian 0 1 2 5 1 2 0
Black or African American 2 13 13 8 10 21 11
More than 1 race 3 2 2 0 1 0 3
Unknown or not reported 0 0 2 2 1 2 0
White 9 11 41 42 64 60 41

Ethnicity
Hispanic or Latino 2 1 0 0 5 4 6
Not Hispanic or Latino 9 24 42 31 69 78 48
Unknown or not reported 3 2 19 26 3 3 1

Validation cohort (n = 195)
N (female/male) 6/2 6/11 25/6 10/18 23/18 29/15 15/11
Avg age in yearsA (SD) 41.4 (11.8) 39.4 (13.8) 45.5 (11.6) 42.9 (15.9) 54.7 (9.3) 43.1 (11.6) 51.7 (10.4)
Age range 26.7–57.7 19.4–56.8 18.2–74.9 15.8–68.8 28.2–65.8 18.0–68.6 27.4–69.7
N of matching CSF and serum samples 12 24 34 49 130 67 76
Avg N of samples per patient (SD) 1.5 (0.8) 1.4 (0.9) 1.1 (0.4) 1.75 (1.8) 3.2 (1.6) 1.5 (0.9) 2.9 (1.5)
Avg cNFL in pg/mL (SD) 2643 (3710) 593 (284) 1240 (1679) 11,377 (14,800) 1457 (1761) 2878 (4710) 1387 (1248)
Avg sNFL in pg/mL (SD) 9.7 (7.5) 6.6 (2.7) 11.4 (7.5) 61.6 (80.9) 18.8 (12.9) 21.0 (47.7) 18.5 (8.9)
Race

Asian 1 3 0 3 0 0 0
Black or African American 3 6 6 2 5 13 3
More than 1 race 1 0 0 1 0 0 0
Native Hawaiian or Other Pacific 
Islander

0 0 1 0 1 0 0

Unknown or not reported 0 0 0 1 0 1 0
White 3 8 24 21 35 30 23

Ethnicity
Hispanic or Latino 0 1 0 2 2 2 0
Not Hispanic or Latino 7 15 24 13 39 39 26
Unknown or not reported 1 1 7 13 0 3 0

AAge at the first sample collection for respective participants. N, number; Avg, average; SD, standard deviation. 
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spun at 2000g for 10 minutes at 4°C. The aliquoted serum was stored at –80°C. Personnel processing 
samples were blinded to patients’ diagnoses/clinical/MRI outcomes.

cNFL ELISA. As NFL concentration in CSF is higher (~10- to 100-fold higher than sNFL), it can be 
reliably measured with a comparatively less sensitive assay, such as ELISA. We measured cNFL concentra-
tions using solid-phase sandwich ELISA (UmanDiagnostics, catalog number: 10-7002 RUO; lower limit of  
detection [LLoD]: 33 pg/mL; see Supplemental Methods).

All samples were diluted 1:2 with provided sample diluent and then analyzed blindly. Samples were 
analyzed on multiple plates; location of  samples on each plate was randomized, and a control sample was 
analyzed on each plate. The coefficient of  variance (CV) for the control sample across all plates was 6.6%, 
confirming the assay precision and reproducibility.

sNFL SIMOA assay. Serum NFL levels were analyzed using a SIMOA assay kit (Quanterix; product 
number: 103186; LLoD: 0.038 pg/mL) on a SIMOA HD-1 analyzer (see Supplemental Methods).

All samples were diluted 1:4 with provided sample diluent using onboard dilution functionality, then 
analyzed blindly. Samples were analyzed in 2 batches (batch 1: 12 plates and batch 2: 4 plates); each plate 
contained 2 quality control (QC) samples provided with the kit, 1 for low (C1) and 1 for high (C2) concen-
tration. The CVs for measured concentrations of  QC samples were within the acceptable range (batch 1: 
C1 = 9.8%, C2 = 9.8%; batch 2: C1 = 9.0%, C2 = 7.7%), confirming the assay precision.

Though we have used 2 different assays, ELISA and SIMOA, to assess CSF and serum, respectively, 
both assays use identical antibodies. ELISA is cheaper and has sufficient sensitivity for measuring cNFL, 
while the enhanced sensitivity of  SIMOA assay is necessary to reliably measure sNFL. To ensure that no 
bias was introduced by using different assays for NFL measurements, we measured 68 CSF samples by 
both assays and confirmed that they yielded identical results (R2 = 0.97, P < 0.001; Supplemental Figure 7).

Statistics. All modeling/analyses/plots were performed in R Studio Version 1.1.463 (R version 4.0.2) 
(20). Simple and MLR models were generated using lm function (“stats” package; ref. 20). Correlations 
between variables were assessed using stat_cor function (“ggpubr” package; ref. 21), generating Pearson 
correlation coefficient (r), CV (R2), and P value. CCC was calculated using epi.CCC function of  the “epiR” 
package. The final MLR model was selected using stepwise algorithm in stepAIC function (“MASS” pack-
age; ref. 22). Differences between groups were evaluated by stat_compare_means function (“ggpubr” pack-
age; ref. 21) using unpaired 2-sided wilcox.test or t.test method.

Prediction models of  MRI CEL were developed using logistic regression (glm function of  the 
“stat” package; ref. 20). Optimal cutoff  for the predictive models was calculated using the optimalCutoff 
function of  the “InformationValue” package (https://cran.r-project.org/web/packages/Information-
Value). The AUROC was calculated using the roc function of  the “pROC” package (23), and the spec-
ificity and sensitivity were calculated using specificity and sensitivity functions of  the “caret” package 
(https://cran.r-project.org/web/packages/caret). The NFL cutoffs depicted in Figure 2, B–D, were 
calculated as mean of  the highest NFL value below the optimal model cutoff  and the lowest NFL 
value above the optimal model cutoff.

To test whether brain atrophy can explain superiority of  sNFL over cNFL, we generated NFL resid-
uals by subtracting the variance of  cNFL explained by sNFL. Then we calculated quartiles of  the NFL 
residual and removed samples falling within the IQR. Samples with NFL residuals below the first quartile 
represented patients with measured cNFL much lower than what would be predicted by the simple linear 
regression model. To test whether SC damage could explain superiority of  sNFL in predicting MS severity, 
we generated NFL residuals, by subtracting variance of  the sNFL explained by the measured cNFL. Then 
we eliminated samples with NFL residuals within the IQR, resulting in a group of  samples with measured 
sNFL higher than what would be predicted by the model and samples with measured sNFL levels that were 
lower than what the model predicted. Differences between the samples from the first and the third quartile 
were evaluated using unpaired 2-tailed wilcox.test or t.test method.

Propensity score matching was performed using matchit function with “full” method (“MatchIt” 
package; ref. 24). Differences between propensity score–matched groups were evaluated by stat_ 
compare_means function (“ggpubr” package; ref. 21) using paired 2-tailed wilcox.test or t.test method.

Poisson regression models were generated using glm function.
Although we provide raw P values that have not been adjusted for multiple comparisons, all P values in 

the independent validation cohort would remain significant after the most conservative Bonferroni adjust-
ment. P < 0.05 was considered statistically significant.
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The raw data and R code are provided as Supplemental Data 1.
Study approval. All samples were collected as part of  a natural history protocol, “Comprehensive 

Multimodal Analysis of  Neuroimmunological Diseases of  the Central Nervous System” (ClinicalTri-
als.gov Identifier: NCT00794352), or as part of  the “NIB Repository Protocol” (10-N-0210). The proto-
cols were approved by the NIH Institutional Review Board. All participants signed a written informed 
consent document.
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