Skip to main content
. 2022 Sep 9;17(9):e0273844. doi: 10.1371/journal.pone.0273844

Table 2. Abundance alterations of core bacteriome by seasonal and climatic conditions.

A negative binomial model estimated the association between species abundance of core bacteriome and sampling seasons, GDD- and precipitation level.

Samples Species Mean counts Fold change
(95% CI)
q § Mean counts Fold change
(95% CI)
q
GDD
Warmer vs. cooler
Precipitation
More vs. less
May Bartonella apis 1068.87 0.02 (0, 0.08) <0.00001 1068.87 0.99 (0.15, 6.53) *
Bifidobacterium asteroides 1144.10 0.47 (0.31, 0.71) 0.00274 1144.10 1.52 (0.94, 2.47) 0.34335
Bifidobacterium coryneforme 180.26 0.78 (0.47, 1.3) 0.55291 180.26 0.72 (0.43, 1.2) 0.44555
Bifidobacterium indicum 176.76 0.81 (0.49, 1.33) 0.55291 176.76 0.72 (0.43, 1.19) 0.44555
Commensalibacter sp. AMU001 162.07 0.68 (0.37, 1.25) 0.46158 162.07 0.58 (0.32, 1.05) 0.34335
Frischella perrara 3662.30 1.18 (0.84, 1.65) 0.55291 3662.30 0.97 (0.68, 1.37) 0.85067
Gilliamella apicola 11004.31 1.29 (0.94, 1.78) 0.42005 11004.31 0.75 (0.55, 1.04) 0.34335
Lactobacillus apis 4366.20 0.84 (0.65, 1.09) 0.46158 4366.20 1.17 (0.89, 1.54) 0.47268
Lactobacillus bombi 495.19 1.03 (0.73, 1.44) 0.86802 495.19 0.89 (0.63, 1.26) 0.67884
Lactobacillus helsingborgensis 786.53 0.87 (0.71, 1.07) 0.46158 786.53 1.2 (0.96, 1.5) 0.34335
Lactobacillus kullabergensis 3454.42 1.11 (0.87, 1.41) 0.55291 3454.42 0.96 (0.74, 1.24) 0.80541
Lactobacillus kunkeei 187.49 3.86 (1.25, 11.89) 0.09368 187.49 0.13 (0.05, 0.36) 0.01120
Lactobacillus mellis 213.99 1.13 (0.79, 1.61) 0.62292 213.99 0.86 (0.59, 1.25) 0.59928
Lactobacillus sp. wkB8 681.21 0.97 (0.8, 1.18) 0.84023 681.21 1.1 (0.89, 1.36) 0.58331
Snodgrassella alvi 1706.23 0.92 (0.71, 1.2) 0.62292 1706.23 0.94 (0.71, 1.24) 0.78937
May Bartonella apis 1553.31 0.28 (0.08, 1.01) 0.22572 1553.31 1.46 (0.36, 5.85) 0.86672
Bifidobacterium asteroides 942.33 0.83 (0.56, 1.22) 0.74756 942.33 0.9 (0.6, 1.37) 0.86672
Bifidobacterium coryneforme 79.75 0.92 (0.49, 1.73) 0.98269 79.75 1.13 (0.59, 2.18) 0.86672
Bifidobacterium indicum 81.39 0.9 (0.49, 1.63) 0.98269 81.39 1.23 (0.66, 2.28) 0.86672
Commensalibacter sp. AMU001 255.76 0.51 (0.26, 1) 0.22572 255.76 0.72 (0.35, 1.49) 0.86672
Frischella perrara 2522.61 1.02 (0.66, 1.56) 0.98269 2522.61 0.98 (0.62, 1.54) 0.92494
Gilliamella apicola 7869.43 1.01 (0.65, 1.57) 0.98269 7869.43 1.09 (0.69, 1.73) 0.86672
Lactobacillus apis 1698.58 1.62 (1.07, 2.45) 0.22572 1698.58 1.23 (0.77, 1.97) 0.86672
Lactobacillus bombi 183.30 1.06 (0.68, 1.66) 0.98269 183.30 1.03 (0.65, 1.65) 0.92494
Lactobacillus helsingborgensis 952.28 1.2 (0.66, 2.17) 0.98269 952.28 0.79 (0.43, 1.45) 0.86672
Lactobacillus kullabergensis 1258.90 1.5 (0.93, 2.41) 0.29310 1258.90 1.17 (0.7, 1.97) 0.86672
Lactobacillus kunkeei 36.06 1.08 (0.39, 2.97) 0.98269 36.06 1.65 (0.59, 4.57) 0.86672
Lactobacillus mellis 78.82 1 (0.65, 1.56) 0.98269 78.82 1.12 (0.7, 1.77) 0.86672
Lactobacillus sp. wkB8 648.44 1.33 (0.75, 2.36) 0.74756 648.44 0.91 (0.49, 1.66) 0.86672
Snodgrassella alvi 1567.32 0.66 (0.43, 1.02) 0.22572 1567.32 1.43 (0.9, 2.25) 0.86672
May vs. March
All Bartonella apis 1538.45 15.41 (6.07, 39.17) <0.00001
Bifidobacterium asteroides 1074.14 1.61 (1.16, 2.24) 0.00837
Bifidobacterium coryneforme 118.29 0.74 (0.52, 1.05) 0.12117
Bifidobacterium indicum 118.69 0.78 (0.55, 1.11) 0.18588
Commensalibacter sp. AMU001 232.29 2.46 (1.7, 3.57) 0.00001
Frischella perrara 3046.15 1.17 (0.85, 1.61) 0.34279
Gilliamella apicola 9304.64 1.22 (0.92, 1.62) 0.18588
Lactobacillus apis 2740.93 0.64 (0.48, 0.86) 0.00656
Lactobacillus bombi 309.86 0.64 (0.48, 0.84) 0.00519
Lactobacillus helsingborgensis 928.22 1.7 (1.19, 2.43) 0.00800
Lactobacillus kullabergensis 2115.13 0.57 (0.43, 0.76) 0.00056
Lactobacillus kunkeei 99.88 0.64 (0.36, 1.14) 0.16276
Lactobacillus mellis 133.69 0.64 (0.49, 0.85) 0.00519
Lactobacillus sp. wkB8 680.91 1.35 (0.98, 1.87) 0.10342
Snodgrassella alvi 1700.90 1.49 (1.12, 1.98) 0.01099

Sequence read counts were normalized by dividing raw counts by DESeq size factors

§FDR-adjusted p-value. FDR adjustment was conducted in each pairwise comparison separately

*DESeq method can’t estimate p-values without outlier replacement