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Introduction
Although both the incidence and mortality associated with esophageal squamous cell carcinoma (ESCC) 
have declined due to endoscopic screening programs, ESCC remains a major cause of  cancer-related 
death in China. To date, partially owing to our deficient understanding of  genetic alterations in ESCC, 
the frontline therapy for advanced ESCC (T1–4N+M0) is neoadjuvant chemoradiotherapy followed by 
surgery (1), regardless of  the tumor’s genetic background. In recent decades, some genome-wide studies 
have elucidated the interpatient heterogeneity of  ESCC characterized by different frequently mutated 
genes (2, 3). Moderate coverage sequencing assays (whole-exome sequencing [WES]) often fail to detect 
mutations at low allelic frequencies (4) and can be complemented by targeted deep sequencing. Some 
studies have also sought to identify common features of  heterogeneous genomes, such as mutual muta-
tion trajectories (5, 6), that may be clinically relevant. However, mutation trajectories are still obscure in 
ESCC, and more investigations are needed.

Cancer heterogeneity is also reflected in genomically defined subtypes that provide biological 
insights into prognoses and treatment responses of  patients. Molecular typing has been established in 
some digestive malignancies (7, 8). Recently, The Cancer Genome Atlas (TCGA) has summarized 3 
ESCC molecular subtypes, but the clinical relevance of  these subtypes has not been clearly elucidated 
(9). In parallel, the emerging immune checkpoint inhibitor (ICI) therapies have been proved to extend 
the survival of  patients with ESCC (10), but only a minor fraction of  patients benefit from ICI, stress-
ing the importance of  identifying biomarkers for predicting responses to ICIs. Some studies suggest 
that the tumor microenvironment and responses to immunotherapy are predetermined by the genetic 
basis of  tumors, such as the tumor mutation burden (TMB) (11–14). However, knowledge of  ESCC 
is limited, and there is an urgent need to explore prognostic biomarkers for molecular typing and 

Identification of molecular subtypes that reflect different prognoses and treatment responses, 
especially immune checkpoint inhibitors (ICIs) in esophageal squamous cell carcinoma (ESCC), is 
essential for treatment decisions. We performed targeted sequencing in 201 patients with ESCC to 
discover genetic subtypes and validate our findings via multiple data sets. We identified 3 driver 
genes (FCGBP, GRIN2B, and FRY), and recurrent truncating mutations in FRY impaired its tumor-
suppressive function and promoted tumor proliferation. A 3-gene mutation signature (FAT1, FAT3, 
and FRY) recognized a molecular subtype named “FAT/FRY” with frequent Hippo pathway–related 
mutations. In multiple ESCC cohorts, the patients with the FAT/FRY subtype had poorer prognosis 
than did patients in the WT group. Transcriptome analysis indicated that the FAT/FRY subtype was 
characterized by inactivation of the Hippo pathway, hypoxia, chemoresistance, higher infiltration 
of CD8+ T cells and activated DCs, and a transcriptome similar to that of cancer responders. 
Furthermore, the 3-gene signature predicted better survival for patients treated with ICIs, partially 
explained by its positive correlation with the tumor mutation burden and neoantigen burden. The 
3-gene signature is a biomarker to recognize the FAT/FRY molecular subtype, evaluate prognosis, 
and select potential beneficiaries of ICIs in ESCC.
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characterize the contacts between these genetic biomarkers and immune microenvironment features, 
especially the responses to immunotherapy.

In this study, by applying targeted deep sequencing, we sought to discover ESCC genetic subtypes and 
identified a poor-prognosis subgroup of  patients characterized by frequent mutations related to the Hippo 
pathway. Focusing on this subtype, named “FAT/FRY,” we then devised a 3-gene mutation signature to 
recognize it and characterized the immune profile of  the FAT/FRY ESCC via multiple data sets and exper-
imental methods. We further examined the prognostic value of  the 3-gene signature in patients with cancer 
treated with immunotherapy. The results showed that our 3-gene signature was a promising biomarker for 
distinguishing an ESCC subtype with a poor prognosis for patients, who might be potential beneficiaries 
of  immunotherapies.

Results
Landscape of  genomic alterations. The genomic data of  the discovery cohort (n = 201) were derived from our 
previous work (15) and were reanalyzed in this study. Our deep sequencing strategy revealed many muta-
tions with low abundance, and the mutation frequency for most genes was higher than that observed in pre-
vious studies (2, 16–22) (Figure 1, A and B). Another 70 patients with ESCC were recruited to validate our 
findings. The clinicopathological parameters did not differ between both cohorts (Supplemental Table 1; 
supplemental material available online with this article; https://doi.org/10.1172/jci.insight.155218DS1).
The analytical pipeline of  this study is summarized in Supplemental Figure 2.

We evaluated the recurrences, impacts of protein function, and hotspots of mutations in all mutated genes 
(Figure 1C) and identified 6 frequently mutated genes, TP53 (95%), FCGBP (19%), FRY (18%), ZNF750 (16%), 
NFE2L2 (15%), and GRIN2B (10%) (Figure 2 and Supplemental Figure 3A), among which TP53, NFE2L2, 
and ZNF750 have been proved to drive ESCC tumorigenesis (2, 3, 17). FRY, a key component of chromosome 
separation in metaphase, inhibits the growth of cancer cells in a Hippo pathway–dependent manner in some 
malignancies (23, 24). Analysis of 3 public microarray data sets revealed that the FRY mRNA expression was 
significantly downregulated in ESCC compared with matched normal tissues as well as paratumor tissues 
(Figure 3A). Analysis of public data sets demonstrated the expression of FRY also inversely correlated with the 
expression of YAP at both mRNA and protein levels (Supplemental Figure 4, A and B), which was the main 
effector of the Hippo pathway. FRY was also negatively associated with many downstream targets of Hippo/
YAP (Supplemental Figure 4). We further measured the transcriptional targets of Hippo/YAP after silencing 
FRY and found an increase of both CTGF and CYR61 in knockdown cells as compared with the control 
(Supplemental Figure 3D), supporting the role of FRY as an inhibitor of Hippo/YAP (23, 24). A total of 33 
samples contained FRY mutations, among which 25 were loss-of-function mutations, including FRY p.E319X.

The functions of  FRY and its hotspot mutations in ESCC remain to be determined. In 2 ESCC cell 
lines with WT endogenous FRY expression (Supplemental Figure 3B), we independently silenced FRY with 
siRNA and found that the depletion of  FRY significantly promoted cell proliferation (Figure 3B). Because 
of  the low expression of  FRY in KYSE30 cell line, it was hard to further knock down its expression, so we 
only successfully performed RNAi to knock down FRY with 1 siRNA (Supplemental Figure 3E). Ectopic 
expression of  the FRY hotspot mutant p.E319X did not mimic the WT FRY and had no effects on cell pro-
liferation, supporting the loss-of-function role of  FRY p.E319X (Figure 3C and Supplemental Figure 3F). 
Among the 6 frequently mutated genes, FRY was the only gene associated with shorter disease-free survival 
(DFS), and this association remained significant after adjusting for clinicopathological factors (adjusted 
HR, 1.61 [95% CI, 1.06–2.44]; P = 0.026) (Figure 3D and Supplemental Figure 3C). These analyses sug-
gested that recurrent inactivation of  FRY promoted ESCC progression and disease relapse.

At codon resolution, we detected 133 mutational hotspots, which were deemed functional events, 
because hotspot mutations can accumulate under positive environmental selection (25) (Supplemental 
Table 2). Consistent with a previous report (21), we also observed the accumulation of  hotspot mutations 
in histone modifiers, supporting their oncogenic roles in ESCC (Supplemental Figure 3A). The mutation 
profile of  PIK3CA was dissimilar to that of  breast cancer, in which hotspot mutations in the helical domain 
(p.E542, p.E545) were more common than PI3K/PI4K (p.E1047) hotspot mutations (26) (Figure 2). We 
also detected the hotspot mutations p.R18 (n = 5) and p.E63 (n = 4) in the KEAP1-binding domain of  
NFE2L2, and these hotspot mutations might activate NFE2L2 by disrupting its interaction with KEAP1.

Mutation trajectory of  ESCC. Throughout tumor progression, oncogenic mutations in cancer-associated 
genes promote tumor growth and thus propel clonal expansion. The phylogenetic relationship of  mutations 
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has been documented (27), but the limited sample size and sequencing depth prevent the elucidation of  the 
common evolutionary trajectories of  oncogenic mutations.

To address this issue, we first identified oncogenic mutations through a literature review (Supplemental 
Methods). We then applied the Bradley-Terry model to obtain statistical evidence of temporal orders (6) (Supple-
mental Table 3). We observed that the progression of ESCC followed a mutation trajectory at the pathway level 
(Figure 3E). TP53 was an early mutation target in ESCC, similar to observations of other cancer types (5). Muta-
tions affecting the NRF pathway, including NFE2L2 and its degrading element CUL3, were also acquired early. 
NOTCH pathway–related genes were mutated continually during clone expansion, whereas FRY mutations were 
acquired later. Theoretically, early events tended to occur in all tumor cells, and later events were carried by minor 
clones. Then, we calculated the cancer cell fractions of mutations and inferred their clonal statuses (Supplemen-
tal Table 4). Oncogenic mutations in TP53 (FDR < 10–6) and NFE2L2 (FDR = 0.009) tended to be clonal, and 
all the oncogenic mutations in FRY (FDR = 0.01) were subclonal, verifying the temporal order of these events.

Figure 1. Summary of mutations in 201 patients with ESCC. (A) Waterfall plot displaying the mutation landscape in 201 
patients with ESCC. (B) Histogram displaying the mutation frequencies of the cancer-associated genes observed in previous 
cohorts and our cohort. (C) Statistical assessment of mutated genes in 201 ESCC samples. Each dot represents a gene. The 
x axis and y axis denote the negative logarithmic transformation of P values from 2 statistical tests evaluating mutation 
recurrence (OncoClust algorithm) and the enrichment of deleterious mutations (binomial test). Del, deletion; Ins, insertion.
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Prognostically distinct subtypes of  ESCC. Theoretically, the dissimilar prognoses of  patients with ESCC 
could be explained by heterogeneous patterns of  prognosis-associated mutations. According to the distribu-
tion of  prognosis-associated mutations, we identified 3 clusters of  patients by applying nonnegative matrix 
factorization (NMF) consensus clustering (28). A separate algorithm based on partitioning around medoids 
consensus clustering (29) reproduced significantly overlapping clusters (Figure 4D; kappa index: 0.734; P < 
10–14). The consistent results obtained by 2 distinct algorithms suggested the clusters were robust. We termed 
the clusters from NMF ESCC1, ESCC2, and ESCC3, then compared mutation frequencies of  all the genes 
in the 3 clusters using Fisher’s exact test to define characteristic mutations for each cluster (Figure 4A).

ESCC1 had higher rates of  mutations in FLG (62%; FDR < 10–10), AHNAK2 (45%; FDR = 0.029), 
and EP300 (34%; FDR < 0.001). EP300 is a putative driver of  NOTCH pathway that is frequently mutated 
in ESCC and indicates an adverse prognosis (21, 25). AHNAK2 has a high mutation frequency in ESCC, 
and its oncogenic role has been reported in multiple malignancies (30). USH2A (mutation rate, 46%; FDR 
< 10–5) and AHNAK (mutation rate, 44%; FDR < 10–5) mutations surrogated ESCC2, and patients in the 
ESCC2 cluster had the best prognosis among those in all 3 clusters (Figure 4, B and C). USH2A is fre-
quently mutated in tongue squamous cancer (31), and AHNAK is associated with tumor metastasis (32). 
Interestingly, mutations in AHNAK and AHNAK2, both of  which are involved in RNA splicing, represented 
clusters with dissimilar prognoses, implying their different roles in ESCC progression.

ESCC3 was dominated by mutations of FAT1 (mutation rate, 55%; FDR < 10–9), FAT3 (mutation rate, 
25%; FDR < 0.001), and FRY (mutation rate, 37%; FDR < 0.003), which were major regulators of the Hippo 
pathway. FAT1, a tumor suppressor recurrently inactivated in ESCC (2), could dampen the activity of the Hippo 
effector YAP (33, 34). Here, we detected 33 FAT1 mutations in ESCC3, including 16 truncating and 6 missense 

Figure 2. Mutation profiles of frequently mutated genes. Lollipop plot showing the mutation profiles of frequently mutated genes. Del, deletion.
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mutations recorded in the Catalog of Somatic Mutations in Cancer (35) (Figure 4E). ESCC3 also had a high 
mutation frequency of FAT3, which is the most homologous protein to FAT1 in the FAT family (36). Another fre-
quently mutated gene in ESCC3 was FRY, which was proved to inhibit YAP by blocking its nuclear transporta-
tion (23, 24). Loss-of-function mutations in FRY were observed in 29.4% (n = 15 of 51) of patients in the ESCC3 
cluster, as we mentioned above (Figure 2). Together, ESCC3 was characterized by the mutations of FAT1, FAT3, 
and FRY, which might lead to the inactivation of the Hippo pathway. Notably, ESCC3 had the worst DFS and 
overall survival (OS) among all 3 clusters (Figure 4, B and C).

A 3-gene mutation signature for prognosis prediction. Based on the molecular features enriched in ESCC3, 
we developed a signature consisting of  FAT1, FAT3, and FRY to recognize this subtype. Patients with 1 or 
more mutation(s) in these genes were assigned to this subtype, which was termed FAT/FRY. Patients in 
the FAT/FRY subgroup had shortened OS and DFS (Figure 5A and Supplemental Figure 5A) compared 
with those in the WT subgroup independent of  the TNM stage and other clinicopathological factors (Sup-
plemental Table 5). The median OS duration of  patients in the FAT/FRY subgroup was 22.8 months com-
pared with 39.6 months in the WT subgroup (HR, 1.59 [95% CI, 1.12–2.28]; P = 0.011, Cox regression). 

Figure 3. Molecular characterization of mutational driver FRY. (A) FRY mRNA levels in ESCC tumor, paratumor, and normal tissues calculated from 
3 independent data sets. (B) Proliferation assays of KYSE410 and KYSE30 cells transfected with 2 siRNAs against FRY (si1 and si2) or control siRNA 
(siNC). (C) Proliferation assays of the FRY-truncating mutant and the corresponding control in KYSE30 and KYSE410 cells. The data in A–C represent 
mean ± SD; n = 3. P values were calculated by Student’s t test. (D) Survival analysis showed that the mutation status of FRY was significantly asso-
ciated with a shorter DFS. The P value was calculated by log-rank test. (E) Inference of the relative temporal order of mutations by the Bradley-Terry 
model. The mountain plot in the left panel displays the distribution over cancer cell fraction of mutations in each gene. The right panel shows the 
temporal order of mutations, and the error bar represents the quasi-SEs.
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The independent prognostic value of  the 3-gene signature was also confirmed in our validation cohort (HR, 
2.1 [95% CI,1.04–4.21]; P = 0.039) (Figure 5B and Supplemental Figure 5B).

Because FAT3 was frequently comutated with FRY (OR, 3.10; P = 0.021, Fisher’s exact test) and 
FAT1 (OR, 2.59; P = 0.057), we found a trend of dosage effects indicating patients with comutations had 
a worse DFS (P = 0.052, log-rank test) and OS (P = 0.13) than those with 1 mutated gene (Figure 5C and 
Supplemental Figure 5C). This trend could be explained by the functional redundancy of FAT1 and FAT3 
(34) and the inactivation of YAP by FRY in a Hippo pathway–independent manner (23). We also observed 
that patients in the FAT/FRY subgroup in the N1 stage had a similar prognosis (P = 0.47) as patients in 
the WT subgroup in the N2 stage (Supplemental Figure 6F). Furthermore, the 3-gene mutation signature 
was not confounded by the TNM stage or other clinicopathological parameters (Supplemental Table 6).  

Figure 4. Molecular subtypes of ESCC. (A) Heatmap of characteristic mutations from 3 clusters. Distinct clusters are labeled by colors. The histogram on the right-
hand side shows the enrichment of mutations within clusters on a negative logarithmic P value scale. Only mutations identified as significantly enriched in the 
given group, as determined by a Benjamini-Hochberg–adjusted FDR ≤ 0.2 according to Fisher’s exact test, are displayed. (B and C) Three clusters of patients had 
distinct DFS (B) and OS (C) rates. P values of global and pairwise comparisons were generated by log-rank tests. (D) Venn plot displaying the significant overlap 
of clusters identified by 2 independent algorithms. Mutual marker mutated genes of clusters identified by 2 algorithms were placed in the overlapping field. (E) 
Lollipop plot displaying the mutation distributions of FAT1 and FAT3. Del, deletion; Ins, insertion; PAM, partitioning around medoids consensus clustering.
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Finally, we compared the predictive capacity of the 3-gene signature with that of the TNM stage. The area 
under the curve of the 3-gene signature was similar to that of the TNM stage (P > 0.5) (Supplemental Figure 7).

We further verified this prognostic biomarker in independent data sets (9, 20). In TCGA-ESCC cohort, 
the survival of  patients in the FAT/FRY subgroup was significantly shorter than that of  patients in the 
WT subgroup (HR, 6.54 [95% CI, 2.15–19.87]; P = 0.0009, Cox regression) (Figure 5D and Supplemental 
Figure 5D), and a similar significance was observed in another ESCC data set (Supplemental Figure 5G). 
Then, we pooled the HR from 4 cohorts using a random-effect model and found that the risk of  cancer-re-
lated death in the FAT/FRY subgroup was augmented by 177% compared with the WT subgroup, despite 
the moderate heterogeneity (pooled HR, 2.77 [95% CI, 1.43–5.36]; I2 = 65%; P = 0.03).

Molecular characteristics of  the FAT/FRY subtype. We further compared the frequencies of  mutations 
between 2 molecular subgroups. As shown in Supplemental Table 9, we found that mutations of  3 
genes were the dominant features in the FAT/FRY subtype, and we did not observe enrichments of  
mutations in oncogenic pathways like NRF2 and NOTCH, implying that mutations of  other pathways 
would not provide selective advantages or lead to synthetic lethality (25). On the other hand, some 
ESCC-associated genes were frequently mutated in the WT group, including RB1, FAM135B, and 
NOTCH3 (P < 0.05, Fisher’s exact test) (19, 20).

Taking advantage of  the multiomics data from TCGA, we depicted the transcriptomic features of  the 
2 ESCC subgroups. The gene set enrichment analysis showed that Hippo pathway–related genes were 
significantly enriched in downregulated genes in FAT/FRY–subtype tumors, confirming the inactivation 
of  the Hippo pathway at the transcriptional level (FDR = 0.006) (Figure 6A). In our discovery cohort, we 
observed that the core members (FAT1 and LATS2) of  Hippo pathway were significantly underexpressed 
in the FAT/FRY ESCC subtype, whereas the transcriptional targets of  YAP1 (CTGF and CYR61) were 
significantly increased, verifying the inactivation of  Hippo pathway in this subgroup (Figure 6B). The gene 
sets of  FAT/FRY samples were enriched in hypoxia- and drug metabolism–related pathways (P < 0.05; 
FDR < 0.25) (Supplemental Figure 11, A and B).

We further asked if  the hypoxia and drug metabolism background was responsible for the poor prog-
nosis of  patients in the FAT/FRY subgroup. As shown in Supplemental Figure 11, C and D, patients with 
a higher score for hypoxia- and drug metabolism–related pathways had worse outcomes, so the enhanced 
aggressiveness of  tumors in the FAT/FRY subgroup might be induced by overactivation of  YAP1-, hypox-
ia-, and drug metabolism–related pathways.

Increasing evidence has demonstrated the essential roles of  the Hippo pathway in the regulation of  
immunity (33, 37), prompting us to investigate the association between the 3-gene signature and the tumor 
immune microenvironment. We found that the FAT/FRY subgroup had higher infiltration of  CD8+ T cells, 
activated DCs and eosinophils, and slightly higher levels of  γδ T cells (Figure 6, C and D). This phenome-
non was replicated in another ESCC multiomics data set (Figure 6C). We also performed IHC staining on 
whole-tumor slides of  our discovery cohort to quantify densities of  CD8+ tumor-infiltrated lymphocytes 
(TILs), the main factor in antitumor immunity and an indicator of  immunotherapy efficacy (38). Accord-
ingly, we found an augmented infiltration of  CD8+ TILs in FAT/FRY subtype ESCC, and tumors with FRY 
mutant alone also had more CD8+ TILs compared with WT tumors, suggesting that FAT/FRY tumors still 
had active antitumor immunity (Figure 6, E and F).

Molecular subtype–based treatment strategy for ESCC. Because nearly half  of  the patients in our study 
received adjuvant therapy (ADT) that was believed to improve prognoses (Supplemental Figure 10, A and 
B), we further evaluated, using the Cox model, whether our FAT/FRY signature was a predictive bio-
marker of  ADT efficacy or prognosis biomarker (39). An insignificant treatment-by-biomarker interaction 
indicated that the prognostic value of  FAT/FRY signature did not differ between 2 treatment groups (OS, P 
= 0.8; DFS, P = 0.6) (Supplemental Figure 10, C–F). Moreover, we confirmed the prognostic value of  the 
FAT/FRY signature in a subgroup of  patients without ADT (Supplemental Figure 10, G and H), signifying 
its role as a prognostic biomarker.

To further determine whether patients with ESCC in the FAT/FRY subgroup were potential bene-
ficiaries of  ICIs, we first evaluated the expression of  an IFN-γ signature, which was previously reported 
to correlate with a better response to ICIs (40). The FAT/FRY subgroup had significantly higher expres-
sion of  the IFN-γ signature in the TCGA-ESCC data set (Figure 6G). Notably, 2 of  6 genes in this sig-
nature were not detected in GSE47404 and were not adequate for signature validation. We next applied 
the subclass mapping (SubMap) algorithm to globally assess the similarity of  transcriptome profiles of  
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patients in FAT/FRY subgroups with those of  patients in 2 melanoma cohorts and 1 urothelial cancer 
cohort with distinct responses treated with ICIs (41, 42). A lower P value yielded from SubMap repre-
sented a higher similarity between the 2 groups. From the transcriptomic perspective, FAT/FRY ESCC 
subtypes were similar to the responders in all 3 ICI cohorts (P < 0.05) (Figure 6H), indicating potential 
immunotherapy benefits for FAT/FRY ESCC.

Figure 5. Identification of a 3-gene signature associated with shorter OS for patients with ESCC. (A and B) 
Kaplan-Meier survival analysis showed that patients with mutation(s) in at least 1 gene of this signature had signifi-
cantly shorter OS than patients with WT genes in our discovery (A) and validation cohorts (B). (C) Survival curves show 
a marginal trend in which patients with comutations had worse OS than patients with 1 mutated gene in the 3-gene 
signature. (D) The FAT/FRY subgroup had worse survival in TCGA-ESCC cohort (n = 96). P values in A–D were calculated 
by log-rank tests. (E) Forest plot of the HRs of death in different molecular subgroups from 4 cohorts with the random 
effects model (pooled HR, 2.77 [95% CI, 1.43–5.36]; I2 = 65%; P = 0.03, I2 test). TE, target estimate; GECI, Guangdong 
Esophageal Cancer Institute; Song’s pN+ cohort, ref. 20.
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Moreover, we assessed the prognostic value of  the 3-gene signature in patients with immunothera-
pies. Because of  the lack of  mature sequencing data on ESCC, we chose a cohort with microsatellite 
stable tumors and a non–small cell lung cancer (NSCLC) cohort to validate its predictive capacity (11–13) 
because of  the prevalence of  microsatellite stable status in ESCC and a similar genomic background of  

Figure 6. Molecular and immune microenvironment characteristics of FAT/FRY subtype ESCC tumors. (A) Gene set enrichment analysis plot showing 
that genes involved in the Hippo pathway were dysregulated in the FAT/FRY subgroup. (B) The expression level of core genes of the Hippo pathway and 
targets of Hippo/YAP in our discovery set (n = 90). (C) Box plot showing the differences in the relative abundance of CD8+ T cells, activated DCs, eosino-
phils, and γδ T cells between both groups in the TCGA-ESCC and GSE47404 data sets. (D) Heatmap displaying the relative abundances of major immune 
cell types in TCGA cohort. (E and F) Validation of enrichment of CD8+ TILs by IHC in our discovery cohort (n = 170). (G) Box plot showing the differences 
in the expression of IFN-γ response signature between the FAT/FRY and WT groups. (H) Transcriptomic similarities of our ESCC subtypes and response 
groups in 3 ICI cohorts: Pei-Ling Chen et al. (55), Willy Hugo et al. (42), and Alexandra Snyder et al. (56). A smaller P value indicates a higher transcriptomic 
similarity between the 2 groups. The P values in B–G were calculated by Wilcoxon test. The box plots depict the minimum and maximum values (whis-
kers), the upper and lower quartiles, and the median. The length of the box represents the interquartile range. NR, nonresponse; R, response.
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NSCLC to ESCC (9). As expected, the signature significantly correlated with higher rates of  durable clin-
ical benefit (Figure 7, A and B). As shown in Figure 7, C and D, the FAT/FRY subgroup had longer pro-
gression-free survival and OS than the WT group in 2 ICI cohorts. Compared with high TMB (TMB-H), 
the signature achieved a more significant stratification in selecting potential responders of  ICIs (log-rank P 
value, 0.0017 < 0.0061 in Matthew Hellmann et al.’s cohort, ref. 13; and 0.0011 < 0.0075 in Diana Miao et 
al.’s cohort, ref. 12) (Supplemental Figure 11, E and F). In Hellmann et al.’s cohort (13), the AUC of  our 
3-gene signature was higher than that of  the TMB across different time points (Figure 7E), whereas in Miao 
et al.’s cohort (12), the prediction performance of  the signature was higher at 12-month follow-up but rela-
tively worse in the 18-month follow-up compared with the performance of  TMB (Figure 7F). Therefore, we 
suggested that the predictive capacity of  our 3-gene signature was comparable to that of  WES-based TMB 
in both ICI cohorts. In another ICI cohort, we could not fully validate the prognostic value of  the signature 
because of  insufficient coverage of  the Memorial Sloan Kettering Cancer Center panel, but we observed a 
significant correlation of  FAT1 mutation with longer OS (Supplemental Figure 11G). Behind this phenom-
enon, we observed that the 3-gene mutation signature was positively correlated with the TMB in both the 
ESCC and 2 ICI data sets (Figure 7G). In Hellmann et al.’s data sets, we also found higher neoantigen bur-
den instead of  PD-L1 expression in the FAT/FRY subgroup tumors (Figure 7H), which might drive active 
antitumor immunity. We could not validate this association in other data sets because of  the lack of  data.

Furthermore, the public pharmacogenomics database Genomics of Drug Sensitivity in Cancer (GDSC) 
was used to screen the responses of the molecular subtypes to common chemotherapeutic agents. As shown in 
Figure 7I, the FAT/FRY-mutant ESCC cell lines were more resistant to multiple agents, including paclitaxel 
and dasatinib, but more sensitive to alpelisib (P < 0.05), stressing the potential application of alpelisib in the 
FAT/FRY ESCC subtype.

Additional study data may be found in Supplemental Tables 7 and 10 and Supplemental Figures 5, 
E and F; 8; and 9.

Discussion
Advanced ESCC is a genetically and clinically heterogeneous disease, but treatments for patients with ESCC are 
guided by the TNM system empirically, regardless of the tumors’ genetic basis. Although several genome-wide 
studies have been conducted, useful biomarkers for prognosis assessment and treatment decision are still limited 
(2, 3, 21). Our study covered the most frequently mutated gene loci across the ESCC genome for the in-depth 
genomic characterization of a large cohort, enabling us to associate genetic features with clinical characteristics.

According to evolutionary theory, activating mutations in oncogenes tend to cluster within specific 
regions, and most mutations are deleterious (17). Following this rule, we found that in addition to oth-
er known driver genes, mutations in FRY, FCGBP, and GRIN2B might exert oncogenic effects on ESCC 
progression. Among these genes, the mutation status of  FRY was associated with rapid disease relapse. 
We also performed a set of  functional assays to confirm that truncating mutations in FRY might dampen 
its effect as a tumor suppressor. Taken together, these results showed that FRY mutations might serve as 
delayed driver events conferring tumor relapse.

Delineating the temporal order of  oncogenic mutations is important for identifying therapeutic tar-
gets, because targeting early clonal events can affect entire ESCC cell populations. For example, PIK3CA 
mutations are intermediate events and are commonly found in tumor subclones (21 of  29 mutations are 
subclonal), which may account for the variable responses to emerging PIK3CA therapies (26). Mutations 
in the NRF pathway genes, including NFE2L2, the indicator of  poor prognosis, and its degrading element 
CUL3, are early events in ESCC (3). Taken together, these results show that mutations in the NRF pathway 
occur early in disease development and determine patients’ poor prognosis, offering helpful information 
for early detection of  ESCC (3). Note that our conclusions are based on observations from a retrospective 
cohort and further validations require prospective studies of  successive samples.

Unsupervised clustering analysis of  prognosis-associated mutations led to the identification of  3 robust 
patient subpopulations with distinct prognoses. Notably, the group with the worst prognosis showed severe 
mutational lesions in the Hippo pathway (frequent FAT1, FAT3, and FRY mutations). Coincidentally, a 
multiomics study based on TCGA also reported an ESCC cluster characterized by Hippo pathway alter-
ations (i.e., YAP amplification and VGLL4/ATG7 deletion) (9).

A clinically relevant finding of  our study is the development and verification of  a 3-gene mutation sig-
nature to predict patient survival as well as to select potential responders to immunotherapy. Patients with 
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Figure 7. Molecular subtype–based treatment strategy. (A and B) Bar chart showing that the FAT/FRY subgroup had higher rates of durable clinical 
benefit than the WT group in both ICI data sets. (C and D) Survival differences of the FAT/FRY subgroup and WT subgroup in Matthew Hellmann’s 
(13) and Diana Miao’s (12) ICI cohorts. P values were calculated by log-rank tests. (E and F) The area under the time-dependent received operator 
characteristic curve of the 3-gene signature and TMB to predict post-ICI prognosis in the cohorts from refs. 12 and 13. (G) Box plot indicating that 
the significant correlations of the 3-gene signature and TMB in 2 ICI and 2 ESCC cohorts. (H) Box plot showing that the FAT/FRY subgroup had 
higher neoantigen burden but not PD-L1 expression than the WT subgroup. (I) Box plot displaying differences of drug responses in FAT/FRY-mutant 
ESCC cell lines and WT cell lines in the GDSC pharmacogenomics database. *P < 0.05, **P < 0.01, ***P < 0.001. P values in G–I were calculated by 
Wilcoxon test. The box plots depict the minimum and maximum values (whiskers), the upper and lower quartiles, and the median. The length of 
the box represents the interquartile range.
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this mutation signature had a graver prognosis than those with WT alleles, indicating the potential of  this 
signature to help distinguish a molecular subtype with poor prognosis. Having a hypoxia and chemoresistance 
transcriptome background, the FAT/FRY tumors still had higher immune infiltrates, especially for CD8+ 
TILs. Note that the poor-prognosis and higher CD8+ TIL infiltrations in FAT/FRY-mutant ESCC were not 
contradictory, because CD8+ TILs was not a robust indicator of  survival in this less immunogenic tumor type 
(43). A meta-analysis revealed the insignificant associations between CD3+CD4+ T cells and patient progno-
sis, as well as significant heterogeneity in correlations between CD8+ TILs and prolonged survival; insignif-
icant results were reported in more than a half  of  the studies (n = 7 of  13) (44). Our results might provide 
insights into genetic determinants of  CD8+ TILs’ effects on patient prognosis, showing that overactivation of  
the strong oncogene YAP1 might abate the effects of  immune infiltrations and lead to poor prognosis.

Compared with the prognostic predictors that were used to calculate the risk scores for patients based 
on the expression (45) or mutation status (46) of  biologically irrelevant genes, our prognostic signature, 
defined by a simple rule, is more practical to identify in the clinic patients with a poor outcome, and these 
patients should receive more radical treatments.

The emerging ICIs have been widely used in clinical work because of  their durable benefit. However, the 
unaffordable expense, low response rates, and the lack of  response biomarkers make them less cost-effective 
in patients with ESCC. In our study, several genetic clues implied that this ESCC subgroup might respond to 
ICIs: (1) higher TMB; (2) active infiltrations of  immune cells, especially CD8+ T cells, which were predictive 
of  ICIs; (3) higher expression of  an IFN-γ–related signature, which was confirmed as a predictor of  responses 
to pembrolizumab in KEYNOTE-012 and KEYNOTE-028 (40); and (4) high similarity of  the FAT/FRY 
ESCC expression profile to those of  ICI responders. Because of  the lack of  available ICI data sets in ESCC, 
we instead examined the prognostic value of  our 3-gene signature in cohorts of  other cancer types that were 
genetically similar to ESCC. The promising results demonstrated that the 3-gene mutation signature could 
differentiate both short-term (clinical benefit or not) and long-term survival (progression-free survival or OS) 
outcomes in patients treated with ICIs. In our study, the performance of  the signature was comparable to that 
of  TMB, an FDA-approved pan-cancer biomarker for ICIs. Moreover, our mutation signature consists of  only 
3 genes, and thus it is easier to detect and more cost-efficient than TMB based on WES or panel sequencing. 
In the future, the maturity of  our prospective trial (ClinicalTrials.gov identifier NCT04006041) on discovering 
biomarkers of  ICI in ESCC would provide direct evidence of  the prediction capacity of  our signature.

Additionally, drug-response analysis from the GDSC database hinted that FAT/FRY subtype ESCC cell 
lines might be more sensitive to the PIK3Ca inhibitor alpelisib. This drug reduces tumor growth via inhibiting 
the phosphorylation of PI3K downstream targets (47), such as Akt. In FAT/FRY tumors, inactivation of Hip-
po pathways leads to overactivation of YAP1, the main consequence of which is the hyperactivity of the PI3K/
Akt pathway (48, 49). Alpelisib can also abate effects of YAP-PI3K-Akt and inhibit tumor growth. Complex 
crosstalk between the PI3K/Akt pathway and other pathways, like the Hippo pathway, might also affect drug 
efficacy (48, 49). More efforts are needed to determine whether FAT/FRY ESCC is more sensitive to alpelisib.

Our study has some limitations. The data were derived from our bespoke panel, preventing us from 
comprehensively depicting the genetic features of  the molecular subtypes described in our study. Neverthe-
less, such a widely used sequencing tool in clinical practice makes our results directly clinically relevant. 
Second, the predictive value of  the 3-gene signature for predicting ICI efficacy could be partially explained 
by a higher TMB and neoantigen burden, which may lead to active antigen presentation by activated DCs 
and downstream antitumor immunity, but whether and how these Hippo pathway–related mutations 
reshape the tumor environment remain unknown.

These results represent our breakthroughs in understanding genetic alterations in ESCC from biolog-
ical and clinical perspectives. We have identified and validated an ESCC molecular subtype with frequent 
Hippo-related mutations, a poor prognosis, and potential benefits to immunotherapy. With the populariza-
tion of  large-panel sequencing in clinical practice, our findings will help clinicians make treatment deci-
sions based on genomic features of  patients.

Methods
Sample selection and sequencing. The discovery cohort comprised 201 patients with available frozen tissues 
identified from the Biobank of  Sun-Yat sen University Cancer Center (SYSUCC) according to our estab-
lished criteria (see the note accompanying Supplemental Figure 1). Tumor purity was assessed by SYS-
UCC-authenticated pathologists, and only tissues with ≥50% tumor purity were included. Genomic DNA 
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from frozen tissues was captured by our customized kit (SureSelect, Agilent) and sequenced on the Illu-
mina NovaSeq 6000 platform. Our panel included 548 genes that were selected on the basis of  previously 
identified mutation frequencies (2, 16–22).

To validate our findings from the discovery cohort, 70 frozen tissues from the biorepository of  Guang-
dong Esophageal Cancer Institute were selected according to criteria used in the discovery cohort and were 
termed the validation cohort. Univariable Cox regression analysis was performed with bootstrap sampling 
in the discovery cohort, and 66 mutated genes associated with DFS or OS were included in the sequencing 
panel of  the validation cohort. The library construction, sequencing, and bioinformatic analysis strategies 
were identical to those used in the discovery cohort.

Bioinformatic analysis. The clean reads were aligned to the human reference genome b37 using BWA. 
Variants were identified using Mutect2 (GATK-MuTect2 version v4.2.1) by comparing tumor samples with a 
normal sample pool. To overcome the difficulty of  distinguishing somatic mutations and germline variants in 
the absence of  matched normal samples, variant selection criteria were developed (Supplemental Methods).

Unsupervised machine learning. The log-rank test was applied to each mutated gene (mutant vs. WT), and 
all 59 prognosis-associated genes (PDFS ≤ 0.1 or POS ≤ 0.1 and frequency ≥ 2%) were assembled into a binary 
gene-sample matrix for unsupervised clustering.

To identify ESCC subpopulations that shared similar prognosis-associated mutation patterns, NMF con-
sensus clustering was used to cluster patients with similar mutation patterns. Another clustering algorithm, 
partitioning around medoids consensus clustering (29), was applied to repeat the generation of  clusters. Venn 
plots and the kappa index were used to evaluate and visualize the consistency of  clusters identified by the 2 
algorithms. Other computational methods are detailed in Supplemental Methods.

Analysis of  external data sets. GSE23400, GSE44021, and GSE161533 were processed by the R 
package limma to compare the expression differences of  FRY between ESCC tumors and matched nor-
mal tissues. To validate the prognostic value of  the 3-gene signature, genomic and survival data were 
extracted from associated studies (17, 20, 50). Clinical and genomic data from 2 pan-cancer cohorts 
and 1 NSCLC cohort were used to evaluate the capacity of  the 3-gene signature in predicting the effi-
cacy of  immunotherapy (11–13).

To further characterize molecular features of  the FAT/FRY subtype, we performed multiomics 
analyses based on the data from TCGA and GSE47404 (9, 51). The count data were processed by R 
package edgeR to identify differentially expressed genes (52). We used gene set enrichment analysis to 
identify enriched pathways (P < 0.05; FDR < 0.25). The relative composition of  immune cells was 
evaluated by summarizing signals of  marker genes (Supplemental Table 8) into the z score based on 
published methods (GSVA package) (53). SubMap analysis (54) was performed to measure the similar-
ity of  expression features between the FAT/FRY subtype tumors and responders of  immunotherapies 
in 2 melanoma data sets and a urothelial cancer data set (42, 55, 56). The drug-response data (IC50) of  
22 ESCC cell lines with Cancer Cell Line Encyclopedia mutational profiling data were retrieved from 
GDSC (57). A higher IC50 indicated a more resistant cell phenotype to the drug. Student’s 2-tailed t test 
was used to compare drug responses of  the FAT/FRY mutant cell lines and WT cell lines.

Data access. Raw data will be uploaded to the Genome Sequence Archive in the BIG Data Center 
(https://ngdc.cncb.ac.cn/gsa), Beijing Institute of  Genomics, Chinese Academy of  Sciences, with acces-
sion code HRA000777. The public data sets used in this study can be retrieved from associated files of  
papers. The authenticity of  the study was validated by the uploading of  key raw data to the research data 
deposit public platform (http://www.researchdata.org.cn; approval RDD no. RDDB2021001611).

Statistics. All analyses were performed with R 4.0.2 and SPSS 25.0 (IBM Corporation). The P value 
for the survival curve was calculated from the log-rank test; all patients were followed up for death 
until December 31, 2019. The median follow-up time was 52.9 months (95% CI, 46.0–61.9, reverse 
Kaplan-Meier method), and 151 of  271 patients died during the follow-up period. Student’s 2-tailed 
t test or the Wilcoxon rank-sum test was used to assess associations between 2 groups of  continuous 
variables, as appropriate. Fisher’s exact test was used to assess associations between categorical vari-
ables, including determining whether the oncogenic mutations in cancer-associated genes had a bias 
toward being “clonal.” Clonal events were deemed early events, and subclonal events were acquired 
later. The fixed (I2 < 50%) or random effects (I2 < 50%) model was used to pool the HRs of  the molec-
ular subgroup from 3 cohorts. All P values reported are 2 sided. The P value threshold for statistical 
significance was set at 0.05 unless otherwise specified.
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and waived the requirement for informed consent given the retrospective nature of the study (SZR2019-109).
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